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Abstract: Injection molding is a popular process for the mass production of polymer products, but
due to the characteristics of the injection process, there are many factors that will affect the product
quality during the long fabrication processes. In this study, an adaptive adjustment system was
developed by C++ programming to adjust the V/P switchover point and injection speed during
the injection molding process in order to minimize the variation of the product weight. Based on
a series of preliminary experiments, it was found that the viscosity index and peak pressure had a
strong correlation with the weight of the injection-molded parts. Therefore, the viscosity index and
peak pressure are used to guide the adjustment in the presented control system, and only one nozzle
pressure sensor is used in the system. The results of the preliminary experiments indicate that the
reduction of the packing time and setting enough clamping force can decrease the variation of the
injected weight without turning on the adaptive control system; meanwhile, the master pressure
curve obtained from the preliminary experiment was used as the control target of the system. With
this system, the variation of the product weight and coefficient of variation (CV) of the product
weight can be decreased to 0.21 and 0.05%, respectively.

Keywords: injection molding process; pressure curve; peak pressure; viscosity index; V/P switchover
point; adaptively adjustment system

1. Introduction

Malinowski [1] mentioned that, during processing, decreasing uncertainty related
to product quality was a very important issue for injection molding processing, with
environmental factors, plastic flow resistance, material changes, and human factors being
considered to be causes of such an uncertainty (shown in Figure 1).

The injection molding process can be divided into seven stages: plasticization, clamp-
ing, injection, packing, cooling, demolding and ejecting. Injection and packing are the
stages that have been suggested to have the greatest effects on product quality. Kazmer
et al. [2] mentioned that changes in the screw position and injection pressure were condi-
tions that could decrease product quality uncertainty. Excluding the switchover position,
injection speed is also an important processing parameter for injection molding machines.
In the case of polymer materials, the P–V–T (Pressure-Specific Volume–Temperature) rela-
tionship is very important because there is a strong relationship between pressure, volume,
and temperature, and the specific volume affects the product weight significantly. Using
the relationship between pressure and temperature to maintain a specific volume can lead
to a constant product weight.
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Figure 1. Factors affecting the product weight in the injection molding process [1]. 

Michaeli and Schreiber [3] used feedback cavity pressure data and the P–V–T rela-
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methods to control injection molding machines; for instance, Chen et al. [4] and Chen et 
al. [5] have found that the clamping force has a strong relationship with the product 
weight, then use the clamping as a criterion to adjust the switchover position; addition-
ally, Huang [6] also use the cavity pressure to adjust a better switchover position, and they 
use the grey prediction to predict the cavity pressure; Chen and Turng [7] use the mold 
separation and part weight as a criterion for adjusting the parameter. 

For a thin plastic product, the injection speed plays a big part, and it can influence 
the product quality a lot. Pandelidis et al. [8] and Yang et al. [9] have mentioned that they 
tuned the injection speed by controlling the servo valve, before maintaining the thin plas-
tic product’s quality. Tracking the master curve is a very important method for injection 
molding; Agrawal et al. [10] built a master curve that was based on the cavity pressure 
curve in order to maintain the injection speed; then, Zhang et al. [11] used the prediction 
model of the warpage to control the injection parameter, furthermore maintaining the 
warpage of the product; following this, Dubay [12] also stabilized the product quality by 
setting an ideal quality curve as the control benchmark of the predictive control model.  

In this study, the pressure curve is an important basis for judging the product weight. 
Schiffers [13] used the viscosity index (VI) to describe the pressure curve and used it as an 
indicator of product quality as well as to determine the best switchover position. 

Chen et al. [14] developed an adaptive system and used a nozzle pressure sensor to 
measure and monitor polymer pressure. Nozzle pressure data was also used to calculate 
the viscosity index. In the experiment, Chen found that the viscosity index had a signifi-
cant relationship with the product weight, where this relationship could be controlled by 
the switchover position. 

Tsai [15] developed an adaptive system that was dependent on a neural network pre-
diction system and used the injection speed, switchover position, and cavity temperature 
through the neural network system to predict the pressure curve characteristics. With this 
system, the variations of the product weight were decreased to 0.14%, and it was proven 
that the injection speed is an important parameter for the injection process. 

