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Abstract: Serving as matrices, polypropylene (PP) melt-blown nonwoven fabrics with 4% electrostatic
electret masterbatch were incorporated with a 6%, 10%, 14%, or 18% phosphorus-nitrogen flame
retardant. The test results indicate that the incorporation of the 6% flame retardant prevented PP
melt-blown nonwoven fabrics from generating a molten drop, which, in turn, hampers the secondary
flame source while increasing the fiber diameter ratio. With a combination of 4% electrostatic electret
masterbatch and the 6% flame retardant, PP melt-blown nonwoven fabrics were grafted with ZIF-8
and Ag@ZIF-8. The antibacterial effect of ZIF-8 and Ag@ZIF-8 was 40% and 85%, respectively.
Moreover, four reinforcing measures were used to provide Ag@ZIF-8 PP melt-blown nonwoven
fabrics with synergistic effects, involving lamination, electrostatic electret, and Ag@ZIF-8 grafting,
as well as a larger diameter because of the addition of phosphorus-nitrogen flame retardants. As
specified in the GB2626-2019 and JIS T8151-2018 respiratory resistance test standards, with a constant
60 Pa, Ag@ZIF-8 PP melt-blown nonwoven membranes were tested for a filter effect against PM 0.3.
When the number of lamination layers was five, the filter effect was 88 ± 2.2%, and the respiratory
resistance was 51 ± 3.6 Pa.

Keywords: flame-retardant nonwoven fabric; metal–organic framework; ZIF-8; antibacterial nonwo-
ven fabric; air filter nonwoven fabric

1. Introduction

Melt-blowing nonwoven fabrics is an advanced production technique used to create
ultrafine fibers out of a polymer melts, drawn from the mold of a screw extruder, the
polymer undergoes high-speed hot air jet stretching, and then the ultrafine fibers are
entangled and aligned randomly in a turbulent airflow, forming nonwoven fabrics that are
suitable for diverse applications, including air filtration [1], oil–water separation [2], tissue
engineering [3], heavy metal adsorption [4], sound insulation materials [5], and battery
separators [6]. Following the spread of COVID-19, airborne viruses will permanently
contaminate human society and so will other pollutants, e.g., PM 2.5. To address this
issue, melt-blown nonwoven fabrics that consist of ultrafine fibers in a randomly entangled
structure ensure an excellent air filtration effect. The four mechanisms of physical filters to
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capture aerosol particles are gravity settling, inertia impact, interception, and Brownian
diffusion, all of which exert a crucial effect on aerosol particles in a specified size range [7,8].

Being material-based fibrous filters, electret filters feature Semipermanence [9] and
are commonly used as a medium for air filters in the market, thereby satisfying the high
demands of collection efficiency. The particle size at the lowest filtration efficiency, named
the most penetrating particle size (MPPS), typically around 0.3 µm or smaller, is used to
determine the dominant capture mechanism of an air filter [10]. Electret filters, with quasi-
permanent electric charges on the fibers and additional electrostatic attraction, show a
higher initial filtration efficiency and a much lower pressure drop compared to mechanical
high-efficiency particulate air (HEPA) filters. They have been widely applied in indoor
air cleaners and heating, ventilating, and air conditioning (HVAC) systems for ensuring a
high quality of indoor air [11]. Several experiments have been carried out to explore the
factors that cause the efficiency degradation of electret filters. The filtration efficiency of an
electret fiber can be approximated as the sum of the electrostatic and mechanical collection
efficiencies, where a superior electret melt-blown filtration material has a high filtration
efficiency of 99.65%. The electret time, electret voltage, and electret distance are three
important process parameters that affect the electret effect. As the electret time increases,
the equivalent surface charge density of the deposition increases, and the potential on the
electret surface rises. After the electret time increases again, when the surface potential
of the filter material is high enough, the charge under the needle tip will be repelled to
move to other places with a lower charge density [12]. When the electret ends, the charge
surface density reaches the saturation state, and thus when the electret time increases again,
the filtration efficiency of the filter material does not change significantly. Electrostatic
electret equipment, dust, bacteria, and viruses in the air are attached to the particles,
which are mainly negatively charged. The melt-blown cloth is positively charged, and it is
easy to adsorb these negatively charged particles. Melt-blown cloth electrostatic electret
equipment is a special type of equipment that generates static electricity. It offers a stable
output voltage, comprehensive protection, simple operation, high efficiency, low flow
resistance, antibacterial properties, and energy saving. It guarantees the physical collision
blocking effect of conventional filter materials and increased electrostatic adsorption.

