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Abstract: This article attempts to introduce a simple and robust way for the classification of soft
magnetic material by using multivariate statistics. The six magnetic properties including coercive
magnetic field, relative magnetic permeability, electrical resistivity magnetic inductions, i.e., rema-
nence and saturation along with Curie temperature are used for the classification of 16 soft magnetic
materials. Descriptive statistics have been used for defining the prioritization order of the mentioned
magnetic characteristics with coercive magnetic field and Curie temperature as the most and least
important characteristics for classification of soft magnetic material. Moreover, it has also justified
the usage of cluster analysis and principal component analysis for classifying the enlisted materials.
After descriptive statistics, cluster analysis is used for classification of materials into four groups,
i.e., excellent, good, fair and poor while defining the prioritization order of materials on a relative
scale. Principal component analysis reveals that the relative permeability is responsible for defining
99.69% of total variance and is also negatively correlated with the coercive magnetic field. Therefore,
these two characteristics are considered the responsible factors for categorically placing the enlisted
materials into four clusters. Furthermore, principal component analysis also helps in figuring out
the fact that a combined influential consequence of relative permeability, coercive magnetic field,
electrical resistivity and critical temperature are responsible for defining prioritization ordering
of materials within the clusters. The material’s suitability index is identified while making use of
adjacency and decision matrices obtained from material assessment graph and relative importance of
magnetic properties, respectively. Afterward this material suitability index is used to rank the enlisted
materials based on selected attributes. According to the suitability index, the best choice among
enlisted soft magnetic materials is Supermalloy, Magnifer 7904 which is present in group 1 labeled
as excellent by multivariate analysis. Therefore, the results of graph theory are in accordance with
cluster analysis and principal component analysis, thus confirming the potential of this intelligent
approach for the selection application specific magnetic materials.

Keywords: magnetic materials; multivariate statistics; principal component analysis (PCA); descrip-
tive analysis; soft magnetic materials; graph theory; MCDM model

1. Introduction

To maximize the variety of performance metrics, the selection of suitable material
for industrial applications is extremely important. However, the selection of magnetic
materials from the list of available soft and hard magnetic options is a tedious task, and
it requires a smart approach to have an optimum outcome for specific industrial appli-
cation. Basically, the selection process has three steps: initial monitoring, development
and comparison of alternatives, with the final step being finding the best solution. For the
selection of suitable soft magnetic material from the list of alternatives, various methods in-
cluding questionnaires, artificial neural network and Multiple Attributes Decision Making
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Approaches [1–4] have been used; however, these methods require special mathematical
and computational skills.

Although it is a challenging task to simultaneously consider all the attributes of
materials, Ashby [5] successfully demonstrated the feasibility of using multi-objective
content option optimization methodology for selecting the suitable magnetic material. The
first approach to consider for solving such multi-objective content option optimization
problems is the utilizing the concepts of multivariate calculus [6]. However, despite the
power of solving complex multi-attribute decision making problems, the applicability of
multivariate calculus is not fully explored for sorting magnetic materials. Chauhan and
Vaish [7] used the following properties for ranking of soft magnetic materials:

• Curie temperature (Tc, ◦C);
• Maximum relative magnetic permeability (µmax/µo);
• Remanence magnetic induction (Br, T);
• Coercive magnetic field (Hc, A.m−1);
• Saturation magnetic induction (Bs, T);
• Electrical resistivity (q, µΩcm).

These properties have been selected due to the relevance in field of application of soft
magnetic materials [8,9].

During the study, authors have used the concepts of correlation matrix and hierarchy
cluster analysis for supporting the magnetic material ranking obtained from “VlseKriteri-
jumska OptimizacijaI Kompromisno Resenje (VIKOR) and Technique for order preference
by similarity to ideal solution (TOPSIS)”. However, a discussion of physical characteristics
for ranking outcomes is missing. Furthermore, expertise for understanding the complex
mathematical formulation and computer programs is required.

In this study, a simple, robust and systematic way for priority wise listing of physical
characteristics and material selection is presented while using the multivariate-statistical
analysis. The concepts of coefficient of variance, descriptive analysis, box plots and
principal component analysis are utilized for ranking the list of eighteen magnetic materials.
The cluster analysis and correlation matrix results reported by Chauhan and Vaish [7]
are also revisited to support the prioritization ordering of physical characteristics and
classification of materials. In addition to this, graph theory and a matrix approach has
been used for the validation of proposed methodology and to choose the best among those
listed based on magnetic properties.

