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Abstract: In nanoscience, the “green” synthesis approach has received great interest as an eco-friendly
and sustainable method for the fabrication of a wide array of nanoparticles. The present study ac-
counts for an expeditious technique for the synthesis of silver nanoparticles (AgNPs) utilizing fruit
waste grape pomace extracted tannin. Grape pomace tannin (Ta) involved in the reduction and
capping of AgNPs and leads to the formation of stable Ta-AgNPs. Various conditions were attempted
to optimize the particle size and morphology of Ta-AgNPs which was further analyzed using various
analytical tools for different characteristic motives. UV-visible spectroscopy showed a characteristic
peak at 420 nm, indicating successful synthesis of AgNPs. Energy disperses spectroscopy (EDS) anal-
ysis proved the purity of the produced Ta-AgNPs and manifested a strong signal at −2.98 keV, while
Fourier-transform infrared spectrophotometer (FTIR) spectra of the Ta-AgNPs displayed the existence
of functional groups of tannin. Zeta potential measurements (−28.48 mV) showed that the Ta-AgNPs
have reasonably good stability. High resolution transmission electron microscopy (HR-TEM) analysis
confirmed the average dimension of the synthesized NPs was estimated about 15–20 nm. Ta-AgNPs
potentials were confirmed by in vitro antidiabetic activity to constrain carbohydrate digesting en-
zymes, mainly α-amylase and α-glucosidase, with a definite concentration of sample displaying 50%
inhibition (IC50), which is about 43.94 and 48.5 µg/mL, respectively. Synthesized Ta-AgNPs exhibited
significant antioxidant potential with respect to its 2,2′-azino-bis(3-ethylbenzothi-azoline-6-sulfonic
acid) (ABTS) (IC50 of 40.98 µg/mL) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 of 53.98 µg/mL)
free radical scavenging activities. Ta-AgNPs exhibited extraordinary antibacterial activity against
selected pathogenic strains and showed comparable antimicrobial index against ampicillin as a
positive control.

Keywords: grape pomace; silver nanoparticles (AgNPs); in vitro antidiabetic activity; DPPH; an-
tibacterial activity

1. Introduction

Owing to distinctive physical, chemical, optical, catalytic, and magnetic properties,
nanomaterials have gained considerable attention for various biological, pharmaceutical,
and electronic applications [1]. In recent times, research interest towards nanotechnology
has improved which leads to the augmented growth in the production of nanomaterial and
its market. Based on their size, nanomaterials are differently grouped, such as nanopar-
ticles, dendrimers, nanotubes and nanofilms [2]. Further, this upsurges the diversity of
nanoscale materials. A plethora of advancements in the methodologies for the synthesis
of nanoparticles with different characteristics put them together as the most applicable
and widely used in materials science. Two conventional production processes, mainly
(a) electrochemical and chemical reduction and (b) photochemical and physical vapor
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condensation, are used for industrial scale nanomaterial production to achieve perfect
shapes and higher purity [3]. However, these processes are energy demanding and re-
quire hazardous reagents (stabilizing and reducing agents), thus are not eco-friendly and
cost-effective. Hence, there is an extensive demand for the definition of less demanding
production technologies that would expand the affordability of the whole nanotechnology
industry [4,5].

Green synthesis is accomplished by combining metal salts with natural reducing
agents (such as plant extracts, fruit extracts, and their secondary metabolites), microbial
extracts and their by-products (such as vitamins, sugars, and biodegradable polymers)
to create nanomaterials [2,6]. The green synthesis of NPs by employing green chemistry
principles (Figure 1) is gaining abundant attraction for the development of these future
nanosized materials. Plant extract-based nanoparticle synthesis is a non-toxic, eco-friendly,
sustainable, and economical way and can perform under aqueous conditions, with low en-
ergy requirements and does not require toxic chemicals. Moreover, nanoparticle synthesis
by plant extracts is comparatively much faster than the microbial route and easily scalable
to produce NPs in huge quantities [7,8]. The fruit and fruit peel extracts contain various
pharmacological compounds which function as reducing and capping compounds in the
fabrication of different kinds of nanoparticles [9–11].
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Silver nanoparticles (AgNPs) have drawn more attention from various entrepreneurs
due to their wide range of scope in numerous industries, such as agriculture, pharmacy,
pigments, catalysis, electronics, and cosmetics. Other incredible properties of AgNPs
include higher conductivity nature, chemical stability, which increases its potential in
pharmaceutical applications mainly, cancer treatment, medical imaging, and drug delivery
with reduced undesired toxicity [6,12].

