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Abstract: Due to growing environmental issues, research on carbon dioxide (CO2) use is widely
conducted and efforts are being made to produce useful materials from biomass-derived resources.
However, polymer materials developed by a combined strategy (i.e., both CO2-immobilized and
biomass-derived) are rare. In this study, we synthesized biomass-derived poly(carbonate-co-urethane)
(PCU) networks using CO2-immobilized furan carbonate diols (FCDs) via an ecofriendly method.
The synthesis of FCDs was performed by directly introducing CO2 into a biomass-derived 2,5-
bis(hydroxymethyl)furan. Using mechanochemical synthesis (ball-milling), the PCU networks were
effortlessly prepared from FCDs, erythritol, and diisocyanate, which were then hot-pressed into films.
The thermal and thermomechanical properties of the PCU networks were thoroughly characterized
by thermogravimetric analysis, differential scanning calorimetry, dynamic (thermal) mechanical
analysis, and using a rheometer. The self-healing and recyclable properties of the PCU films were
successfully demonstrated using dynamic covalent bonds. Interestingly, transcarbamoylation (ure-
thane exchange) occurred preferentially as opposed to transcarbonation (carbonate exchange). We
believe our approach presents an efficient means for producing sustainable polyurethane copolymers
using biomass-derived and CO2-immobilized diols.

Keywords: biomass; carbon dioxide; covalent adaptive network

1. Introduction

Due to global warming and environmental pollution, research on the use of carbon
dioxide (CO2) is broadly conducted alongside efforts to reduce carbon emissions via
CO2 capture and storage [1–5]. This relatively inert gas can be efficiently converted into
polymerizable platforms (monomers) and polymers, as well as many commodity chemicals
such as methanol, carboxylic acid, and dimethyl carbonate [6–8]. For example, 5 or 6-
membered cyclic carbonates, which can undergo ring-opening polymerizations, have
been prepared by ring-closing reactions of 1,2 or 1,3-diols (or their equivalents) with
CO2 [9–12], or by the cycloaddition of CO2 to ethylene oxide and other oxiranes [13–16].
Direct copolymerization methods (i.e., CO2 as a comonomer) have also been developed,
e.g., ring-opening copolymerization with oxirane monomer(s) [17–19], and step-growth
polymerizations with diols or dihalides [2,20]. However, synthesizing polymer or polymer
platforms from biomass-based materials by directly introducing CO2 is rare. Although
some biomass-derived oxiranes or aliphatic alcohols (diols) will be compatible with the
conversion reaction or direct copolymerization of CO2 [21,22], furan-based biomass-derived
monomers, such as 5-(hydroxymethyl)furfural (HMF) and 2,5-bis(hydroxymethyl)furan
(BHMF) have not been utilized in CO2 immobilization.

Biomass feedstocks are ecofriendly and sustainable alternative resources and include
forestry and crop residues, algae, municipal, and other organic wastes that can be used
directly as fuel or converted into other reusable forms [23–26]. For example, cellulosic
biomass can be converted into alcohols and acids, such as HMF, 2,5-furandicarboxylic
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acid, and isosorbide, from which various ecofriendly polymers can be synthesized [27–29].
Other lignocellulosic sugar alcohols, such as sorbitol, mannitol, xylitol, and erythritol,
are also potential fuels and chemicals that are widely used in ecofriendly polymers and
pharmaceutical applications [30–36]. We aimed to develop furan carbonate diols (FCDs)
by directly immobilizing CO2 into furan-based, biomass-derived diols such as BHMF
(Figure 1). These FCDs could then be further utilized to produce urethane-based network
polymers, i.e., poly(carbonate-co-urethane) (PCU) networks. To the best of our knowledge,
there are no prior reports on the production of network polyurethane copolymers using
biomass feedstock and CO2 simultaneously.
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Figure 1. Synthesis of ecofriendly CO2-immobilized poly(carbonate-co-urethane) (PCU) networks
and the preparation of the PCU films using a hot press.

Network polyurethanes (NPUs) are generally synthesized from a polyol as a network
structure and have many applications because of their good elastic properties, thermal
stability, and solvent resistance [37–40]. However, conventional NPUs are thermosets and
cannot be recycled. Interestingly, these NPUs (and other network polymers) can acquire
malleability and recyclability using covalent-bond (i.e., urethane) exchange reactions. Such
network polymers are broadly defined as covalent adaptable networks (CANs) and enabled
by dynamic covalent chemistry (DCC) such as transesterification, transcarbonation (carbon-
ate exchange), transcarbamoylation (urethane exchange), and silyl ether exchange [41–44].
Generally, CANs are known to operate through two types of mechanisms, i.e., dissociative
and associative processes [45,46]. Dissociative CANs can be depolymerized in thermal
equilibrium states and then repolymerized, which may result in the loss of their crosslink-
ing density and mechanical modulus. Conversely, associative CANs continuously maintain
their crosslinking density under thermal equilibrium during a dynamic bond exchange.
Research on the development of CANs using biomass-based monomers is actively being
conducted [47,48], providing reprocessable, recyclable, and self-healable polymer networks
through DCC [48–50]. However, cases of CANs using a biomass-based, CO2-immobilized
platform are rare.