Bakground Literature

According to Cardarelli [8], material selection is critical for product development and
design, as well as for the competitiveness and profitability of manufacturers. They have de-
signed a systematic multi-attribute decision making (MADM) model for selecting optimum
materials for a Human Powered Vehicle’s fairings. The advantages of modern composite
materials over traditional materials with reference to strength to weight ratio are considered
in conjugation with other practical factors (e.g., material availability which influences the
ultimate choice) for subject matter of interest. Teraiya et al. [10] addressed the problem
of connecting rods of I.C. engines while using the five different MADM methods and
assessed the limitations/advantages of the chosen decision-making technique. The VIKOR
and TOPSIS techniques are identified as the most suitable for focused strategic planning.
The accuracy of their finding is substantial for the ability to supervise only those factors
and criteria which are important as far as subject matter of interest. Furthermore, VIKOR
method’s maximum rank found close to the optimum answer. In another study, Chauhan
et al. [11] highlighted the main cause of mechanical malfunction for most components, i.e.,
wear of mating parts after repeated use. They proved that the MCDM algorithm provides
the best solution for solving the selection of suitable coating materials to minimize the
wear issue. Similarly, Kumar et al. [12] used MCDM, i.e., AHP and TOPSIS, for a selection
of phase-change material (PCM) in thermal control of electronic components and found
that AISI A2 steel is the best option for the mentioned application. In Iran’s semi-arid area,
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two MADM methods have been used to design the best water supply plant. In order to
create an efficient production environment, a fuzzy knowledge-based decision analysis
approach has been used to choose the best production process and material. Chakrabotry
et al. [13] investigated the influence of characteristics loading on the ranking effectiveness
of three frequently used MCDM techniques and concluded that the most important criteria
with the greatest weight and higher influence on material selection outcomes. Baghel
et al. [14] utilized the MCDM for selecting the suitable material for Dye-Sensitized Solar
Cells and suggested that the most essential performance factors for a semi-conductor
material in DSCs are the budget, static dielectric constant, mobility, band gap and electron
injection rate. Zhao et al. [15] used GRA and AHP to develop a material selection analytical
framework in the context of green design. In parallel, Gupta et al. [16] used the MADM
method with TOPSIS to figure out the best material for the absorber layer of thin film solid
cell (TFSC).

2. Materials and Methods

A comparatively large number of magnetic materials are present for specific applica-
tion, but only few of them are useful because of manufacturing process and limitations.
Due to the low cost and high Curie temperature, i.e., 850 ◦C, hard magnetic materials
based on Alnico alloys are of great importance. Similarly, ferrites are also in common use
because of low cost, high resistivity and wide accessibility. The disadvantage associated
with ferrites is their lower efficacy of producing maximum energy. In addition to ferrites,
rare earth and transition metals have received much attention because of higher magnetic
anisotropy, Curie temperature and coercive field due to their inter metallic phases. Further-
ance to it, soft magnetic materials including Si-steels, perm alloys, supermendur, rhometal
and Mu-metals are widely used in modern technological applications [15]. The data of
six physical characteristics including Tc, µmax/µo, Br, Hc, Br, and ρ for the list of eighteen
soft magnetic materials are given in Table 1 and have been chosen for the application of
multivariate statistics. The enlisted 18 soft magnetic materials and magnetic characteristics
were chosen because of their application specific relevancy [16,17].

Table 1. List of soft magnetic materials with their physical properties [15,16].

Materials Labels Composition (w/wt.%) Tc (◦C) µmax/µo Br (T) Hc
(A.m−1) Bs (T) ρ

(µΩcm)

Alfenol 16 A 84Fe–16Al 450 85,500 0.38 2.59 0.79 150
Ferrosilicon B 96Fe–4Si 735 18,500 1.08 24 1.97 58
Ferrosilicon C 99Fe–1Si 740 7700 0.95 44 2.1 25
Hypernik V D 51Fe–49Ni 480 180,000 0.9 4.8 1.55 47

Iron (H2 reduced) E 99.9Fe 770 100,000 0.8 4 2.158 9.71
Iron (electrolytic) F 99.9Fe 770 51,250 0.9 18.4 2.158 9.71
Iron (carbonyl) G 99.9Fe 770 35,000 0.8 16 2.158 9.71
Iron (Armco) H 99.99Fe 770 7000 0.345 56 2.158 9.71

MuMetal I 77Ni–16Fe–5Cu–2Cr 405 237,500 0.32 0.5 0.77 56
Permalloy 78 J 78.5Ni–21.5Fe 378 200,000 0.5 4 1.07 16
Permalloy 45 K 55Fe–45Ni 480 57,500 0.775 24 1.58 50

Permendur 2V L 49Fe–49Co–2V 980 4500 1.4 159 2.4 43
Rhometal M 64Fe–36Ni 275 5000 0.36 39.79 1 90

Supermalloy, N 79Ni–15Fe–5Mo–
449 700,000 0.525 0.35 0.79 59Magnifer 7904 0.5Mn

Sendust O 85Fe–10Si–5Al 480 120,000 0.5 3.98 1 70
Supermendur P 49Fe–49Co–2V 980 70,000 2.14 16 2.4 27
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3. Results and Discussion
3.1. Hierarchy Cluster Analysis

Cluster analysis is basically a cluster of multivariate databases whose basic function
is to provide tools for assembling objects based on individual parametric characteristics.
The primary method for the classification of objects in cluster analysis is that each object
is comparatively identical to the other with respect to a predefined descriptive criterion.
The resulting cluster object findings lead to high-internal homogeneity and high-external
heterogeneity to differentiate between important and irrelevant variables. Different meth-
ods have been used for clustering data but they are mainly classified into hierarchical and
non-hierarchical methods [17,18]. The present study is based on hierarchical clustering
which represents materials in a hierarchical structure (dendrogram). The main purpose
of this study is to measure a relationship between individual clusters and to classify the
similarity and dissimilarity of each material. The dendrograms can be generated using
different linkage methods to determine the distance between clusters. An estimation of the
cophenetic correlation coefficient will determine the efficacy of a dendrogram. A higher
value of this coefficient, closer to one, indicates the accuracy of physical clustering with
respect to actual similarities between the selected alternatives [19,20].