On the other hand, metal–organic frameworks (MOFs) are newly emerging materials
that are characterized by a high porosity, a high specific surface area, a porous crystal area,
and a highly adjustable aperture [13]. Due to their great potential, MOFs have garnered
much attention in the fields of air storage, separation, catalysis, electronics, sensors, and
medicine [14,15]. In particular, zeolitic imidazolate framework-8 (ZIF-8) is one major MOF
that presents unique properties, such as high heat resistance, chemical stability, a high sur-
face area, permanent porosity, and a high adsorption capacity [16], the attributes of which
make ZIF-8 a good candidate for industrial gas separation, storage, and catalytic uses [17].
The in-situ growth method helps load ZIF-8 efficiently while maintaining its pristine struc-
ture/activity, which, in turn, contributes to its valuable industrial applications [18]. Hence,
previous studies employed the in-situ growth method to combine Ag-MOFs@CNF@ZIF-8
with biodegradable cellulose-based filters. The materials demonstrated reinforcement in
the filter efficiency against PM2.5 from 44% to 94.30% as well as a pressure drop from 19
to 158 Pa [19]. In another study, ZIF-8@CF filters, a composite type, exhibited a filtration
efficiency of 44% for 0.3 µm particles and 65% for 0.5 µm particles, that is, the filtration
efficiency was improved by 98.36% and 99.94% with the pressure increasing from 21 to
134 Pa [20]. PPC composite melt-blown fibrous membranes loaded with ZIF-8 nanocrystals
were prepared by the in-situ polymerization method under mild conditions. The compos-
ite membranes demonstrated a high PM 2.5 filtration efficiency (PPC/ZIF8-9 membrane,
91.68 ± 0.57%) as well as a low pressure drop (PPC/ZIF8-9 membrane, 45 Pa). Notably, the
PM 2.5 filtration efficiency of the composite membranes was enhanced by nearly 32.83%
compared to that of the pure PPC filter, but the pressure drop was not increased [21].

Polypropylene (PP) melt-blown nonwoven fabrics are popular, serving as the filter
layer for diverse facial masks. PP melt-blown nonwoven fabrics possess extraordinary
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dust filtration performance that protects the skin. They are also used as a protective layer
in medical protective clothing and protective apparel because of their excellent chemical
resistance and breathability [22]. Nowadays, due to the outbreak of COVID-19, medical
protective clothing is required to block body fluids, blood, secretions, particulate matter,
and aerosols and possess a powerful antibacterial effect, too. Therefore, in this study,
4% electrostatic electret masterbatch was employed to provide PP melt-blown nonwoven
membranes with a strengthened electret effect, while phosphorus-nitrogen flame retardants
(6%, 10%, 14%, and 18%) were used to improve the low combustion resistance of PP melt-
blown nonwoven membranes. Next, ZIF-8/Ag was grafted with the filter group containing
the 6% flame retardant via a solvent method, thereby strengthening the filtration efficacy
against PM 0.3, and the antibacterial effect. In addition, the resulting filters were evaluated
for their air filtration effect and respiratory resistance rate as related to the number of
lamination layers. From the results, Ag@ZIF-8@PP melt-blown nonwoven fabrics can be
considered for use in both air filters and the protective layer of medical protection gear.

2. Experimental
2.1. Material

The polypropylene (PP) resin (Dongguan Xiangsheng Plastic Co., Ltd., Guangdong,
China) had a melt flow rate (MFR) of 35 g·10 min−1. PP flame-retardant masterbatch
(RSPP-100M, bromine content: 16%, nitrogen content: 6%, phosphorus content: 4%) and PP
electrostatic electret masterbatch were purchased from Rise Chemical Technology Co., Ltd.,
Shanghai, China. Zinc nitrate hexahydrate (AR, Zn (NO3)2 × 6H2O) and methanol
(AR, CH3OH) were purchased from Kerris (Fine Chemical Co., Ltd., Tianjin, China).
2-Methylimidazole (98%, C4H6N2) was purchased from (Sigma Aldrich, Saint Louis, MO,
USA). All chemical reagents were used without further purification. The nanosilver an-
tibacterial agent was purchased from Xing Zhou Chemicals Co., (Ltd., Shanghai, China).