In this study, we prepared biomass-derived urethane-based network polymers using a
FCD, a new platform derived from the direct immobilization of CO2 into BHMF [2,51–53].
The synthesized PCU network polymers were fabricated into films (Figure 1) and their
thermal and thermomechanical properties were thoroughly characterized. Using a model
compound study, we demonstrated that the thermally-induced reprocessing and self-
healing properties of the PCU films arose due to the dynamic covalent exchange of urethane
bonds, rather than carbonates. We believe our strategy using the simultaneous use of
biomass and CO2 will be useful for the development of sustainable polymer materials.
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2. Materials and Methods
2.1. Materials

All chemicals used in the experiments were purchased from commercial sources:
2,5-bis(hydroxymethyl)furan (Nanjing Sunshine Chemical Co., Ltd., Nanjing, China), 6-
Bromo-1-hexanol (TCI, Tokyo, Japan), 3-Bromo-1-propanol (Sigma Aldrich, St. Louis, MO,
USA), 1,4-Benzenedimethanol (TCI, Tokyo, Japan), tert-Butyl(chloro)diphenylsilane (Sigma
Aldrich, St. Louis, MO, USA), imidazole (Alfa Aesar, Ward Hill, MA, USA), erythritol
(TCI, Tokyo, Japan), hexamethylene diisocyanate (TCI, Tokyo, Japan), 4,4′-diisocyanato-
methylenedicyclohexane (TCI, Tokyo, Japan), cesium carbonate (TCI, Tokyo, Japan), tetra-
butylammonium fluoride (Alfa Aesar, Ward Hill, MA, USA), dibutyltin dilaurate (TCI,
Tokyo, Japan), ammonium chloride (Samchun Chemical, Seoul, Korea), sodium sulfate
(Samchun Chemical, Seoul, Korea), all solvents including dichloromethane, N-methyl-
2-pyrrolidone, tetrahydrofuran, ethyl acetate, dimethyl sulfoxide, dimethylformamide
(Samchun Chemical, Seoul, Korea) and deuterated solvents for nuclear magnetic resonance
(Cambridge Isotope Laboratories, Tewksbury, MA, USA).

2.2. Methods
2.2.1. Synthesis of Furan Carbonate Diols Protected with Tert-Butyldiphenylsilane
(FCD-Ps)

The weighed protectedω-hydroxy bromoalkane (TBDPSO-R1-Br; P1~3) (P1 185 mg;
P2 166 mg; P3 193 mg, 2.2 eq, 0.44 mmol) was transferred to an autoclave using a
dichloromethane (DCM), and the DCM was removed using a vacuum. The BHMF (26 mg,
0.20 mmol), cesium carbonate (Cs2CO3; 261 mg, 0.80 mmol), and N-methyl-2-pyrrolidone
(NMP; 0.50 mL) were consecutively added; the autoclave was then sealed and pressurized
with CO2 to 10 bar. The resulting reaction mixture was stirred at 100 ◦C for 24 h. After the
reaction, the autoclave was cooled to 25 ◦C and the CO2 was released. The product was
purified using silica gel flash column chromatography (10% ethyl acetate in hexanes) to
provide FCD-Ps as a colorless oil.

FCD-P1: R1 = hexylene. Yield 77 mg (43%). 1H NMR (500 MHz, DMSO-d6): δ (ppm):
7.60 (m, 8H), 7.43 (m, 12H), 6.54 (s, 2H), 5.08 (s, 4H), 4.05 (t, J = 6.35 Hz, 4H), 3.62 (t,
J = 6.35 Hz, 4H), 1.56 (m, 8H), 1.34 (m, 8H) 0.98 (s, 18H). 13C NMR (125 MHz, DMSO-d6): δ
(ppm): 154.70, 150.20, 135.47, 133.80, 130.23, 128.31, 112.63, 68.22, 63.73, 61.11, 32.25, 31.17,
28.49, 27.13, 25.27, 19.23.