3.2. PCA or Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method using an orthogonal
transformation to convert a set of observations of potentially associated variables into
a set of values of linearly uncorrelated variables called principal components. The new
axis lies along the maximum variance direction, and there is a new cluster of factors in
PCA called the axis rotation which is used to separate the original variables into groups.
PCA is primarily used as a tool for exploratory data analysis and predictive models. PCA
provides some explanation for the most valuable factor representing the full interpretation
of the information set. PCA summarizes the statistical correlation of material’s physical
properties with the least reduction in available information. The following equation is used
to express the Principal Component Analysis:

Zij = ai1×1j + ai2×2j + ... + aim×mj

where Z is the component score, a is the component loading, x is the measured value of a
variable, i is the component number, j is the sample number, and m is the total number of
variables [20].

4. Results and Discussion
4.1. Application of Multivariate Statistics for Magnetic Material Selection
4.1.1. Descriptive Analysis

To analyze the qualitative data of soft magnetic materials (given in Table 1), XLSTAT
and Origin software were employed after the process of data as reported in the litera-
ture [21]. The descriptive picture of important physical characteristics of soft magnetic
materials, i.e., Tc, µmax/µo, Br, Hc, Bs, ρ, is given in Figure 1. It can be seen from the
figure that dispersion of data for each characteristic is high, and it is very hard to select
any material for a specific application while relying either on mean value or total variance.
Coefficients of variance (CV), which are equal to the ratio of standard deviation to mean,
is calculated and shown in Table 2. The mean and median values of each physical char-
acteristic are also presented for comparison purpose. The overlapped mean and median
values and smaller values of CV of some magnetic properties, i.e., Tc, Br and Bs for enlisted
materials (see Tables 1 and 2 and Figure 1) reveal that these parameters are less important
when application relevancy of soft magnetic materials is considered.

The smaller value of CV suggests that Tc is the least important parameter to be con-
sidered for selecting the suitable material. The coercive magnetic field ‘Hc’ and magnetic
permeability ‘µmax/µo’ have higher dispersion of data for the enlisted sixteen magnetic
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materials (Figure 1b,d), and results in higher CV values, i.e., 1.46 and 1.41, respectively. The
coercive magnetic field ‘Hc’ is the ability of a soft magnet to stand against an external mag-
netic field. As far as applications of soft magnetic materials are concerned, higher values of
Hc or values close to transition (of material) from soft to hard magnetic permeability are
required. Thus, on a relative scale, the ranking soft magnetic materials can be done while
keeping in view the descriptive picture of physical characteristics with the prioritization
order given in Table 3.
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Table 2. Mean, Median and Coefficient of variance of physical characteristics of soft magnetic materials.

Properties Mean Median CV

Tc 619.5 607.500 0.34
µmax/µo 117,465.6 63,750.000 1.41

Br 0.792 0.788 0.58
Hc 26.088 16.000 1.46
Bs 1.628 1.775 0.37
ρ 45.615 45.000 0.79

Table 3. Priority of physical characteristics for ranking the soft magnetic materials.

Order 1 2 3 4 5 6

CV 1.46 1.41 0.79 0.58 0.37 0.34

Property Hc µmax/µo P Br Bs Tc

From Table 3, it is evident the coercive magnetic field (Hc) is the most important and
Curie temperature (Tc) is the least important characteristics for selecting any soft magnetic
material for a particular application. Our results are in good agreement with the finding
reported in the literature [7].

4.1.2. Hierarchy Cluster Analysis

For further visualization, Cluster analysis (CA) is performed, and results are presented
as a dendrogram based on the dissimilarities in properties of enlisted soft magnetic materi-
als. Based on dissimilarities, soft magnetic materials are grouped into four clusters as shown
in Figure 2. CA grouped the materials into four clusters, which are labeled as Group 1, 2, 3
and 4. These groups correspond to relatively excellent, good, fair, and bad attributes for soft
magnetic materials, respectively. It is evident from the dendrogram shown in Figure 2, that
the soft magnetic material Supermalloy, Magnifer 7904 labeled as “N” form G-1 is the best
group on the relative scale. The second group consists of seven materials that form the clus-
ter of good magnetic materials and labeled as G-2. The order hierarchy of seven members of
this group on relative scale is A→ M→ D → K → J → I → O . Group 3 of fair materials
G-3 has only one material, Permendur 2V labeled as “L”. The poor group is G-4, and it
contains seven materials with following hierarchy order P→ H → E→ F → G → B→ C
on the relative scale. The priority wise ranking of physical characteristics that is obtained
from the descriptive analysis (see Table 3) is used to explain the arrangement of the materi-
als in each cluster, as well as arrangement of the materials within the groups on relative
scales. The best material label “N” has a lower value of coercive magnetic field (Hc), and a
higher value of relative permeability (µmax/µo), thus making G-1 the best. The average
values of physical characteristics of all materials in G-2 (except relative permeability) are
significantly lower when compared to members present in G-1. However, the values are
higher than the members of G-3 and G-4, thus making G-2 good. The materials in G-3
and G-4 are marked as fair and poor on the basis of electrical resistivity (ρ). The value of
electrical resistivity ρ for the standalone material in G-3 is lower when compared to the
average value of ρ of the G-4 cluster. The electrical resistivity is intrinsic in nature and has
no significant correlation with other magnetic properties (as explained in next section) thus
playing a significant role in classifications.
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4.1.3. Correlation Matrix