Grape (Vitas vinifera) can be considered as one of the largest fruit crops; about >67 mil-
lion tons of grapes are produced per annum globally. Grapes are mainly used for wine
production. All through the manufacture of grapes-wine, a major extent of solid organic
by-product as a grape pomace is produced (about 40%). Grape pomace signifies a vital
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source of phenolic antioxidants and can be utilized as an animal feed supplement with
health promoting factors [13,14]. However, utilization of the huge amount of grape pomace
is still scarce, thus it accumulates near wine industries as a waste product and causes
environmental and disposal complications. High levels of condensed tannins are held
back as residue, based on the low extraction during winemaking. Tannin is a polyphenolic
compound, having human health benefits due to higher antioxidant potential [11,15]. The
present study was intended for silver nanoparticles green synthesis using Vitis vinifera
(extracted grape pomace tannin), which has not been studied well in nano research. Further,
the influence of several operational factors in the synthesis of Ta-AgNPs were critically
examined and optimized. Characterization of Ta-AgNPs with regard to the size and size
distribution morphology and structure of particle size was accomplished using various
standard analytical techniques. Ta-AgNPs were assessed for multi biogenic potentials in
terms of in vitro antidiabetic and antioxidant activities by employing standard enzyme
assays. Finally, the antimicrobial efficacy was investigated against pathogenic bacteria
cultures to raise their potential applications in biomedical sectors.

2. Materials and Methods
2.1. Grape Tannin Extraction and Reagents

Grape pomace (GP) was procured from the local wine industry, washed and oven
dried, until a persistent weight was attained. Further, the dried GP was cut into small
pieces and finely ground. Tannin extraction from grape pomace was performed using the
methodology reported elsewhere [16]. The finely ground grape pomace was added in
water comprising of Na2CO3 (2.5%) and Na2SO3 (2.5%) aqueous base solution at 80 ◦C
for 4 h followed by the filtration, and the resultant portion was spray-dehydrated and the
resulting powder was utilized for the synthesis of silver nanoparticles and for subsequent
procedures. Silver nitrate (AgNO3), ascorbic acid, 2,2-diphenyl-1-picryhydrazyl (DPPH),
2,2′-Azino-bis(3-ethylbenzothiazoline)-6 sulfonic acid (ABTS), sodium potassium tartrate,
3,5-dinitrosalicylic acid (DNS), acarbose, α-glucosidase, and α-amylase, were procured
from Sigma-Aldrich, St. Louis, MO, USA. All other reagents and chemicals used for the
study were of analytical grade quality and of higher pureness. Double distilled water was
used throughout in all the experiments for solution preparations (Millipore Corporate,
Billerica, MA, USA).

2.2. Green Mode Synthesis of Ta-AgNPs, Optimization of Conditions and Stability Studies

The synthesis of Ta-AgNPs was performed in the aqueous grape pomace extracted
tannin, which is a reducing agent and silver nitrate (AgNO3), as the precursor compound.
Grape tannin (1000 ppm) and the AgNO3 solution (1 mM) were individually prepared.
Appropriate volumes of tannin and AgNO3 solution (ratio of 1:10) in a flask were gradually
mixed at 30 ◦C on a magnetic stirrer. At regular time intervals, the samples were collected
from the reaction mixture and studied for their absorption spectrum by employing UV-
visible absorption spectroscopy. The change in color (light brown and became darker)
was also noted. In order to improve the properties and analytical merit of Ta-AgNPs, the
reaction conditions, such as pH value (2, 3, 4, 5, 6, 7, and 8), reaction time (0, 5, 10, 20
and 30 min), concentration of AgNO3 (0.5, 1.0, 2.0, and 2.5 mM), and tannin concentration
by means of varied mixing ratios of Ta:AgNO3 (1:1, 1:5, 1:8, 1:10, 1:15, and 1:20), were
inspected in a detailed manner. The optimization of NP synthesis factors was diversified
one at a time by upholding the other variable stable factors. Under optimized conditions
the produced Ta-AgNPs were concentrated and separated from the reaction mixture by
setting a centrifuge at 12,000 rpm for 20 min (Labogene, 1736R, Lillerød, Denmark). The
resulting Ta-AgNPs pellet was washed with distilled water to exclude the impurities and
further dehydrated in an oven (60 ◦C) for analytical studies and biogenic potentials. The
synthesized Ta-AgNPs were observed for up to 3 months for their stability, by keeping
them at room temperature conditions and by applying the procedure reported earlier [9].
All experiments were conducted in triplicate sets.
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2.3. Characterization of Ta-AgNPs

