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Abstract: Collagen, an abundant extracellular matrix protein, has been found to have a lot of
pharmaceuticals, medicine, food, and cosmetics applications. Increased knowledge of collagen
sources, extraction techniques, structure, and properties in the last decades has helped develop
more collagen-based products and tissue engineering biomaterials. Collagen products have been
playing an important role in benefiting the health of the human body, especially for aging people. In
this paper, the effects of collagen treatment in different clinical studies including skin regeneration,
bone defects, sarcopenia, wound healing, dental therapy, gastroesophageal reflux, osteoarthritis, and
rheumatoid arthritis have been reviewed. The collagen treatments were significant in these clinical
studies. In addition, the associations between these diseases were discussed. The comorbidity of
these diseases might be closely related to collagen deficiency, and collagen treatment might be a good
choice when a patient has more than one of these diseases, including the coronavirus disease 2019
(COVID-19). It concludes that collagen-based medication is useful in treating comorbid diseases and
preventing complications.
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1. Introduction

Collagen, an important protein produced by the body, is the main structural protein
found in the skin, tendon, and bone. The word collagen originates from a Greek word that
“kola” means gum and “gen” means producing. Collagen is considered to be one of the
most useful biomaterials. Due to its low immunogenicity and high biocompatibility, it has
been extensively studied as a polymer for use in many biomedical goods such as cosmetic
and pharmaceutical products [1,2]. It also has been used as a safe and effective biomaterial
in tissue engineering and clinical applications. It is an ingredient in dental composites, skin
regeneration templates, and biodegradable matrices, and it has been used in cardiovascular
surgery, plastic surgery, orthopedics, urology, neurology, and ophthalmology. There is
a large demand for collagen in the food industry because it has high protein content
and good functional properties such as water absorption capacity and the ability to form
emulsions [3,4].

Collagen is one of the most abundant proteins in many living organisms because it
plays a connective role in biological structures. It is also the most abundant protein in the
extracellular matrix (ECM). ECM is a non-cellular component within all tissues and organs
and is a structural scaffold that can direct cell adhesion and migration, and regulate cellular
growth and metabolism [5]. In addition to blood cells, other cells in human tissues are
residing in ECM. Collagen fibrils form the main tension-resisting element of a complicated
fiber-composite system in the ECM [6]. There are four structural levels of a collagen protein
including primary structure (amino acid triplet), secondary structure (the α-helix), tertiary
structure (triple helix), and quaternary structure (fibrils) [7]. It is formed in a triplex helix
by three α chains (Figure 1). The chains are distorted around each other to form a tight and
stable structure [8].

Polymers 2021, 13, 3868. https://doi.org/10.3390/polym13223868 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5863-0756
https://doi.org/10.3390/polym13223868
https://doi.org/10.3390/polym13223868
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13223868
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13223868?type=check_update&version=1


Polymers 2021, 13, 3868 2 of 20

Polymers 2021, 13, x FOR PEER REVIEW 2 of 20 
 

 

tertiary structure (triple helix), and quaternary structure (fibrils) [7]. It is formed in a tri-

plex helix by three α chains (Figure 1). The chains are distorted around each other to form 

a tight and stable structure [8]. 

(a) (b) 

 

 

Figure 1. (a) A triplex helix structure plotted from RCSB protein data bank (https://www.rcsb.org/ 

accessed on 1 May 2021). (b) A triplex helix structure model. 

According to the α-chain composition, there are different types of collagens. About 

28 types of collagen have been identified, but the dominant collagen is collagen type I. 

Over 90% of the collagen in the human body is collagen type I because of its wide preva-

lence in almost all connective tissues [9]. There are 5 most common types of collagen, type 

I–V [10,11]. Table 1 lists some functions of these five types of collagen. Collagen type I is 

the main component of the calcified tissue of teeth and bone and is present in skin, ten-

dons, vasculature, lungs, and heart. It can be a ligand for receptor-mediated signalings 

such as integrins, OSCAR, GPVI, G6b-B, DDR1 and 2, and LAIR-1 of the leukocyte recep-

tor complex [12]. Collagen type II is an abundant matrix molecule of cartilage and is asso-

ciated with many diseases such as skeletal dysplasias, rheumatoid arthritis (RA) and os-

teoarthritis (OA) [13–15]. 

Table 1. The function of the 5 most common types of collagen. 

Collagen Function or Application Tissue or Organ 
Molecular 

Composition * 

Type I 
the organic part of the bone, membranes for 

guided tissue regeneration 

Skin, bone, teeth, tendon, ligament, 

vascular ligature 
2[ 1(I)] 2(I)   

Type II 
the main constituent of cartilage, cartilage 

repair, and arthritis treatment 
cartilage 3[ 1(II)]  

Type III 
the main constituent of reticular fibers, 

hemostats, and tissue sealants 
muscle, blood vessels 3[ 1(III)]  

Type IV 

the major component of the basement 

membrane, attachment enhancer of cell culture, 

and diabetic nephropathy indicator 

basal lamina, the epithelium-

secreted layer of the basement 

membrane 

2[ 1(IV)] 2(IV) 

2[ 3(IV)] 4(IV) 

2[ 5(IV)] 6(IV)   
Type V feedstock for biomaterials in corneal treatments Hair, cell surfaces, and placenta. 1(V), 2(V), 3(V)     

* 
1(I), 2(I), 1(II), 1(III), 1(IV), 2(IV), 3(IV), 4(IV), 5(IV), 6(IV), 1(V), 2(V),           

 and 
3(V)

 are 

proteins encoded by COL1A1, COL1A2, COL2A1, COL3A1, COL4A1, COL4A2, COL4A3, COL4A4, COL4A5, COL4A6, 

COL5A1, COL5A2 and COL5A3 genes, respectively. 