For correlation among the magnetic properties, the correlation matrix is calculated, and
values are tabulated in Table 4. The correlation matrix, which is calculated from the mean
values of magnetic properties of different soft magnetic materials, reflects the dependence
of one property to other. Positive correlation implies both a rise and decrease in variable
values at the same time. Negative correlation does however suggest the opposite behavior
among variables. From Table 4, a strong positive correlation of remanence magnetic
induction ‘Br’ and saturation magnetic induction ‘Bs’ with the critical temperature ‘Tc’
is evident. The analysis also reveals the moderate positive correlation between ‘Tc’ and
‘Hc’. In addition to this, a negative correlation between ‘Tc’ with electrical resistivity is also
evident. The electrical resistivity has a negative correlation with all physical characteristics
except magnetic permeability. All above correlations are true in a physical sense because the
hysteresis loss for soft magnetic materials is low. Furthermore, weakness to approximately
moderate correlations of three magnetic properties, i.e., corrosive magnetic field ‘Hc’,
magnetic permeability µmax/µo, and resistivity ρ with other properties is the evidence of
the intrinsic nature of these physical characteristics.

Table 4. Pearson correlation matrix of physical characteristics.

Physical
Characteristics Br Tc Bs ρ Hc µmax/µo

Br 1
Tc 0.758 1
Bs 0.697 0.922 1
ρ −0.319 −0.532 −0.665 1

Hc 0.318 0.509 0.487 −0.118 1
µmax/µo −0.251 −0.401 −0.557 0.108 −0.394 1
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4.2. Box Plots

For in depth investigation and assessing the accuracy of four clusters, i.e., excellent,
good, fair, and poor, the magnetic properties (given in Table 1) are represented as box plots
in Figure 3. The member of G-1 has the smallest value of coercive magnetic field Hc and
higher value of magnetic permeability. It is therefore the group labeled as excellent based
on priority order of physical characteristics as revealed by CV (see Table 3). In addition,
the values of Br and Bs for this group are also lower when compared to other clusters,
thus complementing the label because of six important physical characteristics of soft
magnetic materials [7,22]. Group 2, which is the defined as “good” on the relative scale by
cluster analysis, has box plots with a larger spread (Figure 3a–f) for all important magnetic
properties. The mean value of Hc, which is close to the desirable value, has a smaller
spread of boxes and larger bottom whiskers for ρ and Tc which are the factors responsible
for placing the group second on the list. The most and least important priority of Hc and
Tc as suggested by descriptive analysis (shown in Table 3) are also in favor of our argument
here. The spreads for, µmax/µo, Bs and Br boxes for this group are also higher.
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Group 3 has only one member labeled as “L” while group 4 consists of seven members.
It can be seen that most of the magnetic properties are almost same for both groups, i.e.,
dissimilarities among characteristics are negligible but the dendrogram classified group 3
as a fair material group, labeling the remaining group as poor, i.e., group 4. The higher
values of Hc and the lowest values of µmax/µo are the reason for classifying groups as
excellent to poor on the relative scale as evident from the box plots (see Figure 3). The
electrical resistivity ρ is the physical characteristic in addition to Hc and µmax/µo for further
classification of materials as fair and poor. The lowest mean values and the larger spread
of data for resistivity ρ that is evident from box plots (see Figure 3f) are the reasons for
making the distinction among fair and poor magnetic materials.

4.3. Principal Component Analysis (PCA)

The Eigen values (obtain after performing PCA) corresponding to the six physical
characteristics of soft magnetic materials are listed in the Table 5. Only the first three sets
are sufficient to explain the information contained in the original data. Moreover, the Eigen
values are > 0.5, and the percentage variance of first three Eigen values is 86%, which
is sufficient for using the data sets for classification purposes [20]. The percentages of
variances confirm that one can apply the PCA with confidence for analysis of data. The
Eigen values correspond to six physical characteristics, i.e., for Tc, µmax/µo, Br, Hc, Bs
and ρ are 3.488, 1.043, 0.684, 0.584, 0.169, and 0.032 respectively. The larger Eigen value
for Tc suggests that the dispersion in Tc values is higher for enlisted magnetic materials
(see Table 1 for details). The main reasons for higher Eigen value for Tc values are the
mean, median and standard deviation in the data for enlisted materials. These values of Tc
vary from 450 ◦C to 980 ◦C with mean and median values equal to 619.5 ◦C and 607.5 ◦C,
respectively. The standard deviation in the data is ~± 211 ◦C (as evident from descriptive
analysis and box plots of four groups). In addition to this, large dispersion in Tc values
is also the reason for making this magnetic property the least important in the list. For
µmax/µo, the significant higher value of magnetic permeability for Supermalloy, Magnifer
7904, i.e., 700,000 is responsible for obtaining the Eigen value 1.043. The equal distribution
of electrical resistivity ρ values from average values and having almost the same mean
and median values is the reason for obtaining the lowest Eigen value, i.e., 0.032 for this
characteristic. The box plot for electrical resistivity ρ (shown in Figure 3f) also complements
the PCA analysis and favors the lowest Eigen value of resistivity (ρ).
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Table 5. Characteristic loading and Eigen values of magnetic properties.

