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Abstract: In this research, by utilizing the Very-High-Bond (VHB) 4905 elastomer, we carry out an
experimental examination on the humidity effect on dynamic electromechanical performances of
dielectric elastomers, including the dynamic response and viscoelastic creeping. Firstly, we experi-
mentally analyze effects of the pre-stretch, peak voltage, waveform and frequency of the dynamic
response of VHB 4905 elastomer under several ambient humidities. In general, the amplitude of
dynamic deformation gradually adds up with the increasing humidity. Besides, it is found that the
amplitude affected by different parameters shows diverse sensitivity to humidity. Subsequently,
effect of humidity on the viscoelastic creeping of VHB 4905 is explored. The results demonstrate that,
subject to different ambient humidities, the viscoelastic creeping under Alternating Current (AC)
voltage is similar to that under Direct Current (DC) voltage. Furthermore, the equilibrium position of
dynamic viscoelastic creep enlarges gradually with the humidity, regardless of voltage waveforms.
For the dielectric elastomer with a pre-stretch ratio of 3, when the humidity increases from 20% to
80%, the increase of average equilibrium position of dynamic viscoelastic creep is larger than 1599%.

Keywords: dielectric elastomer; humidity effect; dynamic response; viscoelastic creeping

1. Introduction

Dielectric elastomers (DEs), a category of soft electro-active polymers, have gained
much attention recently because of their excellent properties, such as high energy density,
large deformability fast response and so on [1–6]. DEs have demonstrated significant
potential in applications such as soft actuators, bionic robots and energy generators [7–13].
The majority of DE materials belong to macromolecular polymers, which are very sensi-
tive to the external environment, such as the temperature and humidity. Therefore, the
electromechanical deformation and stability of DEs is greatly affected, when exposed to
the external environment. The researchers have found that the temperature effect plays
an important role in determining the static electromechanical actuation of DEs [14–20].
During recent years, some scholars also have committed to investigations about humidity
effects on the static electromechanical actuation of DEs [21–26]. In 2016, Chen et al. [21]
carried out research on the effect of humidity on the electrical breakdown strengths of
VHB 4905 membranes. Then, Fasolt et al. [22] experimentally presented an investigation
in which the effect of humidity on the breakdown field of silicone DE films was tested.
Subsequently, by utilizing the silicone DE membranes, Albuquerque et al. [23] experi-
mentally reported the breakdown strength with consideration of the humidity effect. In
our recent researches [24–26], we investigated the humidity effect on the static actuation
performances of VHB 4910, both theoretically and experimentally.
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Nevertheless, the DEs are more widely used as dynamic actuators, and some re-
searchers have analyzed the dynamic performances of DEs under constant environmental
conditions. For example, Sheng et al. [27] proposed a free energy model to investigate the
dynamics of a DE membrane undergoing in-plane deformation. Chen et al. [28] derived a
high nonlinearity motion equation and presented the dynamic response of the DE balloon
actuator subject to a combination of pressure and periodic voltage. Lv et al. [29] devel-
oped a theoretical model incorporating the stiffening and damping effect, investigated
the dynamic performance of a DE balloon subject to electromechanical coupling loads.
Kashyap et al. [30] developed a dynamic model to describe the dynamic response of a DE
actuator for different values of viscoelasticity and anisotropy parameters.

Although the above experiments have legitimately explored the humidity effects on
static electromechanical properties of DEs and the dynamic electromechanical properties
of DEs under constant environment conditions. However, too little work has been devoted
to determination of the humidity effect on dynamic electromechanical properties of DEs.
When the dynamic DE actuators in the moisture environment (such as the underwater DE
electronic fish [8,9]), the electromechanical properties will be largely affected by the working
humidity. Therefore, the humidity effects on the dynamic electromechanical performance of
DEs arguably are significant questions to be addressed. Accordingly, in this manuscript, we
experimentally studied the humidity effects on the dynamic electromechanical properties
of DEs, mainly focusing on the dynamic response and viscoelastic creeping. This research
offers an insight into the VHB-based DE actuator for device design, modeling and control
strategies in varying ambient humidity.