FCD-P2: R1 = propylene. Yield 86 mg (53%). 1H NMR (500 MHz, DMSO-d6): δ (ppm):
7.59 (m, 8H), 7.42 (m, 12H), 6.56 (s, 2H), 5.09 (s, 4H), 4.24 (t, J = 6.15 Hz, 4H), 3.69 (t,
J = 5.95 Hz, 4H), 1.85 (t, J = 6.05 Hz, 4H), 0.97 (s, 18H). 13C NMR (125 MHz, DMSO-d6):
δ (ppm): 154.63, 150.16, 135.43, 133.44, 130.31, 128.34, 112.72, 65.13, 61.17, 60.19, 31.38,
27.04, 19.21.

FCD-P3: R1 = p-xylylene. Yield 14 mg (8%). 1H NMR (500 MHz, DMSO-d6): δ (ppm):
7.64 (m, 8H), 7.45 (m, 12H), 7.36 (s, 8H), 6.57 (s, 2H), 5.15 (s, 4H), 5.13 (s, 4H), 4.77, (s, 4H),
1.03 (s, 18H). 13C NMR (125 MHz, DMSO-d6): δ (ppm): 154.57, 150.13, 141.34, 135.46, 134.47,
133.29, 130.42, 128.79, 128.43, 126.36, 112.78, 69.53, 65.26, 61.38, 27.11, 19.33.

2.2.2. Synthesis of the Furan Carbonate Diols (FCDs)

To a solution of FCD-P (0.074 mmol) in anhydrous THF (0.80 mL), tetrabutylammo-
nium fluoride (TBAF; 1.0 M in THF, 0.16 mL, 0.16 mmol) was added at room temperature
under N2. The mixture was stirred for 3 h at room temperature, quenched with a saturated
aqueous ammonium chloride solution, and extracted with ethyl acetate (EtOAc × 3). The
combined organic layers were dried over anhydrous sodium sulfate, filtered, and concen-
trated in vacuo. The residue was purified by flash silica gel column chromatography (3:1
hexanes/EtOAc) to afford FCD as a colorless oil.

FCD-1: R1 = hexylene. Yield 29 mg (95%). 1H NMR (500 MHz, DMSO-d6): δ (ppm):
6.55 (s, 2H), 5.09 (s, 4H), 4.34 (t, J = 5.05 Hz, 2H), 4.08 (m, 4H), 3.37 (m, 4H), 1.58 (m, 4H),
1.40 (m, 4H), 1.29 (m, 8H). 13C NMR (125 MHz, DMSO-d6): δ (ppm): 154.24, 149.72, 112.17,
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67.83, 60.65, 32.34, 28.11, 25.08, 24.70. FTIR (cm−1): 3379 (O–H stretching vibration), 1745
(C=O stretching vibration), 1248 (C–O–C stretching vibration).

FCD-3: R1 = p-xylylene. Yield 5 mg (15%). 1H NMR (500 MHz, DMSO-d6): δ (ppm):
7.38 (m, 4H), 7.32 (m, 4H), 6.56 (s, 2H), 5.21 (t, J = 5.75 Hz, 2H), 5.13 (m, 10H), 4.50 (d,
J = 5.5 Hz, 2H). 13C NMR (125 MHz, DMSO-d6): δ (ppm): 154.52, 150.11, 136.01, 128.76,
128.60, 126.94, 112.81, 69.28, 63.04, 61.42. FTIR (cm−1): 3330 (O–H stretching vibration),
1743 (C=O stretching vibration), 1236 (C–O–C stretching vibration).

2.2.3. Synthesis of the Poly(Carbonate-co-Urethane) Networks (PCUs) via Ball-Milling

FCD-1 (416 mg, 1.0 mmol) or FCD-3 (456 mg, 1.0 mmol), erythritol (122 mg, 1.0 mmol),
hexamethylene diisocyanate (HDI; 504 mg, 3.0 mmol) or 4,4′-diisocyanato- methylenedicy-
clohexane (HMDI; 787 mg, 3.0 mmol), and dibutyltin dilaurate (DBTDL; 1.0 mol%) were
added in a 25 mL stainless steel vessel with two stainless steel balls (diameter, 15 mm
each). The mixture was mounted on a mixer and vibrated at 20 Hz for 60 min. The product
obtained was a yellow solid. FTIR (cm−1): 3344 (N–H stretching vibration), 2262 (N=C=O
stretching vibration), 1725 (C=O stretching vibration), 1246 (NH–C=O stretching vibration).

2.2.4. Fabrication of the PCU Films

The synthesized PCU was dispersed in dimethyl sulfoxide (DMSO) at a concentration
of 10 wt%. The solution was transferred to a polyteterafluoroethylene (PTFE) Teflon mold
(30 × 30 mm, 10 mm thickness), and the solvent was dried in an oven at 70 ◦C for 12 h. The
dried sample was transferred to a stainless steel plate (12 × 12 mm, 0.8 mm thickness) and
hot-pressed at 120 ◦C for 6 h. FTIR (cm−1): 3344 (N–H stretching vibration), 1725 (C=O
stretching vibration), 1246 (NH–C=O stretching vibration).