In this study, the viscosity index and peak pressure are used to guide the adjustment 
in the presented control system, and only one nozzle pressure sensor is used in the system. 
The sensor was placed on the side of the nozzle. The adaptive adjustment control system 
stabilized the pressure curve and, in turn, stabilized the product weight. 
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Michaeli and Schreiber [3] used feedback cavity pressure data and the P–V–T rela-
tionship of a polymer to control the product quality cycle by cycle. There have been many
methods to control injection molding machines; for instance, Chen et al. [4] and Chen
et al. [5] have found that the clamping force has a strong relationship with the product
weight, then use the clamping as a criterion to adjust the switchover position; additionally,
Huang [6] also use the cavity pressure to adjust a better switchover position, and they
use the grey prediction to predict the cavity pressure; Chen and Turng [7] use the mold
separation and part weight as a criterion for adjusting the parameter.

For a thin plastic product, the injection speed plays a big part, and it can influence
the product quality a lot. Pandelidis et al. [8] and Yang et al. [9] have mentioned that they
tuned the injection speed by controlling the servo valve, before maintaining the thin plastic
product’s quality. Tracking the master curve is a very important method for injection
molding; Agrawal et al. [10] built a master curve that was based on the cavity pressure
curve in order to maintain the injection speed; then, Zhang et al. [11] used the prediction
model of the warpage to control the injection parameter, furthermore maintaining the
warpage of the product; following this, Dubay [12] also stabilized the product quality by
setting an ideal quality curve as the control benchmark of the predictive control model.

In this study, the pressure curve is an important basis for judging the product weight.
Schiffers [13] used the viscosity index (VI) to describe the pressure curve and used it as an
indicator of product quality as well as to determine the best switchover position.

Chen et al. [14] developed an adaptive system and used a nozzle pressure sensor to
measure and monitor polymer pressure. Nozzle pressure data was also used to calculate
the viscosity index. In the experiment, Chen found that the viscosity index had a significant
relationship with the product weight, where this relationship could be controlled by the
switchover position.

Tsai [15] developed an adaptive system that was dependent on a neural network
prediction system and used the injection speed, switchover position, and cavity temperature
through the neural network system to predict the pressure curve characteristics. With this
system, the variations of the product weight were decreased to 0.14%, and it was proven
that the injection speed is an important parameter for the injection process.

In this study, the viscosity index and peak pressure are used to guide the adjustment
in the presented control system, and only one nozzle pressure sensor is used in the system.
The sensor was placed on the side of the nozzle. The adaptive adjustment control system
stabilized the pressure curve and, in turn, stabilized the product weight.
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2. Methods and Experiment
2.1. Injection Molding Process

The process cycle is divided into the following stages, shown in Figure 2:

• 1–2: After closing the mold, the screw moves forward to allow the plastic to fill
the cavity.

• 2–3: The screw remains stationary under pressure, and the cooling function begins.
• 3–4: The screw moves back to the initial position to allow the material to fill for the

next cycle.
• 4–5: The screw remains in a stationary position to wait for the next mold and stops cooling.
• 5–1: After the mold opens, the product is ejected.
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2.2. P–V–T Relationship

In this study, polypropylene was used as the experimental material. The P–V–T
(Pressure-Specific Volume–Temperature) properties of polymers are important for both
engineering and polymer physics. At a constant pressure, the specific volume is directly pro-
portional to the melt temperature. Figure 3 presents the P–V–T relationship of polypropy-
lene. This is why determining how to effectively control the injection speed and switchover
position in order to stabilize the pressure curve is a very important issue for the injection
molding process.
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In this study, the viscosity index and peak pressure comprised the adjust criteria for 
the system. Figure 4 shows that a pressure curve with a higher peak pressure and larger 
area will indicate a greater product weight; otherwise, the product weight will be lighter. 
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2.3. Peak Pressure and Viscosity Index

During the injection process, even when the material is the same, the product quality
will be affected by environmental factors and batch factors. Huang [17] used a pressure
sensor to capture pressure data and used the feedback data to calculate the peak pressure,
viscosity index, energy index, and pressure gradient. Based on the experimental results,
it was found that with increases in the injection speed, these four parameters will exhibit
the same trend as that of the product weight, but only the peak pressure, viscosity index,
and energy index have a strong relationship with the product weight. Even though the
energy index has a strong relationship with the product weight, the energy index capture
and calculation process are more complex than the viscosity index, making it necessary
to describe the pressure curve by obtaining the screw position, whereas only a pressure
sensor is required in order to use the viscosity index to describe the pressure curve.