The optical property of Ta-AgNPs was determined between 300 nm and 700 nm at
regular time intervals by using a UV-visible spectrophotometer (Optizen, Model-2120,
Daejeon, Korea). The participation of several functional groups of extracted tannin during
the bio-reduction and synthesis of Ta-AgNPs was analyzed using a Fourier-transform
infrared spectrophotometer (Perkin-Elmer, Norwalk, CT, USA). Meanwhile, the spectrum
of energy disperses spectroscopy (EDS; JEOL-64000, Tokyo, Japan) and element distribution
of Ta-AgNPs was also measured. Zeta potential of Ta-AgNPs was assessed by a zeta
potential analyzer (ELS-8000, Tokyo, Japan). A high resolution transmission electron
microscopy (HR-TEM, Tecnai G2 20 S-TWIN, FEI Company, Loughborough, UK) was used
to analyze the size, shape, and exterior morphology characteristics of Ta-AgNPs. The
particle size of Ta-AgNPs was measured using the standard procedure [9].

2.4. In Vitro Antidiabetic Potential of Synthesized Ta-AgNPs

Antidiabetic potential of synthesized Ta-AgNPs was evaluated by measuring the
inhibition capability against two types of carbohydrate hydrolyzing enzymes (α-amylase
and α-glucosidase). For the α-amylase enzyme assay, a diverse quantity of synthesized
Ta-AgNPs (20, 40, 60, 80, and 100 µg/mL; about 1 mL) was added to 1 mL starch solution
and kept at room temperature (30 ◦C) for 10 min. Through adding 1 mL of dinitrosalicylic
acid color reagent, the reaction was stopped and then kept in a boiling water bath for
10 min and further cooled. Finally, the absorbance was checked for the mixture at 540 nm in
a colorimeter. The α-glucosidase assay was performed according to the standard procedure
and determined the inhibition of the enzyme activity by the Ta-AgNPs [17]. For the
determination of both the enzyme assays, acarbose was considered as standard. Three
replicated determinations were performed, and the averaged results were recognized to
determine the antidiabetic potential of Ta-AgNPs. The enzyme activity was specified as of
IC50 value (articulated as the definite concentration of a sample displaying 50% inhibition).

Free radical scavenging (%) = [(AC − AT)/AC] × 100

AC = absorbance of control; AT = absorbance after exposure to Ta-AgNPs.

2.5. In Vitro Antioxidant Potential of Synthesized Ta-AgNPs

Antioxidant potentials of ascorbic acid (as standard), extracted tannin, and synthe-
sized Ta-AgNPs were investigated by quantifying the free radical scavenging activity
against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azino-bis(3-ethylbenzothiazoline)-6
sulfonic acid (ABTS). The scavenging activity enzyme assays were conducted by employing
the formerly described standard protocol [18]. The antioxidant activity of all samples was
measured by taking the average mean values and standard deviation values and their scav-
enging potential was specified as of IC50 value using the previously described procedures.