2.3. Measurements

A 1A Retsch Mixer Mill MM 400 system (Haan, Germany) was used for the ball-milling
experiments with a 25 mL stainless steel vessel and two stainless steel balls with a diameter
of 15 mm each. The autoclave experiments employing a 50 mL stainless steel vessel were
used as a system for applying pressure. Proton (1H) NMR spectra were recorded using
a Bruker 500 MHz spectrometer (MA, USA). Carbon (13C) NMR spectra were recorded
using a 125 MHz spectrometer with complete proton decoupling. The chemical shifts were
reported in ppm (δ) with TMS as the internal standard; the coupling constants (J) were
expressed in Hz. Column chromatography was carried out using a 100–200-mesh silica gel.
Thin-layer chromatography analysis was performed on precoated silica gel 60 F254 slides
(Merck, Darmstadt, Germany) and visualized by ultraviolet irradiation. Fourier transform
infrared (FTIR) spectra were obtained using a spectrometer (Vertex70, Bruker Optics, MA,
USA) equipped with a diamond attenuated total reflectance unit. The decomposition
temperature (Td) of the polymer was determined by thermogravimetric analysis (TGA)
using a Seiko Exstar 6000 (TG/DTA6100, Chiba, Japan). The measurements were carried
out from 0 ◦C to 800 ◦C at a heating rate of 10 ◦C ·min−1 under a flow of 100% nitrogen
(N2). Differential scanning calorimetry (DSC) of the network powder was conducted using
a DSC 7020 (Hitachi High-Tech, Tokyo, Japan) in temperatures ranging from −30 ◦C to
185 ◦C, 185 ◦C to −30 ◦C, and −30 ◦C to 185 ◦C with a heating/cooling rate of 5 ◦C·min−1.
The thermomechanical properties of films were characterized by dynamic mechanical
analysis (DMA), which was carried out using a Seiko Exstar 6000 (DMA/SS6100, tension
film mode). The temperature range was between −20 ◦C and 180 ◦C. The heating rate was
3 ◦C·min−1 at a 1 Hz frequency. Rheological measurements of films were carried out using
the 25-mm-diameter parallel plates of a modular compact rheometer (MCR 302e, Anton
Paar, Graz, Austria). Stress–relaxation experiments were performed over a temperature
range of 140 ◦C to 160 ◦C at a 3% strain, and the relaxation modulus was monitored as
a function of time. A constant normal force of 5 N was applied to ensure good contact
with the plate. Samples were held at the measurement temperature for 10 min at regular
intervals. Tensile analyses were conducted at a tensile rate of 3 mm·min−1 using a universal
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testing machine (UTM) (34SC-05, Instron, Norwood, MA, USA). The UTM samples were
prepared on a stainless steel plate (5 × 50 mm, 0.8 mm thickness) in a hot press at 120 ◦C
for 6 h. Thermomechanical Analysis (TMA) (TMA6100, Chiba, Japan) was measured at
3 ◦C·min−1 from −35 ◦C to 200 ◦C for additional healing properties measurement. TMA
samples (3 × 20 mm, 0.8 mm thickness) were prepared in the same way as UTM.

3. Results
Synthesis of CO2-Immobilized Platform FCDs

The biomass-derived, CO2-immobilized platform FCDs were synthesized from biomass-
derived diol BHMF via carbonation followed by a one-pot substitution reaction with a pro-
tectedω-hydroxy bromoalkane of three different moieties. The protectedω-hydroxy bro-
moalkanes (TBDPSO-R1-Br, P1~3) were prepared from an α,ω-dihydroxy alkane via bromi-
nation and silyl ether formation, or silyl ether protection on a ω-hydroxy-α-bromoalkane
(Table S1). When CO2 was pressurized (10 bar) in an autoclave reactor containing BHMF
and TBDPSO-R1-Br in the presence of a base, CO2 was successfully immobilized to BHMF
with moderate yields (Scheme 1 and Table 1).
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Table 1. Optimizing conditions for the synthesis of CO2-immobilized carbonate diol FCD-Ps 1.

Entry R1 Base Temp. Yield 2

1 hexylene (2 eq) DBU 80 ◦C No reaction
2 hexylene (2 eq) K2CO3 80 ◦C 20% 3

3 hexylene (2 eq) Cs2CO3 80 ◦C 17%
4 hexylene (2.2 eq) Cs2CO3 80 ◦C 25% (29% 4)
5 hexylene (2.2 eq) Cs2CO3 100 ◦C 43%
6 propylene (2.2 eq) Cs2CO3 100 ◦C 53%
7 p-xylylene (2.2 eq) Cs2CO3 100 ◦C 8%

1 Reaction and condition: BHMF (0.2 mmol), base (4.0 eq), NMP (0.4 M) using an autoclave under 10 bar CO2.
2 Isolated yield. 3 NMR yield. 4 48 h reaction.