Figure 1. (a) A triplex helix structure plotted from RCSB protein data bank (https://www.rcsb.org/ accessed on 1 May 2021).
(b) A triplex helix structure model.

According to the α-chain composition, there are different types of collagens. About
28 types of collagen have been identified, but the dominant collagen is collagen type I. Over
90% of the collagen in the human body is collagen type I because of its wide prevalence
in almost all connective tissues [9]. There are 5 most common types of collagen, type
I–V [10,11]. Table 1 lists some functions of these five types of collagen. Collagen type I is
the main component of the calcified tissue of teeth and bone and is present in skin, tendons,
vasculature, lungs, and heart. It can be a ligand for receptor-mediated signalings such
as integrins, OSCAR, GPVI, G6b-B, DDR1 and 2, and LAIR-1 of the leukocyte receptor
complex [12]. Collagen type II is an abundant matrix molecule of cartilage and is associated
with many diseases such as skeletal dysplasias, rheumatoid arthritis (RA) and osteoarthritis
(OA) [13–15].

Table 1. The function of the 5 most common types of collagen.

Collagen Function or Application Tissue or Organ Molecular Composition *

Type I the organic part of the bone, membranes
for guided tissue regeneration

Skin, bone, teeth, tendon,
ligament, vascular ligature [α1(I)]2α2(I)

Type II the main constituent of cartilage, cartilage
repair, and arthritis treatment cartilage [α1(II)]3

Type III the main constituent of reticular fibers,
hemostats, and tissue sealants muscle, blood vessels [α1(III)]3

Type IV
the major component of the basement

membrane, attachment enhancer of cell
culture, and diabetic nephropathy indicator

basal lamina, the
epithelium-secreted layer of

the basement membrane

[α1( IV)]2α2( IV)
[α3( IV)]2α4( IV)
[α5( IV)]2α6( IV)

Type V feedstock for biomaterials in
corneal treatments

Hair, cell surfaces,
and placenta. α1(V), α2(V), α3(V)

* α1(I), α2(I), α1(II), α1(III), α1(IV), α2(IV), α3(IV), α4(IV), α5(IV), α6(IV), α1(V), α2(V), and α3(V) are proteins encoded by COL1A1,
COL1A2, COL2A1, COL3A1, COL4A1, COL4A2, COL4A3, COL4A4, COL4A5, COL4A6, COL5A1, COL5A2 and COL5A3 genes, respectively.

Collagen type III, consisting of only one collagen α chain, belongs to the fibrillar
collagen group. It is a homotrimer composed of three identical α1(III) chains supercoiled
around each other in a right-handed triple helix. It also is an important component of blood
vessels and muscle. It appears to function along with type I collagen in the skin, ligament,
tendon, periodontal ligament, vascular walls, and synovial membranes [16]. Collagen
type III is related to vascular deficiency, aortic and arterial aneurysms, and Ehlers Danlos
syndrome (EDS) [17]. EDS comprises ten types. EDS IV is the most severe type that is
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caused by mutations in a collagen type III corresponding gene COL3A1 [18]. Collagen
type IV is the predominant collagen of the basement membrane forming the backbone of
the basement membrane. Mutations in collagen type IV can cause chronic kidney disease,
Alport’s syndrome [19]. Collagen type V is present in the corneal stroma, bone matrix, and
the interstitial matrix of muscles, lungs, liver, and placenta [20]. Collagen type V functioned
along with collagen type I in skin and tendon, and mutations in collagen type V had been
shown to underlie classical EDS [21].

In this review paper, I aim to review the collagen-based treatment for several related
issues including skin regeneration, bone defects, sarcopenia, wound healing, dental therapy,
gastroesophageal reflux (GERD), OA and RA. In addition to these diseases, the relationship
between GERD and coronavirus disease 2019 (COVID-19) is discussed. The collagen
treatment for GERD in COVID-19 is suggested as an alternative to some other GERD drugs.

2. Source

At present, collagen can be extracted from natural animal and plant sources or be
obtained from recombinant protein production systems using bacteria, yeast, insects or
plants, mammalian cells, or artificial fibrils [11]. The extraction process includes chemical
hydrolysis and enzymatic hydrolysis. Hydrolyzed collagen is a group of peptides that can
be extracted using different processes depending on the origin of the raw material [4,22,23].
Hydrolyzed collagen has higher solubility compared to native collagen and the extraction
of hydrolyzed collagen is simple.

The most common animal collagen sources are human collagen, bovine, porcine, and
marine organisms such as fish [24]. Despite the risk of bovine spongiform encephalopathy
(BSE), bovine collagen is widely used in collagen-based products. The immune response to
bovine collagen has been studied. A clinical study of 705 patients treated with a bovine
collagen implant and a small percentage of patients had both the cellular and humoral
types of the immune response [25]. Keefe, et al. showed that side effects to bovine collagen
implants occurred in a small percentage of treated patients and these adverse reactions
were resolved as the implant was resorbed by the patients [26]. Angiotensin-I converting
enzyme (ACE) plays a key role in elevating blood pressure, and therefore, effective ACE
inhibition can reduce blood pressure [27]. Bovine collagen is a promising precursor of ACE-
inhibitory peptides in silico and in vitro protein digestions [28,29]. The porcine collagen is
widely used for extracting collagen as the bovine collagen. Porcine collagen does not cause
much allergic response because it is almost similar to human collagen. Collagen peptides
are promising for osteoporosis treatment and prevention. Porcine collagen peptides could
be used to treat and prevent osteoporosis [30]. Porcine collagen membrane was tested
in vitro and in vivo studies for guided bone regeneration [31]. The result indicated that
the use of the porcine collagen membranes did not cause foreign body reactions and the
porcine collagen membranes were biocompatible.