2.6. Antimicrobial Activity

In vitro estimation for antibacterial efficacy of bio fabricated Ta-AgNPs was performed
using Gram-negative and Gram-positive bacteria cultures (Escherichia coli and Staphylococ-
cus aureus) through the standard Kirby–Bauer disc diffusion procedure [19]. First, in the
nutrient broth the cultures were revived at 37 ◦C overnight to attain optimum O.D. (0.4) at
600 nm. Freshly grown overnight cultures were inoculated (100 µL) and swabbed using
sterilized cotton swabs on agar plates. Further, using sterile filter paper discs, extracted tan-
nin, Ta-AgNPs, and Ampicillin were kept on the inoculated agar medium. For the uniform
perfusion of the samples initially, the petri plates were left to stand for 1 h, then incubated
overnight at 37 ◦C for 24 h for bacterial culture growth. Zone of inhibition was calculated
(mm) using a uniform scale round the disc infused with extracted tannin, Ta-AgNPs, and
Ampicillin. Extracted tannin aqueous form was reflected as the negative control and ampi-
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cillin was applied as a positive control. The antimicrobial index of Ta-AgNPs against each
pathogenic bacteria was measured and interpreted using the mentioned formula [20].

Antimicrobial index = (inhibition zone by Ta-AgNPs/inhibition zone by ampicillin) × 100

2.7. Statistical Analysis

All the experiments were conducted in three sets and the data of all the results
calculated values were deliberated as mean ± standard error mean (SEM). The data
obtained were inferred by using the one-way analysis of a variance (ANOVA) test convoyed
by a Tukey–Kramer multiple comparisons test.

3. Results and Discussion
3.1. Ta-AgNPs Synthesis

Tannin as a naturally occurring predominant phytomolecule in grape pomace pos-
sesses higher antioxidant activity [13]. Tannins were extracted from grape pomace and
utilized for the synthesis and fabrication of Ta-AgNPs. Synthesis of Ta-AgNPs was visually
marked by checking the color alteration of the reaction solution, from slight brown to dark
brownish red, and also subjected to surface plasmon resonance (SPR) analysis by using UV-
visible spectroscopy at various time intervals. The spectral analysis manifested a distinct
SPR peak at 420 nm after 30 min of incubation (Figure 2). The absorption spectral peaks in
the range of 410–450 were used for the characterization of the Ag nanoparticles [21]. In
line with the Mie theory, spherical nanoparticles show only a single surface plasmon reso-
nance (SPR) band, which supports our results [12]. The phenolic compounds are mainly
responsible for this chelating ability due to the nucleophilic nature of their aromatic rings.
During the NP synthesis process, Ag+ ions are captured and chelated by extracted tannins,
which subsequently undergo a reduction, nucleation, and capping process, resulting in the
development of stable Ta-AgNPs [22]. The detailed schematic representation of the grape
pomace tannin mediated synthesis of Ta-AgNPs has been presented in Figure 3.

3.2. Optimization of Ta-AgNPs Synthesis Process Parameters

To regulate the size and morphology of nanoparticles, the process parameters can be
either optimized or modified. The solution pH, temperature, reaction time, and phytochem-
ical quantity are vital factors affecting the size, shape, and efficiency of the NP synthesis
process [22,23]. Temperature is another significant process parameter, with an increase in
temperature, the development of nucleation centers increases, which eventually upsurges
the rate of nanoparticle synthesis. In this study, the SPR peak of produced Ta-AgNPs
showed an increase in the absorption intensity from 30 to 40 ◦C, while no difference at
40 ◦C and 50 ◦C was noted (Figure 4a). At a higher temperature (60 ◦C) a sharp reduction in
SPR peak was discerned. Similarly, in other studies of AgNPs synthesis using plant extract,
low reaction temperatures for stable nanoparticles synthesis relative to high temperatures
were required [24].