In this study, the viscosity index and peak pressure comprised the adjust criteria for
the system. Figure 4 shows that a pressure curve with a higher peak pressure and larger
area will indicate a greater product weight; otherwise, the product weight will be lighter.
The peak on the pressure curve is the peak pressure Ppeak.
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To describe the different properties of polymers during the injection molding process,
the viscosity index is used in this study, which is an integral of a pressure curve. Both the
viscosity index and peak pressure can be used to describe the pressure curve.

VI =
∫ tpackingend

tinjectionstart

PMelt(t)dt (1)

• Where VI is a viscosity index, t is time, and PMelt is the melt pressure, and where the
injection start is a start signal, and the packing end is the packing end signal.

• Both the viscosity index and peak pressure can be indicators of the product weight,
and these two parameters can be used to determine better injection speeds and
switchover positions.

• Through the preliminary experiment, it was clearly observed that the peak pressure
and viscosity index were directly proportional to the product weight. The results of the
preliminary experiment were used to obtain the master curve in order to implement it
into the adaptive adjustment system.

2.4. Adaptive Process Control

Adaptive control is the control method that must adapt to a controlled system with
parameters that vary or are initially uncertain. The basic concept of adaptive control is that
the controller uses the measured input signal to regulate the next output, and the regulated
output changes the next input. Thus, adaptive control can also be regarded as the control
system of instantaneous parameter regulation.

3. Experimental Section
3.1. Material

The study chose polypropylene (PP) for the experiment because it is a common mate-
rial that is used in injection molded parts. The molding material used for the experiment
was polypropylene Globalene 6331, which was fabricated using an injection molding pro-
cess by using LCY GROUP (Li Changrong Chemical, Co. Ltd.; Taipei City, Taiwan). The
material properties are shown in Table 1.

Table 1. Polypropylene properties [18].

Globalene 6331 Polypropylene Homopolymer

General Properties Test Methods Unit Values

Melt flow rate (230 ◦C) ASTM D1238 g/10 min 14.5
Density ASTM D792 g/cm3 0.904

Elongation at yield ASTM D638 % 9
Elongation at break ASTM D638 % 83

Tensile strength at yield ASTM D638 kg/cm2 370
Flexural modulus ASTM D790 kg/cm2 17,500
Rockwell hardness ASTM D785 R scale 101

Heat deflection temperature ASTM D648 ◦C 108
Izod impact strength ASTM D256 kg-cm/cm 2.1

Mold shrinkage ASTM D955 % 1.2

3.2. Equipments

General purpose polypropylene was used for the injection molding of a thin plastic
disk (see Figure 5). A pressure sensor with a sensitivity of 3.3 mV/bar (Dynisco, PT4655XL,
Dynisco, MA, USA) was mounted on the nozzle to measure the melt pressure. The
pressure sensor specifications are shown in Table 2. A data acquisition module (USB-4716,
Advantech Co., Ltd., Taipei, Taiwan) with a high sampling rate (20 kHz) was used to obtain
the nozzle pressure data. The data acquisition module specifications are shown in Table 3.
A 60-ton injection molding machine (CLF-60TX, Chuan Lih Fa Co., Ltd., Tainan, Taiwan)
with a machine controller (MIRLE automation corporation) was used to fabricate samples
under a variety of process parameters. The maximum injection rate was 115 (cm3/s), the
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maximum injection pressure was 2951 (kg/cm2), and the screw diameter was 30 mm. The
injection molding machine specifications are shown in Table 4.
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Table 2. Pressure sensor specifications.

Performance Characteristics

Ranges 0–30,000 psi
Accuracy ±0.5% FSO

Repeatability ±0.2% FSO
Mounting torque 500 inch–lbs. maximum

Maximum pressure 2 x full range or 35,000 psi (whichever is less)
Material in contact with pressure media 15- 5 PH stainless stell, DyMax™ coated

Weight 2 lbs

Electrical Characteristics

Output 0 to 10 Vdc
Input Voltage 16 to 36 Vdc

Zero balance adjustment range ±15%

Table 3. Data acquisition module specifications.

Analog Input

Channels 16
Resolution 16 bits

Max. sampling rate 200 kS/s
FIFO size 1024 samples

Digital Input

Channels 8

Input voltage Logic 0: 1.0 V max
Logic 1: 2.0 V min

Table 4. Injection molding machine specifications.