2. Experimental
2.1. Experimental Procedures and Setups

In this article, under room temperature (20 ◦C), we investigate the humidity effect
on the dynamic electromechanical properties of DEs, by applying an AC voltage. The
electromechanical testing procedures are illustrated in Figure 1, and the experimental
setups are demonstrated in Figure 2. VHB 4905 (3M Company, Sao Paulo, MN, USA) with
an original thickness of 0.5 mm is used as the DE material because of its quick response and
high deformability. VHB 4905 membrane is, first, equal-biaxially stretched with different
pre-stretch ratios. Then we clamp the pre-stretched films by a pair of annular frames
to maintain the prescribed pre-stretch ratio. The carbon grease electrodes (no. 846, MG
Chemicals, Burlington, ON, Canada) are coated in the center area of both surfaces, forming
a circular configuration with a diameter of 30 mm. Each VHB sample is placed in the
airtight container for at least 1 h to make sure the VHB 4905 films are fully compatible
with the environment. In order to eliminate the errors, five samples are fabricated for each
measurement. The various humidity levels can be approximately concerted by different
saturated salt solutions, including potassium acetate (CH3COOK), potassium carbonate
(K2CO3), sodium bromide (NaBr) and potassium bromide (KBr), which are placed in the
airtight container [24]. A high voltage supplier (Model 610D, Trek, New York, NY, USA)
is utilized to produce the high voltage for actuation of VHB 4905 elastomer, and voltage
signal is generated by a signal generator (DG4062, Rigol, Suzhou, China). A laser sensor
(LK-G80, Kenyence, Osaka, Japan) is used to measure the electromechanical displacement
of the VHB 4905 film, by attaching a lightweight marker on the edge of the electroactive
area. Finally, the experimental data are collected by a DAQ card (USB6003, Ni, Austin, TX,
USA) and inputted into the computer to obtain the results.



Polymers 2021, 13, 784 3 of 14Polymers 2021, 13, x FOR PEER REVIEW 3 of 14 
 

 

 

Figure 1. Experimental procedures of VHB 4905 film under different humidity levels. 

 

Figure 2. Experimental setups for electromechanical measurement of VHB 4905 film under differ-

ent humidity levels. 

2.2. Experimental Method 

We vary the peak voltage (the peak voltage means the peak value of applied AC 

voltage), waveform, and frequency of applied voltage and pre-stretch ratio of VHB 4905 

film under four humidity levels (20%, 40%, 60% and 80%) in our experiments. Under dif-

ferent ambient humidities, we tested three pre-stretch ratios, three waveforms and four 

frequencies under the same nominal electric field. Furthermore, for each pre-stretch ratio 

(2, 3, 4), we also tested four different peak voltages. Table 1 shows the experimental pa-

rameters, in which three different waveforms, including sinusoidal, triangle and saw-

tooth, are utilized. 

Figure 1. Experimental procedures of VHB 4905 film under different humidity levels.

Polymers 2021, 13, x FOR PEER REVIEW 3 of 14 
 

 

 

Figure 1. Experimental procedures of VHB 4905 film under different humidity levels. 

 

Figure 2. Experimental setups for electromechanical measurement of VHB 4905 film under differ-

ent humidity levels. 

2.2. Experimental Method 

We vary the peak voltage (the peak voltage means the peak value of applied AC 

voltage), waveform, and frequency of applied voltage and pre-stretch ratio of VHB 4905 

film under four humidity levels (20%, 40%, 60% and 80%) in our experiments. Under dif-

ferent ambient humidities, we tested three pre-stretch ratios, three waveforms and four 

frequencies under the same nominal electric field. Furthermore, for each pre-stretch ratio 

(2, 3, 4), we also tested four different peak voltages. Table 1 shows the experimental pa-

rameters, in which three different waveforms, including sinusoidal, triangle and saw-

tooth, are utilized. 