2.2. Preparation of Melt-Blown Nonwoven Fabrics and Electrostatic Electret

Figure 1a shows melt-blown nonwoven fabrics that were prepared by a single-screw
melt blowing apparatus (SJ45X36, Keshengda Plastic Machinery Co., Ltd., Qingdao, China).
The processing parameters are listed in Table 1. The as-prepared masterbatch was named
PP, PF-6, PF-10, PF-14, PF-18, and PF-22 according to the content of flame retardant in the
masterbatch. As suggested by the supplier of electrostatic electret masterbatch, electrostatic
electret masterbatch has a specified content of 4%. Each batch of samples was prepared
as follows: PP pellets (3 kg) that were blended with the flame-retardant masterbatch
and electrostatic electret masterbatch in advance were fed into the barrel of the machine.
Figure 1b shows the electrostatic electret machine (ESD-RPB, Lishan Technology Co., Ltd.,
Shanghai, China) equipped with a voltage of 30 kv.

2.3. Preparation of MOF and Ag@MOF

As shown in Figure 2, zinc nitrate hexahydrate (3 mmol) and 2-methylimidazole
(15 mmol) were separately combined with anhydrous methanol, after which the two
blends were mixed for 3 h and kept for 8 h. Next, the final mixture was processed with
centrifugation at 5000 rpm for five minutes, and then rinsed with methanol three times.
After, the supernatant was removed, and the mixture was dried in a vacuum drying oven
at 80 ◦C, thereby obtaining white MOF powders.

Table 1. Processing parameters.

Zone (1) ◦C Zone (2) ◦C Zone (3) ◦C Pipeline (4) ◦C Metering Pumps
(5) ◦C

Nozzles Die Assembly
Temperature (6) ◦C

Hot Air Outlet
(7) ◦C

165 240 270 290 265 255 235
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Zeolitic imidazolate framework-8 (ZIF-8) is one major MOF type, and Ag@MOF was
prepared as follows. The nanosilver (Ag) antibacterial agent was added to the final mixture
(produced as described in the previous paragraph) with 3 h of mixing and 8 h of storage,
after which the Ag-containing blend underwent centrifugation, rinsing, and drying, thereby
yielding Ag@ZIF-8 [7,21,23].

2.4. Preparation of ZIF-8@ and Ag@ZIF-8@ Melt-Blown Nonwoven Fabrics

ZIF-8 and Ag@ZIF-8, weighing 40% of the nonwoven fabric, were separately added
to anhydrous methanol for dissolution, totaled 40% of the weight of the nonwoven fabric.
They. Next, a PP melt-blown nonwoven fabric (10 × 10 cm) was immersed completely in a
ZIF-8 mixture or an Ag@ZIF-8 mixture for 24 h, after which deionized water was used to
rinse the MOF that did not bond well with the fabrics. The wet PP melt-blown nonwoven
fabrics were dried at 80 ◦C in order to gain a constant weight, forming ZIF-8@ melt-blown
nonwoven fabrics and Ag@ZIF-8@ melt-blown nonwoven fabrics.

2.5. Characterization

The IR spectra of the PP melt-blown nonwoven fabric membranes were detected by
an FT-IR spectrometer (MPIR8400S, Shimadzu, Kyoto, Japan) based on the ATR method.
Sixteen scans were conducted for each melt-blown nonwoven fabric at a resolution of
4 cm−1. The SEM images of the as-prepared PP melt-blown nonwoven fabrics were
photographed by a field-emission SEM (Nova Nano SEM 230, FEI, Hillsboro, OR, USA) at
an acceleration voltage of 2 kV. The fiber size distribution (fiber diameter) was measured
with Image-Pro Plus 6.0 software. The antibacterial efficacy of ZIF-8@ nonwoven fabrics
was evaluated individually using a quantitative test as specified in AATCC-100 and a
qualitative test as specified in JISL1902. Five samples for each specification were used.
Gram-positive Staphylococcus aureus (AATCC 25922TM) and Gram-negative colibacillus
(AATCC 25922TM) were used for the tests. The Ag@ZIF-8@ nonwoven fabrics were the
experimental group, while the PP nonwoven fabrics were the control group. The qualitative
test used the inhibition zone to determine the antibacterial effect, and the quantitative test
used Equation (1) to determine the bacteria reduction rate (BR%).