In addition, collagen extracted from chicken feet merits special attention because they
have essential health-beneficial nutrients. As with the other collagens, the collagen from
chicken feet showed odors, water absorption, and texture characteristics as commercial
material [32]. Chicken gelatines are a suitable alternative to those made from mammals
or fish and have many pharmaceutical and biomedical applications [33]. Collagen type
I can be also extracted from the ovine tendon to fabricate scaffold for tissue engineering
applications [34]. The enzymatic hydrolysis of collagen from sheepskins at different times
of hydrolysis was investigated [24]. The in vivo application, isolation, and characterization
of acid-soluble goat tendon collagen in a murine wound was investigated. The results
showed that the goat tendon collagen had comparable physicochemical properties with
calfskin collagen and was significantly better cytocompatible material than collagen of
bovine origin [35].

Collagen has porcine and bovine origins that cow and pig skins and bones are the main
sources of collagen. However, due to religious constraints concerning the avoidance of
porcine and bovine products or other reasons such as the outbreak of BSE, the marine colla-
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gen source is being highly considered by the industry as an important alternative [11,36,37].
Marine collagens have the advantages of a high yield and no disease transmission risk that
can be obtained from invertebrate marine animals or fishes. Mammalian collagens have
higher thermal stability than fish collagens due to the lower imino acid contents of fish
collagens compared with mammalian collagens [38]. The thermal stability is related to
body temperature and living environment and the low thermal stability of marine collagens
restricts its applications [39]. The mechanical strength of marine collagen is poorer than
collagen extracted from bovine because it is less crosslinked. After the crosslinking treat-
ment, marine collagen can be used as a biomaterial in tissue engineering [40]. Despite some
limitations, the marine collagen is an appealing option for product developers because the
source is cheap and no risk of BSE. In the latest 20 years, more than 175 chemical entities
and 28 marine natural products were discovered. Marine organisms, as well as their wastes,
are good sources of collagen for many applications [41–45].

The functions of each type of collagen are briefly listed in Table 1. Collagen types I, II,
and III are three collage types used for supplements. Collagen type I is mainly found in
marine collagen. Collagen type II is original from chicken collagen and bovine collagen. A
mixture of collagen type I and type III can be obtained from porcine collagen and bovine
collagen. So far, there are many collagen products on the market. The most popular
products may be collagen supplements as healthy food and cosmetic goods. The big
market of collagen products indicates the significance of the effects of these products.

Many studies discussed the low immunogenicity of collagen. The low immunogenic-
ity of porcine and bovine collagen type I were verified in vitro data and their suitability was
favored for tissue-engineered scaffolds [46]. A study also investigated the biocompatibility
and immunogenicity of two collagen micro/nanofiber materials, self-assembled collagen
nanofiber and electrospun collagen nanofiber, that were prepared by tilapia skin colla-
gen [47]. The evaluation demonstrated good biocompatibility and low immunogenicity
for both collagen nanofiber materials according to tests of cytotoxicity, hemolysis, skin
sensitization, acute systemic toxicity, mouse immunization, and lymphocyte proliferation.

3. Effects of Treatment
3.1. Skin Regeneration

The main component of the skin is collagen, and there are 85–90% collagen type I and
10–15% collagen type III. Collagen fibers that are damaged over time are strongly related
to skin aging. Skin aging is caused by decreased collagen density and dermal thickness, as
well as decreased synthesis and replacement of important structural proteins [48]. Collagen
supplements originating from various sources such as marine, bovine, and porcine can
improve skin integrity and modulate skin aging. They are effective in wrinkle reduction,
skin rejuvenation, and skin aging reversal. Due to its high biocompatibility with the
human body, collagen type I is the most used in cosmetic production. Oral collagen
supplementation has become very popular in recent years. The effects of oral collagen
supplementation on skin hydration and the dermal collagen network were studied [49,50].
A randomized, placebo-controlled, blind study of 72 healthy women over 35 years was
performed to test the effect of a drinkable nutraceutical collagen product. Half of them
(n = 36) received this collagen supplement that is a blend of 2.5 g of collagen peptide,
biotin, vitamin C, acerola extract, zinc, and natural vitamin E complex for twelve weeks.
Another half of the subjects received a placebo. The test product markedly improved skin
hydration, roughness, elasticity, and density of the experiment group compared to the
control group [51].

Kim et al. designed a randomized, double-blind, placebo-controlled trial to evaluate
the efficacy of low-molecular-weight collagen peptide (LMWCP) with a tripeptide (Gly-
X-Y) content on human skin hydration, wrinkling, and elasticity [52]. Compared with
the placebo group, the LMWCP group had higher skin-hydration values after 6 weeks
and 12 weeks, and two parameters out of three of the skin elasticity in the LMWCP group
were significantly higher after 12 weeks. In addition, during the study period, none of the



Polymers 2021, 13, 3868 5 of 20

subjects presented adverse symptoms. These results suggested that LMWCP could be used
as a healthy food ingredient to improve human skin conditions.

Marine collagen is becoming popular for maintaining skin health. Evans et al. per-
formed a randomized, placebo-controlled, blind study to evaluate the efficacy of hy-
drolyzed marine collagen on skin health in women between 45 and 60 years of age. The
results supported that the use of fish-derived hydrolyzed collagen could improve skin
health in an aging population [53].