CLF-60TX 600H-420D

Unit Values

Screw diameter mm 30
Theoretical injection volume cm 141

Injection pressure kg/cm2 2951
Injection rate cm3/sec 115
Screw speed rpm 325

Nozzle radius mm 15
Clamping force ton 60
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4. Preliminary Experiments, Master Curve, and Adaptive Adjustment Experiments
4.1. The Experiments with Eight Seconds of Packing Time

The experiment parameters in Table 5 were used to verify the relationship between the
injection speed, switchover position, viscosity index, peak pressure, and product weight.
At the same time, we observed that if the packing time was too long, it would cause the
product weight to become unstable. Therefore, in the next group of experiments, the
packing time was set at three seconds. The detailed results are in Section 5.1.

Table 5. Experimental parameters with eight seconds of packing.

Injection pressure (bar) Clamping force (ton) Packing pressure (bar) Packing time (sec)

170 30 15 8

Run Injection speed
(mm/sec)

Switchover position
(mm) Melt temperature (◦C)

1 97.62
10 2102 81.35

3 65.08

4 97.62
8 2105 81.35

6 65.08

7 97.62
12 2108 81.35

9 65.08

10 81.35 9 210

11 81.35 11 210

4.2. The Experiments for Three Seconds of Packing Time with Different Amounts of
Clamping Force

The experiment parameters for three seconds of packing time with different amounts
of clamping force are shown in Table 6. In the experiments, it could be observed that the
peak pressure and the viscosity index followed the same trend as the product weight. At
the same time, with the parameter of three seconds of packing time and 40 tons of clamping
force, the variations of the product weight were more stable than with eight seconds of
packing time. The detailed results are in Section 5.2.

Table 6. Experimental parameters for three seconds of packing time with different amounts of
clamping force.

Injection pressure (bar) Clamping force (ton) Packing pressure (bar) Packing time (sec)

170 20, 30, 40 15 3

Run Injection speed
(mm/sec) Switchover position (mm)

1

81.35

8
2 9
3 10
4 11
5 12

4.3. The Full-Factorial Experiments for Three Seconds of Packing Time

The experiments combined the results of Tables 5 and 6. The experiments were set
at three seconds of packing time, 40 tons of clamping force, and designed a full-factorial
experiment in Table 7. The results showed that the peak pressure, viscosity index, and
product weight had the same trend and that the variations of the product weight clearly
decreased. Therefore, we used the experimental results as the judgment criterion for the
adaptive control system. The detailed results are in Section 5.3.
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Table 7. Experiment parameters for three seconds of packing time.

Injection pressure (bar) Clamping force (ton) Packing pressure (bar) Packing time (sec)

170 30 15 3

Run Injection speed
(mm/sec)

Switchover position
(mm) Melt temperature (◦C)

1 97.62
8 2102 81.35

3 65.08

4 97.62
9 2105 81.35

6 65.08

7 97.62
10 2108 81.35

9 65.08

10 97.62
10.5 21011 81.35

12 65.08

13 97.62
11 21014 81.35

15 65.08

16 97.62
11.5 21017 81.35

18 65.08

19 97.62
12 21020 81.35

21 65.08

4.4. Master Curve

The flow chart shown in Figure 6 provides the criteria for judging whether the pressure
peaks and viscosity indexes can be put into the adaptive control system, where the verified
pressure peaks and viscosity indexes will be put into the master curve, and the master
curve will be implemented in the adaptive adjust system as a control algorithm.
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4.5. The Adaptive Control System Experiments

An adaptive adjustment system was developed in this study. The flow chart of the
system is presented in Figure 7. The system uses the feedback pressure data from DAQ, and
then uses the pressure data signal from the injection start to the packing end to calculate
the viscosity index and peak pressure. The master curves derived from the preliminary
experiments were used as the criteria by which to verify the product quality, where if the
quality was verified, the process continued, and if the quality was unverified, the adaptive
adjustment system stabilized the product quality by adjusting the injection speed and the
switchover position before continuing the production process.
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Two experiments were conducted in this study: the one conducted with the parameters
described in Table 8 was without the adaptive adjustment system, and the other conducted
with the parameters shown in Table 9 was with the system, and both performed 100 cycles.

Table 8. The experimental parameters without the adaptive adjustment system.

Injection pressure (bar) Clamping force (ton) Packing pressure (bar) Packing time (sec)

170 40 15 3

Cooling Time (sec) Injection speed
(mm/sec)

Switchover position
(mm) Melt temperature (◦C)

10 81.35 10 210

Table 9. The experiment parameters with the adaptive adjustment system.