PCA-1 PCA-2 PCA-3

Tc 0.941 −0.093 0.149
µmax/µo −0.569 −0.586 0.474

Br 0.772 −0.145 0.475
Hc 0.600 0.540 0.199
Bs 0.973 −0.086 −0.115
P −0.613 0.610 0.398

Eigenvalue 3.488 1.043 0.684
Variability (%) 58.132 17.389 11.395
Cumulative % 58.132 75.521 86.916

According to well documented PCA theory [21], the characteristics loadings are the
representation of correlation among active variables and coefficients. These loadings are the
projections of magnetic characteristics on the principal component’s (PCs) axis. The charac-
teristic loading among the variables/properties for soft magnetic materials are tabulated
in Table 5 and classified as strong, moderate and weak. If a characteristic loading > 0.75,
then it is considered as “strong”, characteristic loading between 0.75–0.50 corresponds to
“moderate” and values between 0.50–0.30 correspond to “weak” characteristics loading.
Furthermore, positive and negative loadings are the representation of direct proportions
and indirect proportions, respectively [23].

The PC-1 that defines 58.13% of total variance has strong positive characteristic Load-
ings, i.e., >0.75 for Tc & Bs, moderate (positive) loadings for Br & Hc and moderate
(negative) loadings for µmax/µo and ρ. The characteristics which have larger dispersion
of data, higher values of standard deviations and least importance (in nature), i.e., Tc and
Bs (see Table 2), are responsible for defining this PC. The almost same loading values of
Hc and µmax/µo with a negative correlation among each other endorse the precision of
this PC. In addition, the characteristic loadings given in Table 5 also reveal the fact that
this PC is strongly affected by the dependent magnetic properties. The major contributing
characteristics for PC-2 are Hc, ρ, and µmax/µo, respectively. All three characteristics have
moderate loadings with the only difference being that µmax/µo has negative loadings [24].
The weak loadings of other three characteristics, i.e., Tc, Br and Bs suggest that PC-2 (which
defines 17% of total variance) is dominated by those magnetic characteristics that are
intrinsic in nature.

The characteristic loadings for enlisted soft magnetic materials on the first two prin-
cipal axis are represented in Figure 4. Groups with standalone magnetic materials, i.e.,
G-1 and G-3, have strong negative loadings and strong positive loadings on PC-1 and
PC-2, respectively. This is true as far as physics of magnetic characteristic is concerned
because the lowest value of Hc and the highest values of µmax/µo are required for the best
alternative. The higher value of µmax/µo, lower value of Hc and the moderate positive
loading of resistivity ρ (as evident from Table 5) are the major reasons for placing the
material with label N in third quadrant (see Figure 4). The materials that form group 2 in
the cluster analysis show weak to moderate negative loadings on PC-1, and this is true
for all materials belonging to this group as far as loadings on PC-1 are concerned (see
Figure 4 for detail). In addition to this, the materials which have strong negative loadings
on PC-1 also have strong positive loadings on PC-2 which is confirmation of the agreement
of PCA results with cluster analysis outcomes. The classification of enlisted materials into
excellent, good, fair, poor groups and prioritization ordering of materials on a relative
scale, i.e., A→ M→ D → K → J → I → O , is also confirmed by PCA. The hieratic order
of A, M, I, O is clear as A and M have strong negative and positive loadings on PC-1 and
PC-2, respectively. The materials labelled as I and O have moderate negative loadings on
PC-1 and weak loadings on PC-2. The complete picture of prioritization order is clearer
while looking at the bipolar chart given in Figure 5. Group 3 consists of only one material
labeled as L and has strong positive loadings on PC-1 and PC-2, respectively. The strong



Polymers 2021, 13, 4328 11 of 19

positive loadings on PC-1 means this group has the lowest Hc which is the most important
characteristic in the list, thus labelling this group as fair. Group 4 (except material labeled as
P) has weak to moderate positive loading on PC-1. In addition to this, it has weak loadings
(positive and/or negative) on PC-2, thus labelling it as poor. The prioritization order on
the relative scale is also evident from Figure 4 and in agreement with the findings of the
cluster analysis, i.e., P→ H → E→ F → G → B→ C .
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The bipolar plot of the magnetic characteristics for enlisted materials in the first two
PCs space is shown in Figure 5. It clearly depicts the influence of six physical characteristics
to organize the eighteen materials in four groups as excellent, good, fair and poor. Group
1 (which has strong negative loadings on PC-1 and PC-2) is strongly influenced by the
magnetic permeability, i.e., µmax/µo. The resistivity ρ is the major responsible factor for
labelling group 2 as good, while the combine influence of ρ, µmax/µo, and Hc is responsible
for defining the prioritization order of the materials within the group. The relative overture
of hierarchy order within the groups (obtained from cluster analysis) seems logical while
considering the results of bipolar chart and precedence of physical characteristics given
in Table 3. The strong positive loadings on PC-1 and PC-2 along with dominant influence
of coercive magnetic field Hc (see Figure 5) is responsible for group 3. Furthermore, Bs,
Br, and Tc are the major responsible factors for arranging the remaining seven materials in
group 4. The preference listing of magnetic characteristics, i.e., Hc > µmax/µ o> ρ > Br > Bs
> Tc, is the reason for the members of group 4 to be considered as poor.