Figure 2. Experimental setups for electromechanical measurement of VHB 4905 film under different
humidity levels.

2.2. Experimental Method

We vary the peak voltage (the peak voltage means the peak value of applied AC
voltage), waveform, and frequency of applied voltage and pre-stretch ratio of VHB 4905
film under four humidity levels (20%, 40%, 60% and 80%) in our experiments. Under
different ambient humidities, we tested three pre-stretch ratios, three waveforms and
four frequencies under the same nominal electric field. Furthermore, for each pre-stretch
ratio (2, 3, 4), we also tested four different peak voltages. Table 1 shows the experimental
parameters, in which three different waveforms, including sinusoidal, triangle and saw-
tooth, are utilized.
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Table 1. Humidities, pre-stretch ratios, initial nominal electric strengths, peak voltages, frequencies
and waveforms for electromechanical experiments.

Parameters Value

Humidity (%) 20, 40, 60, 80
Pre-stretch ratio λp 2, 3, 4

Peak value of the nominal E (MV m−1) 32
Peak voltage (kV) 2.5, 3, 3.5, 4(λp = 2); 1, 1.5, 2, 2.5 (λp = 3 and 4)
Frequency (Hz) 1, 5, 10, 15

Waveform sinusoidal, triangle, saw-tooth

3. Results and Discussion
3.1. Dynamic Response under Different Humidities

The voltage-induced dynamic deformation of VHB 4905 film under different ambient
humidities is presented in Figure 3. As mentioned previously, three voltage waveforms
with a frequency of 1 Hz and peak voltage of 2.5 kV are used (Figure 3d). With a prescribed
pre-stretch radio λp = 3, Figure 3a–c show the corresponding dynamic displacement of
VHB 4905, under four humidity levels (20%, 40%, 60% and 80%). Due to viscoelastic
creeping, the timescale of 198–200 s is selected to present the stable dynamic displacement.
It is demonstrated that the dynamic displacement of VHB 4905 gradually increases with
the increasing humidity under the actuation of a random voltage waveform. Furthermore,
the peak of dynamic response of the DE membrane under a sinusoidal voltage is the
broadest, and there is a sharp pinnacle when a saw-tooth voltage is applied. Note that
these responses are characterized by narrow peaks and broad valleys, mainly because of
the nonlinear electrical loading. The amplitude was calculated by taking as half of the
difference between the peak value and valley value of the dynamic response. As shown
in Figure 3a–c, under different voltage waveforms, the amplitude of dynamic response of
VHB 4905 enhances gradually as the ambient humidity increases.

For the VHB 4905 with three different equal-biaxial pre-stretch ratios (λp = 2, λp = 3
and λp = 4), Figure 4 presents the humidity effect on the amplitude of dynamic response un-
der a sinusoidal voltage with a frequency of 1 Hz and a nominal electric field of 32 MV m −1.
It is noted that the amplitude increases gradually with the increasing humidity, especially
when the humidity enlarges from 40% to 80%. Based on our previous research [25], the
shear modulus of viscoelastic materials decreases gradually when the ambient humidity
adds up. It is implied that the ambient humidity leads to the softening of the viscoelastic
membrane. Under the same actuation, a softer film generates a larger electromechan-
ical deformation. On the other hand, for a given value of ambient humidity, there is
a reduction of the amplitude when the pre-stretch ratio enlarges from λp = 2 to λp = 4.
This can be explained as follows: a large pre-stretch stiffens the VHB film and limits a
large deformation.