BR% = (A − B)/A (1)

where A stands for the number of colonies of the control group, and B stands for the
number of colonies of the experimental group.

For the vertical combustion test, the YG(B)815D-I vertical combustion instrument
produced by Darong Textile Instrument Co., Ltd. (Wenzhou, China) was used. Trimmed to
80 × 300 mm according to GB/T5455-2014 test standards, the nonwoven fabric was fixed
on the test clamp, the flame height of methane was specified as 40 mm in the experiment,
and the experiment started when the flame was stable. The flame was ignited under the
nonwoven fabrics for 10 s and then automatically moved away, after which skimmed
cotton was positioned under the sample to monitor whether droplets are produced.

The specific surface and pore size of the material were measured by an automated
gas sorption analyzer (Autosorb-iQC). Before the adsorption test, the material was blown
with nitrogen at 350 ◦C for 5 h to remove the vapor and impurities. The air filtration
efficiency test was conducted as specified in GB2626-2019 and JIS T8151-2018 using a mask
filter material particle filtration efficiency tester (FE/R-2626-III, LiSan Technology Co., Ltd.,
Shenzhen, China), with the size of non-oily suspended particles being 0.3 µm. All ex-
periment data tests were conducted at least five times, and the data are presented as
means ± SD. Statistical analyses were performed using GraphPad Prism (GraphPad 4
Journal of Biomaterials Applications 0 (0) Software, Inc., San Diego, CA, USA). Data were
analyzed using one-way analysis of variance (ANOVA), followed by the two-tailed t-test
for comparison between two groups. The threshold for statistical significance was p < 0.05.
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3. Results and Discussion
3.1. SEM Analysis

Figure 3 presents SEM images showing the morphology of the samples. PP melt-blown
nonwoven fabrics containing 4% electrostatic electret masterbatch showed a nanofiber
diameter that is in direct proportion to the content of the phosphorus-nitrogen flame retar-
dant. Compared to the pure PP melt-blown nonwoven fabrics in Figure 3a, the presence
of the flame retardant resulted in an irregular fiber distribution in the melt-blown nonwo-
ven fabrics, as shown in Figure 3b–e. The uneven nanofiber diameters generated a fiber
morphology that is beneficial for the ventilation and the air filter efficiency [7,21,23]. The
average fiber diameter for each group is PP (8.89 µm), PP-6 (11.89 µm), PP-10 (14.94 µm),
PP-14 (16.03 µm), and PP-18 (17.26 µm). Serving as a filter, the optimal PP melt-blown
nonwoven fabrics were those with a nanofiber diameter of 2–14 µm [24]. Regardless of
whether the flame retardant was incorporated, the average thickness of PP melt-blown
nonwoven fabrics was 0.46 ± 0.3 mm, with an average weight of 0.92 mg/cm2. Although
the presence of the flame retardant did not affect the weight of the melt-blown nonwoven
fabrics, the nanofibers with various thicknesses were interlaced irregularly, which caused
the fabrics to have a rugged morphology and a rough texture.
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Figure 3. SEM images of melt-blown nonwoven fabrics: (a) PP, (b) PP-6, (c) PP-10, (d) PP-14, and (e) PP-18.