We set out to optimize the synthetic conditions for the direct introduction of CO2
using hexylene bromide P1 by screening bases using 8-diazabicyclo(5.4.0)undec-7-ene
(DBU), potassium carbonate (K2CO3), and Cs2CO3 (Table 1 entries 1–3). The reaction did
not proceed with DBU and the starting materials remained mostly (entry 1). Only 20%
conversion was observed in the 1H-NMR analysis in the case of K2CO3 (entry 2). The
reaction conversion with respect to BHMF was significantly higher (90%) when Cs2CO3 was
used; however, the isolated yield was only 17% (entry 3). The isolated yield was marginally
improved by increasing the equivalent bromide (entry 4) or lengthening the reaction time
from 24 to 48 h (entry 4). For a higher yield, the reaction temperature was increased
to 100 ◦C, resulting in a moderate yield of 43% at 24 h (entry 5). Other bromoalkanes
(propylene P2 and xylylene P3) were also subjected to the optimized conditions, and the
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corresponding protected carbonate diols (FCD-Ps) were obtained in isolated yields of
53% and 8%, respectively (entries 6 and 7). The yield in the case of p-xylylene bromide
P3 was unsatisfactory, and it appeared that benzylic bromides were not compatible with
nucleophilic substitution by the carbonate intermediate, resulting from CO2 addition to
the cesium alkoxide [54], or because unknown side reactions occurred.

The target FCDs were obtained through deprotection of FCD-Ps using TBAF (Scheme S1);
however, only FCD-1 and FCD-3 were successfully isolated in yields up to 95%. In the
case of FCD-2, which had a propylene group, it was confirmed by 1H-NMR that a cyclic
reaction occurred during deprotection, and propylene carbonate was produced as a by-
product. Although the overall yields were only moderate, it should be noted that an
ecofriendly polymer platform was successfully prepared by directly introducing CO2 into
a biomass-derived diol.

With FCDs at hand, the synthesis of biomass-derived PCU networks was attempted
via a facile, ecofriendly mechanochemical method. Following the optimized conditions
described elsewhere [52], a mixture including FCD, mesoerythritol, and diisocyanate (HDI
or HMDI) was subjected to vibration ball-milling (20 Hz, 60 min) and subsequently hot-
pressed (120 ◦C, 6 h, 30 MPa) to form urethane-bond networks (PCUs, Figure 1 and Table 2).
The starting mixture comprised a ratio of diol:polyol(tetra-ol):diisocyanate = 1:1:3, which
corresponded to the stoichiometric balance of [OH] and [NCO]. As shown in the PCU-1M
spectra in the FTIR measurements (Figure 2a), immediately after the initial ball-milling,
the portions of NCO moieties remained, suggesting that the reaction did not proceed
completely, presumably because of an insufficient encountering of functional groups in
the solid-state conditions. The NCO peak did not disappear, even when the ball-milling
reaction was carried out for 2 h or more. These remainders became additional reaction
sites during the hot-pressing. In fact, in the FTIR spectra, the stretching vibration of the
NCO peak at 2262 cm−1 disappeared completely in the PCU-1M film, and the sharp peaks
at 1725 and 1246 cm−1 were observed as emanating from the stretching vibrations of the
urethane bond, C=O, and N–H, respectively. Additionally, the broad peaks at 3344 cm−1

were shown by N–H stretching vibrations. The stretching vibrations of C=O in the FTIR
spectra of urethane polymers can form two peaks: the free C=O and the hydrogen bonded
C=O. Since the hydrogen bonding to C=O may weaken the double bond character, the peak
for C=O stretching can shift to a lower wavenumber than that of free C=O [55]. When the
FTIR spectra of PCU-1M prepolymer and hot-pressed film in the range of wavenumbers
1600–1800 cm−1 were enlarged (Figure 2a), two peaks of C=O stretching were clearly
presented. It can be assigned that the free C=O appears at 1742 cm−1 and the hydrogen
bonded C=O appears at 1700 cm−1. Interestingly, the portions of the hydrogen bonded
C=O appeared to increase in the hot-pressed film, which can be attributed to the fact that
under hot pressing conditions, more urethane bonds are formed and polymer chains can
be rearranged for more hydrogen bonding. Other PCU and PCU films also showed similar
patterns to PCU-1M as a result of FTIR measurements (Figure S1).

Table 2. Physical properties of synthesized PCUs as different types of alcohol and isocyanate chains 1.