For instance, alteration in the pH leads to change in the overall charge of bioactive
phytomolecules, which in turn facilitates their binding affinity and hence bioreduction
of metal ions into nanoparticles. During the synthesis of Ta-AgNPs at different pH of
the reaction media, maximum SPR distinct peak was recorded at pH 7.0 while other pH
values found were not significant in the synthesis of Ta-AgNPs (Figure 4b). Nindawat and
Agrawal [25] showed that Arnebia hispidissima extract promoted synthesis of small size
AgNPs at alkaline pH levels of 7.0, 9.0 and 11.0, whereas flat UV spectrum was observed at
pH 3.0, which support our results. The effect of the initial concentrations of silver nitrate
from 0.5 mM to 2.5 mM on Ta-AgNPs synthesis was studied. The results suggested a
distinct upsurge peak up to 1.0 mM (Figure 4c). However, as the increase in silver nitrate
concentration accelerates to decrease the SPR value, it might be due to the agglomeration
of synthesized NPs.
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High concentrations of polyphenols avoid coalescence and aggregation of nanoparti-
cles; thus, determination of proper tannin concentration is essential. The effect of varying
concentrations of tannins on Ta-AgNPs synthesis was investigated by making different
mixing ratios of tannin and AgNO3. The results suggest that lower concentrations of tannin
were found to be effective and the maximum SPR was noticed at a tannin and AgNO3
1:10 ratio (Figure 4d). However, further decreasing the tannin concentration was found
to be not effective in Ta-AgNPs synthesis [26]. The obtained results can be considered as
noteworthy, which can help make the process worthwhile and commercially applicable.
In accordance with the comprehensive results, the optimized parameters for Ta-AgNPs
synthesis were 40 ◦C temperature, pH: 7.0, 1.0 mM AgNO3, Tannin/AgNO3 ratio: 1:10,
and 30 min incubation time, and were selected for further experimentation.

3.2.1. Analytical Studies of Synthesized Ta-AgNPs

Generally, nanoparticles are characterized on the basis of their morphology, size,
surface area, zeta potential and dispersity index. A homogenous and monodispersed
solution of these nanoparticles is extremely important for numerous applications.

XRD is generally advantageous to analyze the purity and monocrystalline nature of
the nanoparticles [9,27]. X-rays penetrate deep into nanoparticles that generate a diffraction
pattern, which is further compared with the standard for the collection of structural details.
Measurements for the XRD of the Ta-AgNPs showed four distinct peaks at 2θ angles of
38.12, 46.15, 64.75, and 76.54 attributes to (111), (200), (220), and (311) (Figure 5). The XRD
spectrum of the synthesized AgNPs showed 2θ peak corresponding to 111 (at 38.1◦) Bragg
reflections of silver and also confirms the presence of face centered cubic (FCC) crystal
structure. The results are in accordance with the silver nanoparticle synthesized by leaves
of Panax ginseng confirmed the crystalline nature with FCC structure [28].
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Figure 5. XRD pattern of Ta-AgNPs synthesized under optimized conditions.

3.2.2. FTIR Analysis

FTIR spectroscopy is used for the portrayal of the surface chemistry of nanoparticles
and to identify the active functional groups [18]. FTIR analysis was carried out to discover
the functional group deviations amongst grape pomace extracted tannins before and after
it is fabricated on the surface of the AgNPs. FTIR spectra of extracted tannin and Ta-AgNPs
are represented in Figure 6. The presence of broad absorption bands around 3254 cm−1 in
both extracted tannin and synthesized Ta-AgNPs corresponds to the hydroxyl group (O-H)
of polyphenol constituent [29]. Two peaks at 1582 and 1402 cm−1 are representative of the
aromatic ring structures, whereas a small peak at 2922 cm−1 relates to the stretching of
C-H [11]. Moreover, the peaks in the region 1000 to 1300 cm−1 exhibited for aromatic ring
vibration [16]. In a study, analogous outcomes have been observed in the silver nanoparticle
synthesis using different forms of tannins (condensed and hydrolysable) extracted from
chestnut, mangrove and quebracho [30]. FTIR results suggest the presence of polyphenolic
and aromatic constituents of extracted tannins on the surface of Ta-AgNPs, which are
involved in the reduction, capping and stabilizing the synthesized Ta-AgNPs.

3.2.3. EDS and Zeta Potential Analysis

Energy dispersive spectroscopy (EDS) is commonly used to calculate elemental com-
position and the purity investigation of synthesized AgNPs. The EDS measurement of
the synthesized Ta-AgNPs showed the strongest absorption peak at 2.98 keV corresponds
to metallic silver due to surface plasmon resonance by silver atoms (Figure 7). The other
minor peaks of C and S are related to tannin molecules, suggesting its involvement in the
synthesis and fabrication of Ta-AgNPs. Few other studies confirmed that the adsorption
of silver has been observed around 3 keV, which corresponds to the binding energy of
elemental silver [11,28,31].