3.2. Vertical Burning Test

Figure 4 shows the vertical burning test results of different PP melt-blown nonwoven
fabrics. It can be observed that the groups consisting of the phosphorus-nitrogen flame
retardant were highly inflammable. The burning test process involved nonwoven fabrics
being placed over the clamps in the combustion test equipment and the skimmed cotton
being placed beneath the clamps. The flame continued to burn over the nonwoven fabrics,
after which the molten drop set the skimmed cotton alight, causing the second flame source.
A tremendous amount of medical-related protective clothing is now being used because of
the COVID-19 pandemic. Nonwoven fabrics for disposable medical wear, medical masks,
and medical protective wear do not require the flame retardant effect, but CPSIA (US),
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Oeko-tex100 (EU), and GB31701-2015 (China) require infant-related clothing products to be
flame retardant.
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The PP melt-blown nonwoven fabrics were incredibly flammable. By contrast, the
PP-6 melt-blown nonwoven fabrics did not generate a molten drop in the vertical burning
test. Although the damage length was not significantly improved, the incorporation of the
6% flame retardant exerted a positive influence on the phenomenon of molten drop. Due
to the presence of a flame retardant, the SEM images (Figure 3) indicate that the interlaced
fibers have various diameters, which, in turn, favors air filtration. Therefore, the specified
PP melt-blown nonwoven fabric (i.e., PP-6) that is composed of 4% electrostatic electret
masterbatch and the 6% phosphorus-nitrogen flame retardant was used in the subsequent
measurements.

3.3. SEM Analysis of ZIF-8@ Melt-Blown Nonwoven Fabrics

Figure 5 shows the SEM images of the ZIF-8@ melt-blown nonwoven fabrics and
Ag@ZIF-8@ melt-blown nonwoven fabrics, where both groups were prepared with the PP-6
group as the matrices. There are many granular cubes in Figure 5a, the magnified image
of which is Figure 5b, where there are many crystal particles adhered to the melt-blown
nonwoven fabrics. Furthermore, the EDS analysis confirms that the crystals exhibit the
characteristic peaks of ZIF-8 [25–27]. ZIF-8 itself has a minor antibacterial effect [28], and it
can increase the nonwoven fabric’s interception of suspended particles [21]. To compensate
for the disadvantage of ZIF-8, a nanosilver antibacterial agent was incorporated to form
Ag@ZIF-8@ melt-blown nonwoven fabrics. As a result, the SEM in Figure 5c proves the
adhesion of the crystals to the fibers, while the EDS analysis also substantiates the presence
of Ag.
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Figure 5. SEM and EDS analyses of ZIF-8@ melt-blown nonwoven fabrics and Ag@ZIF-8@ melt-blown nonwoven fabrics.
(a) ZIF-8@melt-blown nonwoven fabrics (c) Ag@ZIF-8 melt blown nonwoven fabric (b,d) are the magnify of ZIF-8 and
Ag@ZIF-8 nanoparticle on non-woven fabric, respectively3.4. FTIR Analysis.

The FTIR spectra of PP-6, ZIF-8@PP-6, and Ag@ZIF-8@PP-6 are shown in Figure 6.
The C–N absorption peak takes place at around 1255 cm−1, and the stretching vibra-
tions of C–N and C==C of the imidazole ring occur at 1250 cm−1 and 1562 cm−1, respec-
tively [4]. The stretching vibration or bending vibration of the imidazole ring is presented
at 591–1550 cm−1; the stretching vibration of C=N in the imidazole ring is presented at
1580 cm−1; and the stretching vibration of C–H bonds for the imidazole ring in the aro-
matic and aliphatic series is presented at 2930–3140 cm−1 [7]. The characteristic peak at
1146 cm−1 is ascribed to the aromatic C–N stretching mode. The in-plane bending mode of
the imidazole ring and the aromatic bending mode of sp2 C–H are assigned to the signals
at 994 and 760 cm−1, respectively. Similarly, the peak at 684 cm−1 is derived from the
out-of-plane bending vibratioof the 2-methylimidazole ring [25,29].