Entry Alcohol (R1) Isocyanate (R2) Tg
2 (◦C) Tg

3 (◦C) Td5%
4 (◦C) Tdmax

5 (◦C) tan δ E′ 6 (MPa) Tv
7 (◦C)

PCU-1H FCD-1 HDI (H) 38 12 210 490 0.35 4.2 104
PCU 1M FCD-1 HMDI (M) 68 67 222 490 0.70 2.4 72
PCU-3H FCD-3 HDI (H) 46 14 190 490 0.52 122 118
PCU-3M FCD-3 HMDI (M) 60 69 220 490 0.60 0.54 65

1 Conditions: alcohol (FCD-1 or FCD-3, 1.0 eq), erythritol (1.0 eq), isocyanate (HDI or HMDI, 3.0 eq), DBTDL (1.0 mol%) using ball-milling
20 Hz for 60 min. 2 Defined as the temperature of the maximum in tan δ. 3 Determined by DSC for the first cooling range from 185 ◦C
to −30 ◦C at a heating rate of 5 ◦C·min−1. 4 Determined by the 5% weight-loss temperature from TGA. 5 Determined by the maximum
temperature for fully degradation from TGA. 6 Determined by the rubbery plateau region in DMA curves. 7 Calculated using the Maxwell
model and Arrhenius equation.
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Figure 2. (a) Fourier transform infrared analysis of the PCU-1M prepolymer powder and the hot-
pressed film, showing the complete conversion of the starting materials; (b) The TGA curves of films;
(c) The DTG curves of the PCU films; (d) The DSC curves of the PCU films and the corresponding
Tgs; (e) Photographs of the PCU films after the hot-pressing process.

We observed the swelling behavior of PCUs for up to 72 h in common laboratory
solvents such as DMF, DMSO, and toluene (Figure S2). We observed that the swelling
ratios of PCUs were very little in toluene (a few %), but relatively large in DMF and DMSO
(up to 210%). Interestingly, hexylene-based PCU-1s showed the larger swelling ratios than
p-xylylene-based PCU-3s; FCD moieties in PCUs seem to have more effect on swellings
that diisocyanate parts. In addition, the dry weight after 72 h of swelling were measured,
giving rise to a soluble fraction (ƒsoluble). In fact, we observed the ƒsoluble of 2~41% of PCUs,
which may suggest the portions of the incompletely crosslinked moieties. However, most
of the masses (59~98%) appeared to remain after the swelling, which indicates that PCUs
mostly have a good crosslinking network.

The film-production conditions were optimized through several trials to produce
uniform films, thereby ensuring that all the starting materials were converted through
the hot-press conditions (Figure 2e). As described above, the reaction did not proceed
completely in the prepolymer state. The first step was to prepare a homogeneous state;
the synthesized pre-PCU powder was dissolved in DMSO (10 wt%). The mixture was
then transferred to a PTFE Teflon mold (30 × 30 mm) and dried in an oven (70 ◦C) for
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12 h. The fabricated prefilm was placed in a stainless steel mold (30 × 5 mm, 0.8 mm
thickness) and pressed for 6 h at 120 ◦C under a pressure of 30 MPa. Since pre-PCU
powders synthesized with HMDI (PCU-Ms) were mixed homogeneously, the resulting
films were also uniform during the hot press. However, pre-PCU powders made from
HDI (PCU-Hs) did not dissolve or disperse well in the solution, and as a result, the film
formation had to be performed in a rather heterogeneous state. Accordingly, slightly
incongruent films were produced, presumably because the heat was not evenly distributed
during the film formation.

Thermal properties of the CO2-immobilized, biomass-based PCU network polymers
were tested through TGA and DSC (Figure 2b–d). For the TGA measurements, the samples
were heated under an N2 atmosphere at 10 ◦C·min−1, and the Td5% was defined at the
point where the 5% weight loss occurred. As shown in Figure 2b, the Td5%s were in the
range of 190 ◦C–222 ◦C, and the pattern of weight loss appeared to be very similar for
all the PCUs. We attributed the initial weight loss of 15%–20% at approximately 200 ◦C
to the decomposition of the bis(oxymethyl)furan moiety, which had the lowest thermal
stability [51]. Next, the second loss at nearly 230 ◦C means the carbamate and carbonate
decompositions. The weight loss after 400 ◦C can be attributed to the thermal reduction
of the diisocyanate parts (Figure 2c). Furthermore, the shapes of the TGA profiles were
dependent on the structure of the diisocyanate moieties; HMDI-based PCU-Ms showed
slightly higher thermal stability compared with HDI-based PCU-Hs.