Next, using a sinusoidal voltage, the humidity effect on the amplitude of VHB 4905
under three equal-biaxial pre-stretch ratios (λp = 2, λp = 3 and λp = 4) is investigated
by using different peak voltages, which is displayed in Figure 5. In order to avoid the
possible electrical breakdown and obtain the valid experimental data in this experimental
measurement, we use 2.5 kV~4.5 kV as the range of peak voltage for pre-stretch ratio
λp = 2 and 1 kV~2.5 kV as the range of peak voltage for pre-stretch ratios λp = 3 and λp = 4.
It is found that for a given pre-stretch ratio, the amplitude of VHB 4905 increases with
the increasing humidity for all different peak voltages, and the high peak voltage greatly
augments the amplitude of VHB 4905 with the increase of humidity, indicating that high
peak voltage causes the dynamic deformation to be more sensitive to the humidity. This
phenomenon may be due to the nonlinear characteristics of DE membranes, which is surely
affected by the varying humidity.
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Figure 5. Under different pre-stretch ratios (λp = 2, λp = 3 and λp = 4), the humidity effect on the amplitude of VHB 4905
with different peak voltages.

Similarly, under three different pre-stretch ratios (λp = 2, λp = 3 and λp = 4), the
humidity effect on the amplitude of VHB 4905 is investigated by using three voltage
waveforms, which is displayed in Figure 6. Under a given pre-stretch ratio, the amplitude
of VHB 4905 increases gradually with the increasing humidity for all different voltage
waveforms. Furthermore, it is found that the sinusoidal voltage can generate a relatively
larger amplitude compared with those generated by triangle and sawtooth voltages. On
the other hand, regardless of the pre-stretch ratio, the sawtooth voltage generally generates
a slightly higher amplitude than that generated by the triangle voltage. The reasons are
given as follows. Firstly, despite all the three waveforms having equal peak values, the
effective value of sinusoidal voltage is higher, and has more energy. Therefore, the induced
amplitude is larger. In addition, although the triangle and sawtooth voltage theoretically
have the same energy, the impossible instantaneous jump from +2.5 kV to 0 kV leads to a
slightly large energy of sawtooth voltage and induces a slightly-large amplitude.
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film with different voltage waveforms (sinusoidal, triangle and saw-tooth).

Finally, under three different pre-stretch ratios (λp = 2, λp = 3 and λp = 4), the humidity
effect on the amplitude of VHB 4905 is investigated by using a sinusoidal voltage with four
different frequencies, which is illustrated in Figure 7. Similar to Figure 5, under various
humidity levels, the sinusoidal voltage with a low frequency generates a large amplitude.
As the frequency increases, the amplitude drops sharply. When the frequency is up to 10 Hz,
the produced deformation is extremely small. A similar phenomenon has been reported in
the experiments of out-of-plane deformation [31]. Besides, for a given pre-stretch ratio, the
amplitude adds up with the increasing humidity for all different frequencies, and a low
frequency induces a rapid increase of the amplitude with the humidity.
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3.2. Viscoelastic Creeping under Different Humidities

As is known, viscoelasticity is an inherent property of DE materials. In this section,
we detect the humidity effect on the viscoelastic creep of VHB 4905 elastomer. Figure 8
displays the dynamic viscoelastic creeping of VHB 4905 (λp = 3) when a sinusoidal voltage
with a frequency of 1 Hz and a peak voltage of 2.5 kV is applied. Meanwhile, the effective
DC voltage of the applied sinusoidal voltage is calculated, and the static deformation of the
effective DC voltage is simultaneously measured. Under different ambient humidities, the
increase of viscoelastic creep deformation for the VHB 4905 membrane under sinusoidal
voltage is similar to that under the effective DC voltage. It is noted that the slopes of
displacement-time curves are continuously declining, implying a gradually-weakened
viscoelastic creep deformation of VHB 4905 elastomer. Based on these characteristics, it
can be predicted that such creeping can be eliminated if the testing time is long enough.
Similar results can be found when the triangle and sawtooth voltages are applied, which
are shown in Figures 9 and 10.
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We use the equilibrium position to evaluate the degree of viscoelastic creeping within
the timescale of 198–200 s. The equilibrium position is defined as half of the sum of the
peak value and valley value of the dynamic deformation. Figure 11a–c present the dynamic
displacement of VHB 4905 under different humidity levels, when the AC voltages and
corresponding effective DC voltages are applied. Figure 11d summarizes the effect of hu-
midity on the equilibrium position under three voltage waveforms and their corresponding
effective DC voltage. Among them, since the triangle and saw-tooth voltages have the
same effective value, we use “DC effective voltage of tr”, as shown in Figure 11d.
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Figure 11. Under different voltage waveforms (sinusoidal, triangle, saw-tooth), experimental results on humidity effects on
the viscoelastic creeping of the equilibrium position with the effective DC voltage and the AC voltage: (a) pre-stretch ratio
of 3 and sinusoidal voltage; (b) pre-stretch ratio of 3 and triangle voltage; (c) pre-stretch ratio of 3 and saw-tooth voltage;
(d) the equilibrium position of VHB 4905 under pre-stretch ratio of 3 and different voltage waveforms.