3.4. BET Analysis of ZIF-8@ Melt-Blown Nonwoven Fabrics

The ZIF-8 organic–metal framework material possesses a huge surface area, a high
load efficiency, and a controllable porosity. These attributes prevent effective materials, e.g.,
antibodies, from being affected by the interference of the ambient temperature, and pres-
sure. By means of N2 adsorption–desorption experiments, the pore structure parameters of
ZIF-8@ melt-blown nonwoven fabrics, including the specific surface area and aperture, are
characterized in Figure 7, as related to the antibacterial agent. Figure 7a–d individually
show the pore structure parameters before and after loading the ZIF-8 nanomaterial. Ac-
cording to the adsorption–desorption isotherm in Figure 7a, with P/P0 < 0, the adsorption
capacity swiftly increases and fills the microporous area of the fillers in the beginning.
Afterwards, with P/P0 > 0.1, the adsorption capacity increases mildly, suggesting that the
micropore filling almost approaches saturation. To sum up, the maximal specific area of
ZIF-8 is as high as 1010.33 m2/g, which makes the ZIF-8 nanomaterial a popular adsorbent.
Figure 7c shows that the ZIF-8 nanomaterials have a pore size of 5.94 nm that is classified
as belonging to the mesoporous structure range (micropore < 2 nm, 2 nm < mesoporous
structure < 50 nm).
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Figure 7b shows the adsorption–desorption isotherm when ZIF-8 was loaded with
an antibacterial agent. With P/P0 < 0.1, when the material is in contact with air, the air
is first adsorbed. With P/P0 > 0.1, there is a distinct platform area that suggests that the
material reaches the maximal gas adsorption capacity. Due to the presence of van der Waals
force among the molecules, multi-layered air adsorption occurs and is accompanied by
condensation of pores. Subsequently, the adsorbed gas enters the micropores and is then
rendered with liquefaction, which, in turn, boosts the adsorption capacity. Figure 7b shows
a spike in the adsorption isotherm, while ZIF-8 that was loaded with an antibacterial agent
exhibits a decreased specific surface area of 666.96 m2/g and an increased pore diameter
of 9.00 nm. In conclusion, the antibacterial agent was successfully loaded on the ZIF-8
nanomaterial, and it filled the comparatively smaller pores of ZIF-8.

3.5. Antibacterial Effects of Ag@ZIF-8@ Melt-blown Nonwoven Fabrics

There was a dire shortage of medical surgical masks at the beginning of the current
pandemic when COVID-19 started escalating. PP melt-blown nonwoven fabrics now have
a surplus in supply because of their excessive production. Therefore, this study aimed to
broaden the application range of PP melt-blown nonwoven fabrics. Moreover, the flame
retardant effect and antibacterial effect were incorporated so the PP melt-blown nonwoven
fabrics can also be used in medical protective clothing. Ag@ZIF-8@ melt-blown nonwoven
fabrics and ZIF-8@ melt-blown nonwoven fabrics are thus proposed. The antibacterial
test results are shown in Figure 8, where (a1, b1) are the control group, while (a2, b2)
are the ZIF-8@ melt-blown nonwoven fabrics against Escherichia coli and Staphylococcus
aureus, respectively. ZIF-8 demonstrated a slight antibacterial effect [30,31] that was about
30~40%. Figure 8(a3, b3) show that the presence of the nano silver antibacterial agent
strengthened the antibacterial effect significantly, which was over 85%. ZIF-8 had a limited
loading capacity, which, in turn, restricted the loading of the nano-Ag antibacterial agent.
In its current state, medical protective clothing is repetitively used, meaning it needs to
be sterilized using alcohol or UV lights. Being electrostatic electret based, the proposed
PP melt-blown nonwoven fabrics are an effective air filter that intercepts airborne aerosols
efficiently [32,33]. Protective clothing with PP melt-blown nonwoven fabric as the surface
layer is air permeable and can block microbe-containing aerosols. Furthermore, PP melt-
blown nonwoven fabrics can be treated again with electrostatic electret to be saturated
with static charges, during which bacteria and viruses are also removed simultaneously. As
shown in Figure 9, a bacterial suspension with a concentration of 106 was dripped over the
Ag@ZIF-8@ melt-blown nonwoven fabrics, which were then processed with electrostatic
electret. With a voltage of 30 kv, the elective was left for five seconds and then removed,
providing Ag@ZIF-8@ melt-blown nonwoven fabrics with an antibacterial rate of <1%.