Finally, Figure 6 which represents the loadings of magnetic characteristics (considered
for classification) on the first two PCs axis reveals the following significant trends:

• PC-1 defines the 99.69% while PC-2 defines only 0.31% of total variance, which means
that loadings on PC-1 clearly define the importance of active variables;

• µmax/µo has strong positive loadings on PC-1 and weak negative (among all) loading
on PC-2;

• All other characteristics are inversely related with the µmax/µo with only a difference
in loading values on PC-2;

• As far as other physical characteristics are concerned, all characteristics (except
µmax/µo) have strong negative loadings on PC-1;

• Hc, ρ, Br, Bs have weak negative loadings, and Tc has moderate positive loading on PC-2.
• On the basis of the above trends, it can be said conclusively that the most important

magnetic properties in case of soft magnetic material are the magnetic permeability
µmax/µo and coercive magnetic field Hc, respectively.
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4.4. Application of Graph Theory and Matrix (GTMA) Approach for Magnetic Material Selection

For the selection of optimum soft magnetic material, the choice and the ranking of
material selection criteria plays an important role. Attributes for the selection process are
already ranked by using multivariate analysis as explained in Section 3.1. With the help
of PCA soft magnetic materials are classified into four groups termed as excellent, good,
fair and poor on the basis of selected beneficial and non-beneficial factors. However, the
classification of materials into four groups is not sufficient. Therefore, graph theory is
applied to rank the materials based on selected criteria and their relative importance. Briefly,
graph theory is the study of graphs, which are mathematical models used to construct
pair wise relationships between objects. For material selections this graph constructs the
interrelation between different material selection attributes. In this framework, a graph
is made up of vertices also defined as nodes that represent the material selection factors,
and these nodes are connected by edges also called links or lines that show the relative
importance’s among the factors.

4.4.1. Schematic Representation of Attributes

The material assessment graph as shown in Figure 7 is plotted using Mathematical
software by considering six different material selection factors. As there are six material
selection factors, there are six corresponding nodes labeled as 1, 2, 3, 4, 5, and 6, respectively.
The graph displays the arrow from node 1 to 2 and likewise from 2 to 1, the color of
each arrow represents the relative importance of one parameter to another. Furthermore,
higher obligatory value (HOV) and lower values obligatory value (LOV) attributes are also
represented with colors (see Figure 7). Maximum relative permeability is more important
than Curie temperature in the process of material selection, but Curie temperature is also
important, though less important than maximum relative magnetic permeability, so in both
cases, relative importance is present between the two attributes. Similarly, interrelation
is present between other factors. However, this graph is only a visual representation of
material selection factors and their relative importance. For analysis, an adjacency matrix
of the graph is written, which is then used for figuring out the material suitability index for
each enlisted material.

4.4.2. Material Suitability Index

The material suitability index is the numerical value of the material selection factors
function. There are six magnetic material selection attributes so there will be a 6 × 6 matrix
with diagonal elements Ri and off diagonal rij. For each material, all factors (i.e., Ri) and
their relative importance (i.e., rij) are considered for establishing the decision matrix for
each material. This decision matrix is then used for calculating the suitability index.

A =



Parameter F1 F2 F3 F4 F5 F6 F7 F8
F1 R1 r12 r13 r14 r15 r16 r17 r18
F2 r21 R2 r23 r24 r25 r26 r27 r28
F3 r31 r32 R3 r34 r35 r36 r37 r38
F4 r41 r42 r43 R4 r45 r46 r47 r48
F5 r51 r52 r53 r54 R5 r56 r57 r58
F6 r61 r62 r63 r64 r65 R6 r67 r68
F7 r71 r72 r73 r74 r75 r76 R7 r78
F8 r81 r82 r83 r84 r85 r86 r87 R8
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4.4.3. Representation of Matrix

To calculate the diagonal elements Ri, the normalized values of quantitative data is
considered. To figure out the normalized values Ri, figuring out the beneficial and non-
beneficial factors must be the first step. There are six attributes in the present case, and all
are already ranked according to their importance in Table 3. The first three attributes (Hc,
µmax/µo, ρ) are considered as beneficial and the last three as non-beneficial (Br, Bs, Tc). For
beneficial factors, the higher values are preferable, and for non-beneficial factors, lower
values are required. First consider beneficial factors and then normalize the data by using
the relation vi/vj, where vi is the factor value for the ith alternative, and vj is the factor value
for the jth alternative, it also has the highest factor value among the alternatives studied.
For non-beneficial factors, vj/vi is used for calculating the normalized values assigned to
the alternatives. In this respect, vj is the factor value for the jth alternative, which has the
lowest factor measure among the alternatives investigated. The normalized values are
represented in Table 6.
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Table 6. Normalized data of soft magnetic material selection attributes.