Asserin et al. investigated the efficacy of oral collagen peptide supplementation on
skin hydration in a clinical study [49]. After several weeks of intake, the oral collagen
peptide supplementation remarkably increased skin hydration, the collagen density in
the dermis remarkably increased and the fragmentation of the dermal collagen network
remarkably decreased. These effects persevered after 12 weeks. The results suggested that
oral collagen peptide supplementation significantly improved skin aging.

Tanaka et al. examined the effect of daily intake of collagen peptides on the skin
damage caused by repeated UV-B irradiation [54]. Intake of collagen peptide suppressed
UV-B-induced skin hyperplasia of the epidermis, hydration decreases, and soluble type I
collagen decreases. These results suggested that collagen peptides could suppress UV-B-
induced skin damage.

3.2. Bone Defects

Tissue engineering is a biomedical engineering discipline that can replace or repair
defective tissues with natural or synthetic tissue mimics. It aims to develop biological
substitutes to replace, restore, or regenerate damaged tissues. Scaffolds, cells and growth-
stimulating signals are the important components of engineered tissues. Scaffolds that
are usually made of polymeric biomaterials can be used as an artificial structure to sup-
port three-dimensional (3D) tissue formation. They can provide structural support for
subsequent tissue development and cell attachment [55].

Aging can lead to a reduction of all human capabilities. Loss of muscle or bone
mass that causes sarcopenia, osteopenia, or osteoporosis with advancing age are major
public health problems for the elderly population [56]. Bone loss has greatly affected
elderly people. The bone-related medical treatments and costs are increasing in the aging
population. Bone consists of a mineral phase (calcium phosphate) and an organic phase
(collagen). The challenge in bone tissue engineering is to develop scaffolds having good
biological and biomechanical properties [57]. Scaffolds can promote bone formation by
differentiating towards the osteogenic lineage or releasing specific soluble molecules [58].
Scaffold architecture is very important for bone regeneration and acellular materials should
allow proper host cell colonization for bone regeneration. In addition, mean pore size is
another key component for proper cell colonization. Collagen-glycosaminoglycan scaffolds
showed a substantial improvement in pore size [59].

A major challenge in clinical orthopedics is the regeneration of large segmental bone
defects. The collagen scaffolds have been increasingly used as bone substitutes through
tissue engineering approaches [60]. Preparation of collagen catecholamines and calcium
composite structures was reported and the collagen composite scaffolds displayed out-
standing mechanical properties [61]. These multifunctional scaffolds could be utilized to
regenerate and repair bone defects. Nevertheless, the low mechanical strength of collagen
limited its wider application in the field of bone regeneration. By combining different
biological materials, the porosity, structural stability, osteoinduction and osteogenic prop-
erties of the collagen matrix can be greatly improved [40]. For example, a collagen scaffold
loaded with human umbilical cord-derived mesenchymal stem cells was fabricated and
applied for endometrium regeneration [62].

An alveolar cleft is a bone developmental defect and cancellous autologous bone
harvested from the iliac crest is usually used for alveolar cleft repair [63]. Since this proce-
dure has several drawbacks, bone substitutes were being used for alveolar cleft repair [64].
However, because the use of bone substitutes had not shown an advantage compared
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with autologous bone grafts, searching for novel bone substitutes is still necessary [65].
Collagen type I-based bone substitutes are good alternatives because collagen type I is
a major component of bone. However, conventional collagen scaffolds obtained from
xenogeneic tissues might increase the risk of unknown pathogens [66–68]. A recombinant
collagen peptide (RCP) using human collagen type I was developed [69]. Compared to low
or high cross-linked RCP particles, the medium cross-linked RCP particles had a better
environment prone to generate bone tissue [70]. In addition, the effect of an octacalcium
phosphate/weakly denatured collagen scaffold was investigated in a canine model [71].
The result showed it had better effect than the weakly denatured collagen scaffold.

3.3. Sarcopenia

The term, sarcopenia, was first introduced to refer to muscle wasting of older peo-
ple [72]. And then in 2010, the definition of sarcopenia was altered to be low muscle mass
together with low muscle function [73]. A patient can be diagnosed as sarcopenia when
he/she has a slow walking speed and has muscle mass at least two standard deviations
below the average [74]. There are age-related sarcopenia (primary sarcopenia) and disease-
related sarcopenia (secondary sarcopenia). The causes of age-related sarcopenia included
systemic inflammation, loss of motor units innervating muscle, a decline in anabolic hor-
mones, and oxidative stress [73]. Early diagnosis and lifestyle intervention are the keys to
improving the prognosis of patients with sarcopenia. The lifestyle interventions include
exercise and nutritional supplements. In nutritional supplements, collagen supplements
are effective to improve the symptoms of sarcopenia.

The effect of post-exercise protein supplementation with collagen peptides compared
with placebo on the muscle mass and muscle function following resistance training of
elderly sarcopenia patients was studied [75]. Additional dietary protein can increase the
muscle protein synthesis rate after exercise and reduce the decomposition of muscle protein
after resistance exercise. A total of 53 men with a mean age of 72.2 were recruited in the
study. The results showed that 60 min of resistance exercise, performed three times per
week, could significantly increase muscle mass, muscular strength, and motor control in
sarcopenia patients. In addition, the study also showed that the combination of resistance
exercise and collagen peptide supplementation resulted in a significant improvement in
muscular strength as well as a significant increase in muscle mass and decrease in fat mass
compared to placebo.