Further, the synthesized Ta-AgNps were studied by using zeta potential for the
determination of surface charge. The analysis results showed the presence of higher
negative surface charge (−28.48 mV), which can prevent the NPs from agglomerating. Some
researchers suggest that nanoparticle zeta potential values > 30 or <−30 are comprised of
high levels of stability [32]. This property is useful for the stability of synthesized NPs due
to which SPR spectrum of Ta-AgNPs remain stable for about 3 months, and thus can be



Polymers 2021, 13, 4355 9 of 15

used in a continued way. Analogous zeta potential value −28.4 mV was perceived in the
silver nanoparticles synthesized using Vitis vinifera skin extract [11,30].
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3.2.4. HR-TEM Analysis

Electron microscopy is another universally used technique for the analysis of the size
and morphological characterization of nanoparticles. The TEM micrographs at different
50 nm and 20 nm magnifications revealed that the synthesized Ta-AgNPs are spherical in
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shape and uniformly distributed in the sample (Figure 8a,b), which aligns well with XRD
and UV-visible spectroscopy results. TEM images also showed the presence of dark caps
on the outer layer of nanoparticles which was due to the occurrence of tannin biomolecules
on the surface of synthesized Ta-AgNPs. The particle histogram suggested the maximum
NP size is in the range of 15 to 20 nm (Figure 8c), which increases its potential applicability
in various sectors. Similar types of observations were recorded in the silver nanoparticles
synthesized using Acacia nilotica leaf extract, jasmine flower extract, and aqueous extract of
Dracocephalum kotschyi Boiss, respectively [31,33–35].
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3.3. Biogenic Potential of Synthesized Ta-AgNPs

The biogenic potential of the green synthesized Ta-AgNPs was assessed by investigat-
ing their antidiabetic, antioxidant, and antibacterial activities.

3.3.1. Antidiabetic Potential

The green synthesized silver nanoparticles have been established as highly stable and
useful candidates for drug carriage because of their ultra-small size and unique physic-
ochemical properties [7]. The capability to fine-tune the surface charge of the nanopar-
ticle helps in targeting specific locations and the controlled release of drugs. α-amylase
and α-glucosidase are accountable for hydrolyzing oligosaccharides or polysaccharides
into α-D-glucose which are adsorbed by intestinal cells, leading to postprandial hyper-
glycemia [36]. This unusual higher sugar level is responsible for the occurrence of type
2 diabetes (T2DM) which is troublesome and not easy to control. Acarbose, voglibose,
and miglitol found clinically effective drugs to restrain or to treat T2DM by inhibiting the
carbohydrate degrading enzymes [37]. However, these drugs are costly and also show
adverse effects. To overcome this, there is a crucial requirement to establish effective NPs
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coated with natural products to control T2DM and sequential disorders. The synthesized
Ta-AgNPs showed effective inhibition for both α-amylase and α-glucosidase enzyme ac-
tivities in a dose dependent mode. The half-inhibitory concentration (IC50) of Ta-AgNPs,
extracted tannin and standard drug acarbose were determined and shown in Figure 9. The
IC50 value of Ta-AgNPs and acarbose for α-amylase and for α-glucosidase were 43.94 and
40.2 µg/mL and 48.5 and 40.0 µg/mL, respectively (Figure 9). Holoptelea integrifolia leaves
mediated AgNPs showed antidiabetic potential against α-amylase with significant 86.66%
inhibition in enzyme activity [38]. In this study, the authors have proposed that synthesized
AgNPs inhibit ATP-sensitive K+ channel mechanism in beta cells of the pancreas.
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3.3.2. Antioxidant Potential

Free radical generation is responsible for the existence of several pathological diseases,
for instance cancer, heart disease, diabetes, Alzheimer’s, hypertension, atherosclerosis, and
aging [8]. The bio-synthesized Ta-AgNPs demonstrated significant antioxidant perspectives
in terms of radical scavenging activities against stable free radical DPPH and ABTS and
are presented in Figure 9. Ta-AgNPs displayed promising DPPH and ABTS free radical-
scavenging activities in a concentration dependent mode. The standard catechol and
synthesized Ta-AgNPs for DPPH and ABTS showed IC50 values (44.4 and 43.8 µg/mL)
and (53.9 and 40.9 µg/mL), respectively (Figure 10). In both enzymes only extracted tannin
was found less effective and documented higher IC50 value (70.8 and 65.2 µg/mL) relative
to standard and Ta-AgNPs (Figure 10). In the case of grape seed and apple tannins, grape
seed tannins displayed significantly more antioxidant activity than apple tannins [39]. The
free-radical scavenging potential of biosynthesized nanoparticles and their application
for the cure of different pathological conditions have been studied in vitro by several
researchers [9,25,40]. The significant antidiabetic and antioxidant potential of Ta-AgNPs
due to the tannin molecules are involved during the synthesis and fabrication of NPs.
These molecules enhance the surface area of NPs, and their proper interaction leads to
significant antidiabetic and antioxidant activities.
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3.3.3. Antibacterial Potential