Injection pressure (bar) Clamping force (ton) Packing pressure (bar) Packing time (sec)

170 40 15 3

Cooling Time (sec) Injection speed
(mm/sec)

Switchover position
(mm) Melt temperature (◦C)

10 81.35 8 210
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5. Results
5.1. The Results of The Experiments with Eight Seconds of Packing Time

The results of the experiments proved that with a change in the injection speed and
switchover position, the peak pressure, viscosity index, and product weight also changed
significantly. The relationships among the peak pressure, viscosity index, and product
weight can be clearly seen in Figure 8a–c, which verifies that the product weight has a very
strong proportional relationship with the viscosity index and peak pressure. However, with
the exception of the standard groups 1, 2, and 3, Figure 9 shows that the variations in the
average product weight for the other parameters are outside the appropriate range. Using
the experimental parameters, it was verified that if the packing time was too long, this
would cause the product weight to become unstable, so in the next group of experiments,
the packing time was set at three seconds. Here, the variations in product weight were used
as an indicator to determine whether the product weight remained stable. The function of
the variation in product weight is as follows:

Variation=
Vmax − Vmin

Vave
× 100% (2)
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tions in the average product weight for the other parameters are outside the appropriate 
range. Using the experimental parameters, it was verified that if the packing time was too 
long, this would cause the product weight to become unstable, so in the next group of 
experiments, the packing time was set at three seconds. Here, the variations in product 
weight were used as an indicator to determine whether the product weight remained sta-
ble. The function of the variation in product weight is as follows: 
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Relationship between the product weight and peak pressure with eight seconds of packing time; (c) Relationship between
the viscosity index and peak pressure with eight seconds of packing time.
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5.2. The Results of the Experiments for Three Seconds of Packing Time with Different Amounts of
Clamping Force

The experimental results for each group are shown in Figures 10–12. It can be observed
that the peak pressure and the viscosity index follow the same trend as the product weight.
Figure 13 shows that with three seconds of packing and 40 tons of clamping force, the
variations of product weight were more stable than with 8 s of packing.
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5.3. The Results of the Full-Factorial Experiments for Three Seconds of Packing Time

Based on Figure 14, the results show that the peak pressure, viscosity index, and
product weight exhibited the same trend. Figure 15 shows that the variations of the product
weight clearly decreased when compared to the results after eight seconds of packing.
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5.4. The Results of the Experiments with the Adaptive Control System

The experiment without the system was conducted using stable parameters. Figure 16a
shows the first 50 cycles without the proposed system, where the product weight was
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stable. However, after reaching 70 cycles, the product weight trend gradually became
lighter, and the weight fluctuations became very intense. The experiment with the adaptive
adjustment system was conducted with unstable initial parameters. Figure 16b shows the
adjustment process when utilizing the adaptive adjustment system. Figure 17 proves that
the system can stabilize the product quality and follow the target value by adjusting the
correct parameter.
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With the function (2), the variation of the product weight is 0.21%, whereas without
the system it was 0.39%. Furthermore, with the functions (3) and (4), the standard deviation
and the coefficient of variation can be calculated, where “σ” is the standard deviation,
“x” is the measured weight of each mold product, “µ” is the target of the product weight,
n is the total amount of mold, and “Cv” is the coefficient of variation. The coefficient of
variation of the product weight was 0.05%, whereas without the system it was 0.20%. The
results indicate that the process with the system is more stable than the process without
the system.
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6. Conclusions

In this study, C++ programming language was used to develop an adaptive adjust-
ment system that only used a nozzle pressure sensor to monitor extracted pressure data.
According to the P–V–T relationship for polymer characteristics, as soon as the pressure
was stabilized during the injection molding process, the weight of the injected parts could
also be consistently maintained.

A preliminary experiment was conducted to show the proportional relationships
between the peak pressure, viscosity index, and product weight, after which this rela-
tionship was used to obtain the master curve that could be implemented in the adaptive
adjustment system. Furthermore, the results of the preliminary experiments reveal that
more appropriate process parameter settings (i.e., packing time, clamping force) enable the
minimization of the variation of injection molded parts before carrying out the adaptive
adjustment system.

With this system, the product weight was more stable than for the process without
such a system, with the variation of the product weight and the coefficient of variation of
the product weight decreasing to 0.21% and 0.05%, respectively. Based on the comparative
results, the validity of the proposed system was successfully verified.
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