A study examined the effect of blood flow restriction (BFR) training with an additional
post-exercise collagen hydrolysate supplementation on muscle mass and function in older
men at risk of sarcopenia [76]. The study recruited 39 healthy men aged 50 years or older,
and they were randomly assigned to one of three groups: low-load BFR training with
protein (collagen hydrolysate), low-load BFR training with placebo, or a control group
without training, but with protein supplementation. The results demonstrated that the
addition of collagen hydrolysate showed a positive trend of increasing muscle mass and
strength, but further research is needed to verify these effects with a larger sample size.

3.4. Wound Healing

Different types of wounds, such as ulcers and burns, may seriously influence the life
quality of patients, especially chronic wounds that include pressure ulcers, diabetic foot
ulcers, venous leg ulcers, and so on. Pressure ulcers are injuries to the skin and underlying
tissue caused by prolonged pressure on the skin. Diabetic foot ulcers are a common compli-
cation of diabetes mellitus patients who are not well controlled. Venous leg ulcers are a pain
in the legs usually due to weak blood circulation in the limbs. Chronic wounds may lead
to significant morbidity and poor quality of life. The chronic wounds may not be treated
by the normal therapy, usually because of an overactive and prolonged inflammatory
response, altered protease levels, and deficient ECM [77]. As a result, advanced wound
therapies are under development. Collagen is one of the biomaterials that are very useful
for developing advanced therapies. The wet strength of collagen sponges allowed soft



Polymers 2021, 13, 3868 7 of 20

tissue to be sutured and provided a template for the new tissue growth. Collagen-based
implants have been used as carriers for the delivery of drugs for skin replacement and
burn treatment [78].

Collagen has been used for wound care as a wound dressing material for a long time.
Ancient Egyptians and Greeks used honey, silk, and lint as materials in wound management.
It was very little changed until the late twentieth century that polymer dressings were
discovered to accelerate the rates of wound repair and re-epithelialization [79]. Traditional
dry dressing treatments, such as absorbent cotton and absorbent gauze, might not have a
good therapeutic effect. On the contrary, a moist healing environment was conducive to
the growth of granulation and the division of skin cells, thereby accelerating the healing
of the wound. Collagen hydrogel was demonstrated as a potential wet wound dressing
material that could significantly accelerate the generation of new skin appendages [78].
Collagen dressings were usually formulated with bovine, avian, or porcine collagen and
were easy to apply and remove [80]. In addition, collagen dressings could be derived from
the marine source. Nile tilapia is one of the most popularly cultured fish in China and
collagen hydrogels from tilapia skins could be used as wound dressings for the treatment
of deep second-degree burns [81].

Collagen oral administration could be also an efficient treatment for wound healing.
A study investigated the effect of oral administration of the collagen peptides derived
from jellyfish in wound healing [82]. It was shown that collagen peptides from Jellyfish-
Rhopilema esculentum might be beneficial to wound clinics in the future due to their good
characteristic in accelerating the wound healing process. The wound healing potential of
oral administering collagen peptides from chum salmon skin in wound rat models was
investigated [83]. Oral administration of marine collagen peptides derived from chum
salmon improves wound healing in rats [84]. The result showed the efficacy of oral admin-
istering collagen peptides treatment on wound healing in animals. The oral application
of specific bioactive collagen peptides has also demonstrated positive effects on wound
healing. A study showed that would patients treated with bioactive collagen peptides
had a better outcome compared with the placebo groups [85]. A collagen-derived peptide,
prolyl-hydroxyproline (Pro-Hyp), was a growth-initiating factor for specific fibroblasts
involved in the wound healing process [86].

3.5. Dental Therapy

Periodontitis is a highly prevalent disease among adults that is usually triggered by
a bacterial infection and it affects the tissues surrounding the dentition. If left untreated,
it can lead to loss of teeth. The use of different biomaterials in periodontal regeneration
has been studied for years. Several treatment options for periodontal disease include
open flap debridement (OFD), biologically active regenerative materials, bone-replacement
graft materials, scaling and root planning, and guided tissue regeneration with barrier
membranes [87–92]. The combined use of barrier membranes and biomaterials was shown
to be more effective than using OFD alone. Collagen from either human or animal tissue
was widely used as natural resorbable barrier membranes and the resorption of collagen
membranes depended on the source of the material (bovine, porcine, human) [93].

Tizzoni and Tizzoni illustrated a case of how a tooth was preserved through a peri-
odontal regeneration surgery [94]. The use of two equine collagen membranes associated
with an equine bone graft carried out periodontal regeneration according to guided tis-
sue regeneration principles. This case showed that the use of collagen membranes could
improve bone regeneration at the defect site. Besides, a scaffold was generated by elec-
trospinning a basic poly-lactic-co-glycolic acid and polycaprolactone matrix, followed
by silver nanoparticles impregnation, polydopamine coating, and then coating by colla-
gen I [95]. In a mouse periodontal disease model study, this scaffold was effective for
periodontitis treatment by enhancing alveolar bone regeneration.

Gingival recession (GR) is the exposure of root surfaces that is caused by apical
migration of the gingival tissue margins and is frequently detected in adults [96]. The
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reference therapy for GR is the connective tissue graft (CTG) plus coronally advanced flap
(CAF). Collagen bioscaffold was used for the treatment of GR [97]. For GR, cell adhesion
in the scaffold influences the integration, migration, and survival of the cells among the
scaffold. Collagen was found to be a superior bioscaffold for the treatment in GR. In a
prospective randomized, controlled 18 adult patients clinical trial, a porcine collagen matrix
plus CAF treatment showed no statistically significant differences compared with the CTG
plus CAF treatment evaluated at 12 months [98]. As a result, the collagen matrix could be a
possible alternative to CTG. Moreover, due to aging or disease, dentinal collagen undergoes
glucose-related crosslinking. However, it remains unknown how collagen crosslinking
affects the early adhesion of related oral streptococci. Schuh et al. studied the effect of
glycated collagen on oral streptococcal nanoadhesion to help develop a new preventive
and therapeutic treatment against dental caries [99].