It can be seen, for each given voltage waveform, that the equilibrium position gradu-
ally increases with the increasing humidity, and the trend of increase is almost the same.
From Table 2, we can find that when the humidity increases from 20% to 80%, the increase
of average equilibrium position of dynamic viscoelastic creep is larger than 1599%. Similar
to the amplitudes under various voltage waveforms, the humidity effect on equilibrium
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position is also less sensitive to voltage waveform. Moreover, it is noted that the sinu-
soidal voltage can produce a relatively higher equilibrium position compared with those
produced by triangle and sawtooth voltages. On the other hand, the sawtooth voltage
produces a slightly higher equilibrium position than that produced by the triangle voltage
in most cases. This phenomenon is consistent with the amplitude of dynamic response,
which may be caused by different energy of different voltage waveforms. In addition, the
equilibrium position under the three AC voltages is slightly lower than that under the
corresponding effective DC voltage, which is induced by the potential energy dissipation
during dynamic vibration when the AC voltage is applied.

Table 2. The equilibrium position (um) under different voltage waveforms and different
ambient humidities.

Humidity 20% 40% 60% 80%

Sin 573.6 632.0 730.8 864.8
DC effective voltage of sin 599.1 674.8 802.5 958.7

Saw-tooth 465.6 517.4 629.6 746.2
Triangle 510.1 556.7 671.2 784.9

DC effective voltage of tr 529.7 574.3 700.3 819.8

4. Conclusions

In this paper, we investigate the humidity effect on the dynamic electromechanical
properties of VHB 4905 elastomer. Firstly, the effect of humidity on the dynamic response
of VHB 4905 is explored. In general, the amplitude of dynamic deformation gradually
increases with the increasing humidity. Among them, there are a variety of parameters
that play distinct effects on the dynamic electromechanical performance of DE, such as
pre-stretch, peak voltage, waveform and frequency. The amplitude is highly sensitive to
the change of humidity at low pre-stretch ratio, high voltage peak value and low frequency.
However, the amplitude under the random voltage waveform is less sensitive to humidity.

In the following, the effect of humidity on the viscoelastic creeping of VHB 4905
is investigated. For different ambient humidities, the viscoelastic creeping is consistent
when the DEs are under sinusoidal voltage, triangular voltage, sawtooth voltage and corre-
sponding effective DC voltage. The experiment also analyzes the equilibrium position of
viscoelastic creeping. For each given voltage waveform, the equilibrium position gradually
rises with the increasing humidity. For the DE with a pre-stretch ratio of 3, when the hu-
midity increases from 20% to 80%, the average equilibrium position of dynamic viscoelastic
creep increases by 15.99 times. These investigations offer a strategy to comprehend the
polyacrylic DEs for performance improvements and device explorations in some extremely
moist environmental conditions. For future research, we hope to establish a dynamic model
of the DE actuators incorporating the humidity effect.
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