3.6. Filtration Efficacy of Airborne Suspended Aerosols

As specified in GB2626-2019 and JIS T8151-2018, NaCl particulates are used to simu-
late aerosols with a diameter of around 0.3 µm, and the test respiratory resistance should
not exceed 60 Pa. The control group was the melt-blown nonwoven fabrics of commercially
available 3M medical masks. All samples in Figure 10 were processed with electrostatic
electret, and the PP melt-blown nonwoven fabrics only weighed 9.2 mg/m3, with a respira-
tory resistance of 2 Pa. Next, the proposed PP melt-blown nonwoven fabrics (containing 4%
electrostatic electret masterbatch) were laminated. After being processed with electrostatic
electret, the five-layered PP melt-blown nonwoven fabrics showed 51% air filtration against
0.3 µm aerosols. The melt-blown layer of 3M masks showed a filtration efficiency of 63%
and a respiratory resistance of 40 Pa.
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After a flame retardant agent was added to PP-6, the resulting PP melt-blown non-
woven fabrics had a greater diameter ratio that improved the filtration effect, and the
five-layer lamination helped the materials to gain a filtration efficiency of 70% and a res-
piratory resistance of 33 Pa. By contrast, five-layered Ag@ZIF-8@ melt-blown nonwoven
fabrics showed a filtration efficiency of 88% and a respiratory resistance of 51 Pa. A filter
effect of ≥95% is demanded by international standards. Both medical masks and medical
protective clothing employ multiple laminations, combining spunbond nonwoven fabric
layers or needle-punched nonwoven fabric layers, to improve the air filtration effect via
the multilayer structure. In addition to the air filtration effect, composite layers can also
prevent blood, bodily fluid, and secretions from contacting the human body.

4. Conclusions

The production capacity of melt-blown nonwoven fabrics has been boosted exces-
sively in the wake of COVID-19, and therefore the yield surplus of melt-blown nonwoven
fabrics now demands to be more effectively and properly applied. In this study, 4% elec-
trostatic electret masterbatch was used to strengthen the electret function, after which a
phosphorus-nitrogen flame retardant was added to improve the flame retardant effect,
increasing the fiber diameter ratio that strengthens the air filtration. Based on the con-
tent of the flame retardant, PP-6, PP-10, PP-14, and PP-18 melt-blown nonwoven fabrics
demonstrated comparable vertical combustion resistances, which determined PP-6 as the
specified group for subsequent comparisons. PP melt-blown nonwoven fabrics did not
generate a molten drop or a secondary flame source, qualifying their application in medical
protective clothing.

Using the solvent method, Ag@ZIF-8@ melt-blown nonwoven fabrics demonstrated
an antibacterial effect of 80–85%. Following the development of electrostatic electret
machines, it is becoming more convenient to process electrostatic electret, and therefore
this study proposes PP melt-blown nonwoven fabrics that can be made into medical
protective clothing. For sterilization and repetitive use, electrostatic electret treatment
can be conducted to fill the PP melt-blown nonwoven fabrics with static charges. During
this process, the bacteria and microbes can be killed effectively with the PP melt-blown
nonwoven fabrics being loaded with static charges, which sufficiently protects medical
staff and thoroughly afterwards.

The respiratory resistance of a single-layer PP melt-blown nonwoven fabric was as
low as 2–5 Pa, and electrostatic electret contributed only 40–45% to air filtration. However,
the incorporation of a phosphorus-nitrogen flame retardant increased the fiber diameter
ratio; Ag@ZIF-8 can be grafted over PP-6 melt-blown nonwoven fabrics that can then be
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laminated with multiple layers, thereby strengthening the air filtration. The proposed PP
melt-blown nonwoven fabrics with a low weight per unit area contribute to a great air
filtration effect and manageable respiratory resistance. When used in medical protective
clothing or medical masks, if other layers have good air filtration, a high respiratory resis-
tance, and a low air permeability, only the number of layers of PP melt-blown nonwoven
fabrics needs to be reduced. Conversely, if other composite layers emphasize air perme-
ability and other functions but the air filtration is low, the number of layers of Ag@ZIF-8@
melt-blown nonwoven fabrics needs to be increased to achieve the best compounding
effect. The test results indicate that five-layered Ag@ZIF-8@ melt-blown nonwoven fabrics
attained an air filtration value of 85–88%, while the four-layered fabrics attained an air
filtration value of 70–74%.
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