The glass transition temperature (Tg) of the PCU networks was measured during
the first cooling range from 185 ◦C to −30 ◦C at a rate of 5 ◦C·min−1 (Figure 2d). The
HDI-based PCUs, such as PCU-1H and PCU-3H, showed lower Tgs (12 ◦C and 14 ◦C,
respectively) compared with the HDMI-based PCUs, e.g., PCU-1M and PCU-3M (67 ◦C
and 69 ◦C). The bis(cyclohexyl) segments in HMDI appeared rather torsionally rigid and
there was reduced rotational freedom in the main chain, thereby increasing the Tg [56].
However, despite torsional rigidity, PCU-Ms produced a more homogeneous state under
hot-press conditions compared with PCU-Hs (see above), resulting in films that were
mechanically more intact.

Thermomechanical properties were investigated using films from CO2-immobilized
biomass-based PCU networks, which revealed their malleable and self-healing properties
(Table 2 and Figure 3). The PCUs were fabricated into a 30 × 5 mm film (0.8 mm thickness)
and characterized by DMA with the tension mode (heating rate 3 ◦C·min−1, 1% strain, and
1 Hz vibration) (Figure 3a). As the temperature increased from−20 ◦C to 180 ◦C, the tensile
storage modulus (E′) of PCU-1H and PCU-1M was initially maintained at 4.2 and 827 MPa,
respectively, until it began decreasing at ~38 ◦C and 68 ◦C, respectively. Here, Tg was
estimated to be the peak in tan δ (loss modulus E”/storage modulus E′). The difference in
the Tg of PCU-1s was attributed to the difference in the isocyanate moieties; the PCU based
on the torsionally rigid HMDI showed a higher Tg, which was consistent with the trends
indicated by the DSC measurements above. Similarly, this trend was observed in PCU-3H
and PCU-3M (46 ◦C and 60 ◦C, respectively). Interestingly, the initial E′ seems to depend
largely on the FCD components; the aromatic group-containing FCD-3 resulted in higher
E′ values (2.5 and 1.5 GPa for PCU-3H and PCU-3M, respectively) compared with linear
alkyl FCD-1 (0.38 and 0.83 GPa for PCU-1H and PCU-1M, respectively). Furthermore,
HMDI-based PCU-Ms showed larger drops in E′ at above their Tg than HDI-based PCU-Hs
(up to 2500 vs. 820 MPa). We suspected that in the flexible and elongated states above the
Tg, the interchain interactions arising from the linear alkyl groups in PCU-Hs tended to be
stronger than those from the bis(cyclohexyl) groups in PCU-Ms.
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Figure 3. Thermomechanical properties of PCU films. (a) Tensile storage modulus and dissipation
factor tan δ, measured using DMA from −20 ◦C to 180 ◦C under an N2 atmosphere at a heating
rate of 3 ◦C·min−1. (b) Normalized stress–relaxation curves as a function of time for three different
isothermal temperatures from 140 ◦C to 160 ◦C. (c) Fitting of the relaxation times (τ) to the Arrhenius
equation (see Supplementary Materials). (d) Tensile stress-strain curves before and after healing
measured by UTM using the PCU-1M film. (e) Photographs showing thermal reparing of the cutted
film of PCU-1M (120 ◦C, 3 h).

After a decrease in the E′, the E′ of HDMI-based PCU films (PCU-1M and PCU-3M
film) maintained a rubbery plateau at above ~140 ◦C. These plateaus suggested that the
crosslinking density had been well-maintained and that the urethane (or carbonate) bond
exchange may also have occurred as the temperature increased. Conversely, the E′ of HDI-
based PCU films (PCU-1H and PCU-3H film) showed a tendency to decrease at 150 ◦C
or higher; accordingly, it was inferred that the crosslinking density may have decreased.
We suspect that the decrease in E′ of the PCU-Hs at extremely elevated temperatures had
partly been due to the mechanically less-intact state of the HDI-based PCU films.

Stress–relaxation analyses were conducted to derive the dynamic covalent characteris-
tics of the PCU networks. The sample sizes were 5 × 5 mm (0.8 mm thickness), and the
shear storage modulus (G′) was monitored from 140 ◦C to 160 ◦C (10 ◦C intervals) while
applying 3% strain and a constant normal force of 5 N as a function of time (Figure 3b). The
normalized shear storage modulus [G(t)/G(0)] was plotted as a function of the relaxation
time (t), and the representative stress–relaxation profiles for the rest of the PCU films
are shown in Figure S3 and Table S2. According to the Maxwell relationship [G(t)/G0 =
exp(−t/τ*)], the characteristic relaxation time (τ*) can be regarded as the time when the
normalized modulus becomes a value of 1/e (≈0.37) [57–59]. When examining τ* at each
temperature (T), these may exhibit Arrhenius behavior, a characteristic of typical associa-
tive CANs or vitrimers. By fitting ln τ* vs. 1000/T according to the Arrhenius equation, the
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kinetic activation energy (Ea) can be obtained from the slopes of linear equation (Figure 3c).
Using the relationship of viscosity (η) and τ*, topology freezing transition temperature (Tv)
was also calculated by the slope of the trend line. The Tv is a key transition temperature in
CANs (refer to the calculation procedure of the Supplementary Materials). At the Tv, the
polymer network changes from a vitrified state to a deformable solid by a covalent-bond
exchange reaction.