Materials Labels Composition (w/wt.%) Tc (◦C) mmax/mo Br (T) Hc
(A.m−1) Bs (T) r (mWcm)

Alfenol 16 A 84Fe–16Al 0.611 0.122143 0.842105 0.016289 0.974684 1
Ferrosilicon B 96Fe–4Si 0.3474 0.3474 0.296296 0.150943 0.390863 0.38667
Ferrosilicon C 99Fe–1Si 0.37162 0.011 0.33684 0.27673 0.36667 0.166667
Hypernik V D 51Fe–49Ni 0.5729 0.257142 0.35556 0.030189 0.496774 0.31333

Iron (H2 reduced) E 99.9Fe 0.357 0.142857 0.4 0.025157 0.356812 0.064733
Iron (electrolytic) F 99.9Fe 0.357 0.07321 0.355556 0.115723 0.356812 0.064733
Iron (carbonyl) G 99.9Fe 0.357 0.05 0.4 0.100629 0.356812 0.064733
Iron (Armco) H 99.99Fe 0.357 0.01 0.92754 0.3522 0.356812 0.064733

MuMetal I 77Ni–16Fe–5Cu–2Cr 0.679 0.3393 1 0.003145 1 0.373333
Permalloy 78 J 78.5Ni–21.5Fe 0.7275 0.2857 0.64 0.002516 0.719626 0.106667
Permalloy 45 K 55Fe–45Ni 0.5729 0.0821 0.4129 0.150943 0.320833 0.333333

Permendur 2V L 49Fe–49Co–2V 0.2806 0.00643 0.22857 1 0.320833 0.286667
Rhometal M 64Fe–36Ni 1 0.007143 0.88889 0.250252 0.77 0.6

Supermalloy, N 79Ni–15Fe–5Mo– 0.6125 1 0.609524 0.002201 0.974684 0.393333
Magnifer 7904 0.5Mn

Sendust O 85Fe–10Si–5Al 0.5729 0.17143 0.64 0.025031 0.77 0.466667
Supermendur P 49Fe–49Co–2V 0.2806 0.1 0.149533 0.100629 0.3208 0.18

The next step is to find the relative importance, i.e., rij, which are off diagonal elements
of the decision matrix. For this, an 11-point fuzzy scale along with rankings of attributes that
are already performed by statistical analysis (see Table 3) is used to assign verbal relative
importance to corresponding attribute. The 11-point fuzzy logic scale for converting the
verbal scale into number is tabulated in Table 7.

Table 7. 11-point fuzzy logic scale.

Descriptive Statement Quantitative Weight

One parameter has exceptionally low importance when compared to others. 0.045

One parameter has extremely low importance when compared to others. 0.135

One parameter has very low importance when compared to others. 0.255

One parameter has low importance when compared to others. 0.335

One parameter has slightly below equal importance when compared to others. 0.41

One parameter has equal importance when compared to others. 0.5

One parameter has slightly above equal importance when compared to others. 0.59

One parameter has high importance when compared to others. 0.665

One parameter has very high importance when compared to others. 0.745

One parameter has extremely high importance when compared to others. 0.865

One parameter has exceptionally high importance when compared to others. 0.955

The decision matrix in Table 8 shows that critical temperature TC is slightly less
important than BS. Similarly, the relative importance between Tc and Br is 0.335, which
indicates that Tc is less important than Br. According to the ranking of attributes with
respect to their relative importance, coercive magnetic field Hc is the most important
attribute so the relative importance between TC and Hc has a numeric value of 0.135 that
shows that critical temperature Tc is extremely less important than coercive magnetic field
Hc. Likewise, Hc is extremely more important than Tc, so the relative importance between
them has numerical value of 0.865. The values on the diagonal indicate the relation between
the same attributes, and off-diagonal values show the relative importance between different
attributes. Each material’s ranking index is computed while using the following equation:

Ranking Index = Per (A)

where the Per (A) is the determinant of a matrix (a) with all positive entries in the calculation.
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Table 8. Decision matrix from relative importance of material selection factor (11-point scale).