There has been emerging attention paid to exploring substitute approaches to devel-
oping novel antimicrobial agents since there is a continuous rise in multidrug resistant
bacteria due to excess antibiotics use, mutation, and environmental circumstances [6,41].
The smaller sized nanoparticles have a superior binding surface area relative to larger
NPs and show more potent antimicrobial activity. AgNPs found a potent antimicrobial
agent. The synthesized Ta-AgNPs exhibited potential antibacterial activity towards the
designated strains. The results are expressed as zone of the inhibition (ZOI) to define the
comparative antibacterial potential of Ta-AgNPs and the results have been presented in
Table 1. The obtained results revealed that the synthesized Ta-AgNPs executing significant
antibacterial activity and can be used in the development of antibacterial drugs. It was
supposed that Ta-AgNPs exhibited significant antibacterial effect, owing to its ability to
penetrate the membrane and interact with cellular components, mainly destruction of
respiratory enzymes, destruction of electron transport process, and DNA function, which
leads to growth inhibition. Still, additional research is essential to understand the exact
mechanisms of antibacterial activity by NPs. Disruption of membrane potential leads
to cytoplasmic leakage, which results in the release of proteins and lipopolysaccharide
molecules, and finally lysis of bacterial cells was observed [42]. AgNPs synthesized using
the leaf extract of Neurada procumbens showed noteworthy antimicrobial activity against
multidrug resistant Gram-negative pathogens Klebsiella pneumoniae, Acinetobacter baumannii
and Escherichia coli [43]. Moreover, Hashim et al. [11], Escárcega-González et al. [41], and
Kim et al. [44] also conveyed antibacterial activity of plant extract mediated AgNPs against
S. epidermidis, S. aureus, Listeria monocytogenes; E. coli, P. aeruginosa, P. aeruginosa, B. subtilis;
and E. coli, and S. aureus, respectively.
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Table 1. Assessment of antimicrobial activity of Ta-AgNPs against pathogenic microorganisms.

Zone of Inhibition (mm)

Pathogen
Ta-AgNPs

concentration
(20 µg/mL)

Positive control
(20 µg/mL)

Negative control
(20 µg/mL)

Antimicrobial
index (%)

Escherichia coli 14.2 ± 0.48 15.2 ± 0.52 4.85 ± 0.98 93.4 ± 2.05

Staphylococcus aureus 11.1 ± 0.82 13.7 ± 0.65 4.15 ± 0.68 81.0 ± 2.35
Positive control—Ampicillin; negative control—extracted tannin. NA—no activity. Values are mean ± standard
error of three replicates.

4. Conclusions

The fruit waste grape pomace extracted tannin was exploited for the synthesis of
Ta-AgNPs for the potent approach as more cost effective and non-toxic, as well as useful
in lessening the burden of grape pomace waste. Optimization of synthesis parameters
and their characterization using various standard analytical techniques was performed.
The results suggest the synthesized NPs are spherical, monodispersed and highly stable.
Tannin fabricated AgNPs showed significant antidiabetic potential by inhibiting the marker
carbohydrate hydrolyzing enzymes, namely α-amylase and α-glucosidase. Addition-
ally, Ta-AgNPs showed promising antioxidant potential and antibacterial activity against
pathogenic microorganisms. In consonance with all-inclusive results, Ta-AgNPs displayed
a wide array of biological solicitations and can be recognized as attractive, eco-friendly
material for its possible use in drug delivery, diabetes treatment, antibacterial activity, and
cancer therapy, without negative effects.
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