In addition, tooth extraction may cause postoperative complications, and therefore,
the management of the post-extraction healing is important. The device recombinant
human bone morphogenic proteins, along with an absorbable collagen sponge as a carrier,
was successfully used for ridge preservation procedures after tooth extraction [100]. The
extraction of the third molar is the most frequent oral surgery that sometimes is associated
with severe or minor complications. A retrospective study evaluated the postoperative
complication rates for the use of absorbable collagen type I sponge in third molar extrac-
tion [101]. A total of 3869 third molars in 2697 patients were extracted and the extraction
sockets were packed with collagen type I sponges. The study showed a relatively low
incidence of complications in the use of collagen type I sponge [102]. The result showed
that it could help relieve pain, reduce the frequency of mouth-opening limitation, and
increase the mineralization ratio at the extraction socket site.

Moreover, in a prospective observational (non-controlled) clinical study, 15 patients
went through a keratinized tissue reconstruction around dental implants with a porcine
collagen matrix [103]. After 6 months and 1, 4 and 5 years of evaluation, a porcine collagen
matrix was shown to have good efficacy in keratinized tissue augmentation. As a result,
the porcine collagen matrix integration can be a good scaffold to regenerate keratinized
mucosa ensured perfect healing.

3.6. Gastroesophageal Reflux

Gastroesophageal reflux (GERD) is a digestive disorder that occurs when acidic
stomach fluids back up from the stomach into the esophagus. GERD is a risk factor of
esophageal cancer [104] and is associated with major depression [105]. About half of adults
experience reflux symptoms sometimes [106]. To identify GERD-associated genes, four
separate patient cohorts were examined using the genome-wide linkage, gene association,
and protein level analyses [107]. Collagen type III alpha 1 gene was identified to be
associated with GERD. In addition, the hiatal hernia plays a role in the development of
both acid reflux and GERD. The prevalence of GERD with hiatal hernia can reach 94%.
Diemen et al. showed that the composition of phrenoesophageal ligament (POL) for
patients with GERD and hiatal hernia included less total, type-I and type-III collagens than
that of the phrenoesophageal ligament of cadavers without hiatal hernia [108].

Pharmaceutical and surgical treatments have been developed for GERD. However,
pharmaceutical medications can only reduce GERD symptoms and may cause serious
side effects, while surgery is invasive. As a result, the development of various endo-
luminal outpatient therapies for GERD is a more attractive option. Traceback to 1988, the
collagen treatment for human GERD was investigated [109]. Ten patients with severe
refractory reflux symptoms were treated with endoscopic technique. Cross-linked bovine
dermal collagen was injected under the mucosa in the lower esophageal sphincter area.
All patients developed objective evidence of decreased reflux. This endoscopic implant
treatment resulted in statistically significant improvement.

A composite material composed of round and smooth polymethyl methacrylate
(PMMA) microspheres suspended in a collagen “carrier”, called Collagen/PMMA implant
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(G125), had shown a promising endoscopic ‘bulking agent’ for treating GERD due to its
proven tissue biocompatibility and persistence [110]. G125 can achieve permanent and
submucosal lower esophageal sphincter soft tissue augmentation and the bovine collagen
carrier material can prevent the microspheres from both migrating and agglomerating
during the critical one-month tissue remodeling phase after injection. Therefore collagen
scaffold played an important role in the implant injection in the treatment of GERD [111].

3.7. Osteoarthritis

OA is one of the most common joint diseases caused by the breakdown of joint cartilage
and underlying bone and is a significant cause of disability [112]. OA is understood
to be a complex interaction of systemic and local factors [113]. Many pharmaceutical
and nutraceutical agents have been developed to delay the progression of OA cartilage
structural changes. Collagen type II is the main component of the cartilage tissue and is
the potential to be used as a treatment of OA [114,115]. A randomized controlled trial
with 39 patients diagnosed with knee OA was included and was randomly distributed
into two groups: one treated with acetaminophen (n = 19) and the other treated with
acetaminophen plus type II collagen (n = 20) for 3 months [116]. The result showed that
the type II collagen treatment combined with acetaminophen was superior to the only
acetaminophen treatment.

Undenatured type II collagen (UC-II) is a nutritional supplement extracted from
chicken breast cartilage. A multicenter double-blind, randomized, placebo-controlled
study was performed to compare UC-II with placebo and with glucosamine hydrochloride
plus chondroitin sulfate (GC) [117]. On day 180, the UC-II group demonstrated a significant
reduction in overall Western Ontario McMaster Universities Osteoarthritis Index score
compared with placebo and GC.

Collagen peptides (CP) are used as a component of nutraceuticals. Isaka et al. studied
the effect of CP on the articular cartilage of OA using a rat experimental OA model by
evaluating the serum levels of biomarkers, histopathological changes, type II collagen,
immunohistochemical staining of matrix metalloproteinase [118]. The observations sug-
gested that CP may exert chondroprotective action on OA by inhibiting the expression of
matrix metalloproteinase-13 and type II collagen degeneration. It was reported that oral
consumption of type 1 hydrolyzed collagen (hCol1) can relieve the pain in human OA. Dar
et al. studied the effect of orally administered hCol1 in a model of posttraumatic OA [119].
Significant chondrocyte and cartilage and effects were observed in the degenerative knee
of mice supplemented with hCol1. The results suggested that hCol1 was anti-inflammatory
and chondroprotective in posttraumatic OA.