Property Tc Bs Br ρ µmax/µo Hc

Tc R1 0.41 0.335 0.335 0.255 0.135
Bs 0.59 R2 0.41 0.255 0.135 0.045
Br 0.665 0.59 R3 0.41 0.335 0.255
ρ 0.665 0.745 0.59 R4 0.41 0.335

µmax/µo 0.745 0.865 0.665 0.59 R5 0.41
Hc 0.865 0.955 0.745 0.665 0.59 R6

The above expression is the full representation for the material selection problem
under consideration, as it considers the presence of all elements and all conceivable relative
importance relationships between them. By using the adjacency matrix and the normalized
data of each material, the permanent function for each material is calculated and the
suitability index is given. The material with the highest value of suitability index is
considered the best material among all alternatives.
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Table 9 indicates that Supermalloy, Magnifer 7904 is the optimal choice among the
enlisted alternatives. The selection is made by considering the application specific magnetic
properties of magnetic material. The results are also in accordance with the multivariate
statistical analysis. According to multivariate analysis, Group 1 containing Supermalloy,
Magnifer 7904 labelled as N (which has strong negative loadings on PC-1 and PC-2) is
strongly influenced by the magnetic permeability (i.e., µmax/µo) and is termed as excellent.
This material is also ranked as number 1 according to the suitability index value calculated
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while using the concepts of graph theory. According to PCA, group 2 consists of materials
labeled as M, A, I, O, J, D, K and are termed as good due to strong influence of resistivity
ρ, while the combined influence of ρ, µmax/µo and Hc is responsible for the prioritization
ordering of the materials within the group. The parametric graph theory and matrix
approach (GTMA) also ranked the members of this group from 2nd–6th to choose the next
best options after Supermalloy, Magnifer 7904. Group 3 contains only one material labeled
as L, termed as fair and lies at 7th rank according to GTMA. All the remaining materials lie
in group 4 and are termed as poor according to PCA which is further confirmed by GTMA.

Table 9. Suitability Index and Ranking of enlisted Soft magnetic materials.

Materials Labels Composition (w/wt.%) Tc (◦C) µmax/µo Br (T) Hc
(A.m−1) Bs (T) r

(mWcm)
Permanents of

Matrix

Alfenol 16 A 84Fe–16Al 450 85,500 0.38 2.59 0.79 150 6.46209
Ferrosilicon B 96Fe–4Si 735 18,500 1.08 24 1.97 58 3.84094
Ferrosilicon C 99Fe–1Si 740 7700 0.95 44 2.1 25 3.2374
Hypernik V D 51Fe–49Ni 480 180,000 0.9 4.8 1.55 47 3.93485

Iron (H2 reduced) E 99.9Fe 770 100,000 0.8 4 2.158 9.71 3.115
Iron (electrolytic) F 99.9Fe 770 51,250 0.9 18.4 2.158 9.71 3.05412
Iron (carbonyl) G 99.9Fe 770 35,000 0.8 16 2.158 9.71 3.06157
Iron (Armco) H 99.99Fe 770 7000 0.345 56 2.158 9.71 4.04846

MuMetal I 77Ni–16Fe–5Cu–2Cr 405 237,500 0.32 0.5 0.77 56 6.49842
Permalloy 78 J 78.5Ni–21.5Fe 378 200,000 0.5 4 1.07 16 4.68784
Permalloy 45 K 55Fe–45Ni 480 57,500 0.775 24 1.58 50 3.70229

Permendur 2V L 49Fe–49Co–2V 980 4500 1.4 159 2.4 43 3.79996
Rhometal M 64Fe–36Ni 275 5000 0.36 39.79 1 90 6.48505

Supermalloy, Magnifier
7904 N 79Ni–15Fe–5Mo–0.5Mn 449 700,000 0.525 0.35 0.79 59 7.0907

Sendust O 85Fe–10Si–5Al 480 120,000 0.5 3.98 1 70 4.86904
Supermendur P 49Fe–49Co–2V 980 70,000 2.14 16 2.4 27 2.79293

In summary, the results reported in this study reveal that multivariate statistics pro-
vides a simple and robust alternative for selecting the suitable magnetic material. It
provides the user flexibility to avoid complex mathematical formulations used in other
MCDM. In addition to this, the systematic nature of the method and authenticity (as evi-
dent from literature [10,11] and confirmed with GTMA model) makes it more appealing
for other multi-attribute material selection applications.

5. Conclusions

Cluster analysis revealed that soft magnetic materials can be classified in excellent,
good, fair and poor materials on the basis of physical characteristics. Descriptive statistics
and CV defined the prioritization order of magnetic characteristics as Hc > µmax/µo > ρ >
Br > Bs > Tc, and this precedence of magnetic properties was responsible to classify the
materials into four clusters. The relative permeability µmax/µo, coercive magnetic field
Hc, and electrical resistivity were responsible for explaining ~99.90% of total variance as
confirmed from principal component analysis. All groups were significantly influenced
by µmax/µo and Hc. In addition to this, combined influence of electrical resistivity ρ

with µmax/µo and Hc was responsible for further organizing the materials in group 2.
Similarly, Br, Bs, and Tc played their roles for organizing the materials within group 4.
Furthermore, principal component analysis confirmed the fact that the highest value of
relative permeability and lowest value of Hc was required for them most suitable soft
magnetic material.

After prioritizing the attributes, GTMA is applied to identify the best material among
enlisted alternatives. For this purpose, the suitability index helps in ranking the soft
magnetic materials according to their importance based on selected attributes/magnetic
properties. The results revealed that they are in consonance with the principal component
analysis. According to these results, the soft magnetic material named as Supermalloy,
Magnifer 7904 labelled as L, identified as excellent and ranked first place by GTMA
thus complementing the classification of multivariate statistical analysis. Although, the
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proposed simple and robust technique for material selection relies on the application’s
specific physical characteristics, it can be used for other materials used for industrial
application.
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