It seemed that the Tv of the PCU networks was largely determined by the diisocyanate
moieties. The Tvs of HDI-based PCU-Hs were much higher (104 ◦C–118 ◦C) than those of
HMDI-based PCU-Ms (65 ◦C–72 ◦C). The difference in Tvs appeared unclear because the
same exchange reactions should have occurred in all PCUs; however, we suspect that the
less-strong interchain interactions in PCU-Ms may have allowed for the faster exchange
reactions. It should be noted that the dynamic bond exchange reactions in PCUs were
clearly demonstrated by the rubbery plateaus in DMA and by the temperature-dependent
stress–relaxation. Furthermore, it was shown that the thermomechanical properties of
PCUs could be tuned via the choice of molecular structures in diol or diisocyanate moieties.

Based on the dynamic bond exchanges in PCUs, the self-healing properties of PCU-1M
films were investigated through tensile testing using a UTM (Figure 3d,e). The PCU-1M
film before healing was flexible and reflected a strain capacity of above 100% and tensile
strength of 0.71 MPa. A portion of the PCU-1M film was cut and cured at 120 ◦C for 3 h
to obtain a fully cured film (Figure 3e). This cured film showed a healing efficiency of
approximately 60% (a recovered tensile strength of 0.43 MPa). In addition, performance
measurement before and after healing was additionally measured using TMA, showing
the original thermomechanical property was restored (Figure S4).

Although a dynamic bond exchange reaction was demonstrated in PCUs, it is not clear
whether transcarbamoylation (i.e., urethane exchange) or transcarbonation (i.e., carbonate
exchange) occurred, or whether both reactions occurred simultaneously. To investigate
which reaction occurred predominantly, we investigated the reactivity of the exchange
reactions through a model-compound study using gas chromatography (GC) analysis
(Figure 4). For the model exchange reactions, phenyl and toluene-functionalized carba-
mates (U1-4) and carbonates (C1-4) were synthesized with hexyl and propyl groups (each
in 2 × 2 = 4 combinations). The exchange reactions were performed by combining model
molecules in the presence of DBTDL at 120 ◦C. The reaction conditions were the same for
the PCU synthesis, except that the reaction was performed in acetonitrile (ACN, ~33 mM).
First, to check the exchange reactivity between carbonates, C1 and C2 were combined and
the reaction proceeded for 12 h, resulting in no change in GC profiles (Figure 4a). When C1
and U2 were mixed and tested for the reactivity between carbonate and carbamate, the start-
ing materials remained after the reaction and no product was found (Figure 4b). However,
when carbamates U1 and U2 were combined, the reaction proceeded, and it was confirmed
that the exchange products, U3 and U4, had been generated (Figure 4c). Therefore, evidence
showed that the exchange reaction may occur only between carbamates (urethanes) in PCU
networks, and could be responsible for the covalent adaptive characteristics.
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between carbamates (U1 + U2), and the appearance of new carbamates (U3 and U4).

4. Conclusions

In summary, a new CO2 utilization strategy was suggested, and FCDs were suc-
cessfully synthesized by introducing CO2 directly into a biomass-derived diol BHMF.
Using FCDs, PCU networks were prepared with erythritol and diisocyanate in a ratio of
[OH]:[NCO] = 1:1 via facile ball-milling. The thermal and thermomechanical properties of
PCUs were thoroughly investigated using TGA, DMA, and rheometry, and revealed the
characteristics in the form of a CAN. It was shown that the molecular structures of FCDs
(hexylene or p-xylylene) and diisocyantes (hexylene or (bis)cyclohexyl) affected the glass
transition temperature, topology freezing temperature, and the rubbery storage modulus
E′. In addition, the malleable, recyclable, and healable properties of the biomass-derived,
CO2-immobilized PCUs were demonstrated, which arose due to the dynamic bond ex-
change reactions. It was confirmed via a model compound study that the bond exchanges
occurred mainly between carbamates (not carbonates) under the specific reaction condi-
tions. We believe our strategy presents an efficient approach for using biomass and CO2
simultaneously, and for producing sustainable polyurethanes and other copolymers.
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