In OA cartilage, hypertrophic differentiation can be observed in degenerative chon-
drocytes [120,121]. Collagen type II is an important signaling molecule that can regulate
chondrocyte proliferation, differentiation, and metabolism [122]. The collagen type II
decrease can cause chondrocyte hypertrophy in OA cartilage. In a mouse model, loss of col-
lagen type II was found to promote chondrocyte hypertrophy via the bone morphogenetic
protein (BMP)-SMAD1 pathway [123]. This result revealed the inhibition mechanisms
of chondrocyte hypertrophy by collagen type II and suggested that the degradation in
collagen type II might initiate and promote OA progression. Crowley et al. evaluated the
effectiveness and safety of UC-II compared with a combination of glucosamine and chon-
droitin (G + C) in the treatment of the knee OA [124]. At the end of 90 days of treatment,
UC-II treatment reduced an index score by 20%, compared with 6% in the G + C treatment
group. The daily activities of the UC-II group were significantly enhanced.

Collagen is a good treatment candidate for OA among the different therapeutic options
due to its safety and clinical evidence. Two different approaches for collagen include
collagen hydrolysates and native collagen and both types of collagen nutraceuticals are
effective in reducing OA pain, in animal models and human clinical trials. Native collagen,
which may be poorly absorbed, could work through a mechanism of oral induction, and
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hydrolyzed collagen can reach the target site where collagen synthesis is needed. As a
result, collagen represents a good therapeutic option to improve OA [15].

3.8. Rheumatoid Arthritis

RA is a chronic debilitating autoimmune and inflammatory disorder that mainly
affects joints. RA causes cartilage and bone erosion by invading fibrovascular tissue [125].
Preliminary studies suggested that oral administration of cartilage-derived collagen type II
was clinically beneficial and safe in patients with RA. Two hundred seventy-four patients
with active RA were randomized to receive placebo or different dosages of oral cartilage-
derived collagen type II for 24 weeks [126]. At the lowest tested dose, positive effects were
observed in the collagen treatment group, and the therapeutic agent had no side effects.

A 24-week randomized methotrexate-controlled study was conducted to evaluate the
safety and efficacy of chicken collagen type II (CCII) in the treatment of RA [127]. Chicken
collagen type II is a protein extracted from chicken breast cartilage. It has the potential
to treat autoimmune diseases by inducing oral tolerance. Chicken type II collagen is a
protein extracted from chicken breast cartilage. It has the potential to treat autoimmune
diseases by inducing oral tolerance. Five hundred three RA patients were randomized
into two groups. The result showed that CCII was effective in the treatment of RA and
was safe for consumption. In addition, the development of therapeutic DNA vaccines
might provide new promising strategies for the treatment of RA [128]. A new therapeutic
DNA vaccine encoding CCII (pcDNACCOL2A1) was developed and a single injection
of the pcDNA-CCOL2A1 vaccine alone could induce strong immune tolerance against
experimental RA [129]. As a result, this vaccine might have therapeutic applications in the
treatment of RA and appears to be as effective as the current “gold standard” treatment of
methotrexate. The immunogenicity and safety of the pcDNA-CCOL2A1 vaccine in Wistar
rats were investigated [14]. The results showed that at the maximum dosage of 3 mg/kg,
the pcDNA-CCOL2A1 vaccine was well-tolerated and safe.

The collage treatments reviewed in this section are summarized in Table 2. Collagen-
based biomaterials or products can be used to treat more diseases or symptoms than those
discussed in this paper. Figure 2 provides the functions of collagen-based biomaterials
or products.

Table 2. The references of the collage treatments.

Disease Collagen Treatment References

Skin aging [48–54]
Bone defects [41,58–60,62,64–68,70,71]
Sarcopenia [75,76]

Wound healing [78–86]
Periodontal disease [86,93–100,102]

Gastroesophageal reflux [107–109]
Osteoarthritis [15,112–117,120–122,124]

Rheumatoid arthritis [14,125–129]
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4. Discussion
4.1. Treatment of Comorbid Diseases and Preventing Complications

The collaged-based treatments for skin regeneration, bone defects, periodontal disease,
GERD, OA and RA have been discussed in Section 3, respectively. The association between
some of these diseases has been investigated in the literature. RA was associated with skin
disease. Dermatologic involvement usually occurred in patients with more severe RA [130].
Cutaneous manifestations might have a notable negative impact on the emotional, physical,
and psychosocial health of RA patients [131]. Knowing the cutaneous expressions of RA
may lead to early diagnosis, timely treatment, and lower morbidity for the patients [132].
Mesenchymal stem cells (MSCs) have been studied as a treatment for OA. Exosomes
isolated from various stem cells may help tissue regeneration in the skin and inhibit the
development of OA [133]. The prevalence of comorbidities among female patients with
generalized OA was investigated [134]. Female patients with hand and knee OA were
invited to participate in the study including two hundred generalized OA and two hundred
control participants. GERD was observed to be one of the comorbidities of generalized OA.
A 55-year-old female patient with endosseous dental implants had GERD and OA [135]. A
possible connection between GERD and RA was discussed [136]. Miura et al. conducted a
study to explore the relationship between RA and GERD. Two hundred and eleven patients
in Japan were studied. The prevalence of GERD in RA patients was significantly higher
than that in the Japanese population [137]. The prevalence of GERD symptoms in RA
patients was high, and it is closely related to decreased functional status [138]. A total
of 1147 patients with RA and 5735 controls were included in a study to investigate the
association between RA and OA [139]. All participants were retrospectively traced, up to
14 years. Multivariate logistic regression analyses showed that patients with symptomatic
OA had a significantly higher risk of RA. The high prevalence of secondary OA in patients
with RA was determined in the trial [140].

In addition, collagens could modulate bone fracture callus formation. A mice model
study demonstrated that diminished collagen type III leads to decreased bone formation
and alterations in remodeling during fracture healing [141]. Thereby, collagen type III
may play an important role in modulating the repair process in fracture. There are often
fractures and contusions in the injuries caused by a car accident, falls or sports. Collagen
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oral administration is an efficient treatment for wound healing. As a result, collagen could
be a very important nutritional supplement for those who suffered from fractures and
contusions in the injuries caused by accidents.

Collagens are involved in the pathogenesis of many diseases. The associations between
these disorders may reveal that the comorbidity of these diseases might be closely related
to collagen deficiency. It indicates that collagen treatment might be a good choice when
a patient has more than one of these diseases at the same time. It suggests that collagen
therapy can be used in treating comorbid diseases and preventing complications.

4.2. Collagen and COVID-19

In addition to the above mentioned diseases, collagen may be related to the treatment
of COVID-19. COVID-19 was caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) and it has infected more than 173 million people all over the world,
that has had a huge impact on people’s lifestyle, economy, and livelihood. COVID-19
was first identified in Wuhan, China in December 2019 and then spreads to Europe, the
USA and other countries [142]. The severity of COVID-19 symptoms can range from
mild to severe. Many patients died from COVID-19 due to serious complications or
COVID-19 related lung diseases. COVID-19 patients with some chronic diseases such as
diabetes, cardiovascular diseases, hypertension, and malignancies may develop a critical
situation [143]. GERD was also reported to be correlated with COVID-19. Proton pump
inhibitors (PPIs) are a class of GERD drugs that can be used to reduce stomach acid and
relieve GERD symptoms. Evidence showed that the use of PPIs was correlated to COVID-
19 infection [144,145]. Individuals taking PPIs twice daily had a higher risk for COVID-19
infection compared with those using lower-dose PPIs up to once daily [145]. The prevalence
of laryngopharyngeal reflux disease (LPRD) may be higher than the general population,
which indicated that COVID-19 impairs the upper esophageal sphincter and aggravate
reflux. A retrospective study of 95 hospitalized patients with COVID-19 showed that the
patients with laryngopharyngeal reflux disease (LPRD) were correlated with poorer clinical
outcomes [146]. They also concluded that COVID-19 could impair the upper esophageal
sphincter and aggravate reflux. According to these studies, it may conclude that GERD
could cause poorer outcomes of COVID-19 and the commonly used GERD drug PPI might
not be suitable to be used in COVID-19 patients. Although there are some other drugs
for GERD, collagen has been shown to have a good effect in treating GERD. In addition,
collagen supplements appear to be safe and have fewer side effects than other GERD
drugs (Figure 3). As a result, collagen supplements could be a very good choice to be
used in COVID-19 patients with GERD. In addition, Zhu et al. studied how antibodies
interacted with the structure of collagen and the extracellular matrix [147]. They discovered
a histocompatibility complex recognition region within collagen that may help protect the
body from invading viruses. The discovery may be relevant to the treatment of COVID-19,
wherein the body attacks its own collagenous tissues. So far, research on the association
between collagen therapy and COVID-19 has been very limited. Nevertheless, taking
collagen supplements or collagen-rich foods has been proven to have many benefits. As
a result, the collagen supplement may be used as a nutritional product for COVID-19
patients to reduce the risk of other complications.

4.3. The Disadvantages of Collagen Treatment

From the above discussions, compared with other drugs, collagen treatment has
many advantages. However, it does not mean that the collagen treatment is absolutely
safe. Some people may have an allergic reaction to collagen treatment. For example, some
people may have a shellfish allergy and could experience anaphylaxis if they take marine
collagen supplements. The other source of collagen may have an allergy problem.
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The bovine type I collagen is the main content in the gelatin contained in the measles,
mumps, and rubella vaccines. Fish meat and skin also contain type I collagen. Most
children with anaphylaxis showed sensitivity to these vaccines that might be due to the
bovine gelatin that was included in the vaccines [148]. Two cases of allergic reaction to
bovine collagen as a therapeutic device or treatment, including a 39-year-old woman and a
62-year-old woman, were reported [149].

In addition, animal collagen sources have the risk of transmitting diseases. Porcine
and bovine origin collagen carries a risk of transmitting illnesses such as bovine BSE. BSE
risk induced by ruminant collagen and gelatine produced from raw material for human
consumption has been investigated [150]. Bovine-derived graft materials were also widely
used in dental surgery and might carry a risk of prion transmission to patients [151]. If this
disadvantage of transmitting diseases for porcine and bovine origin collagen is considered,
as we discussed in Section 2, marine collagens could be good substitutes. Figure 4 lists
some advantages and disadvantages of collagen treatment.
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5. Conclusions

Collagen is the most abundant protein in the human body that has many multi-
functions. The loss or defect of collagen can cause skin aging and other diseases. The
collage treatments have demonstrated effective improvements in skin hydration, skin
elasticity, medical scaffold treatment, GERD, OA and RA in many clinical studies. In
addition, the collagen treatment for GERD in COVID-19 patients is also discussed in this
study. Collagen therapy can reach good improvement and does not cause any serious
adverse reactions. Collagen-based materials and products are the potential to be used in
more applications, and they are the one of most important supplements for aging people.
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