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Abstract: Green biodegradable plastics have come into focus as an alternative to restricted plas-
tic products. In this paper, continuous long sisal fiber (SF)/polylactic acid (PLA) premixes were
prepared by an extrusion-rolling blending process, and then unidirectional continuous long sisal
fiber-reinforced PLA composites (LSFCs) were prepared by compression molding to explore the
effect of long fiber on the mechanical properties of sisal fiber-reinforced composites. As a comparison,
random short sisal fiber-reinforced PLA composites (SSFCs) were prepared by open milling and
molding. The experimental results show that continuous long sisal fiber/PLA premixes could be
successfully obtained from this pre-blending process. It was found that the presence of long sisal
fibers could greatly improve the tensile strength of LSFC material along the fiber extension direction
and slightly increase its tensile elongation. Continuous long fibers in LSFCs could greatly participate
in supporting the load applied to the composite material. However, when comparing the mechanical
properties of the two composite materials, the poor compatibility between the fiber and the matrix
made fiber’s reinforcement effect not well reflected in SSFCs. Similarly, the flexural performance and
impact performance of LSFCs had been improved considerably versus SSFCs.

Keywords: PLA; sisal fiber; continuous long fiber-reinforced composites; mechanical properties

1. Introduction

With the increasing emphasis on environmental protection and resource conservation
in recent years, there has been great interest in the preparation of green biocomposites
using sustainable resources or degradable materials. In the field of composite materials,
biobased and biodegradable resins, instead of petroleum-based resins, have been gradually
used to prepare fully biodegradable composites from high-quality and low-priced natural
plant fibers [1]. A large number of biodegradable polymer matrices, such as polysaccharide
derivatives and polyesters, and a great quantity of plant fibers such as kenaf, jute, sisal,
nanocellulose and microfibrillarized cellulose are gradually used in biocomposites [2].
Biocomposites with higher biobased content made of plant fibers and crop-based plastics
have also been developed continuously [3], which is meaningful for alleviating oil resource
tension and achieving the sustainable development of resources.

Polylactic acid (PLA), one of the most widely used biobased and biodegradable poly-
mers, can be prepared from a wide range of raw materials, especially starch-rich crops such
as sugar beet, corn and wheat [2]. It can be produced by the direct polycondensation of
lactic acid obtained from starch fermentation, or by the ring-opening polymerization of
lactide, which is a common synthetic method for the industrial production of PLA [4–6].
The attractive physical properties, mechanical properties, biodegradability and biocompat-
ibility of PLA make it a very promising material in industrial applications [7,8]. However,
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compared with other commonly used petroleum-based polymers, the high cost and poor
toughness of PLA limit its widespread use [9]. The development of viable green technolo-
gies aimed at enhancing biodegradable and biocompatible aliphatic polyesters such as
PLA has aroused great interest [10]. In order to maintain the biodegradability of products,
natural plant fibers from the same wide range of sources are usually used to make all
biobased composites with PLA, which not only reduces costs but also improves the overall
performance of products [11].

Plant fiber is extracted from plants grown in nature, and it is widely distributed in
all parts of plants. It has the advantages of low cost, light weight and high mechanical
strength, and is renewable in nature, making it a green resource in line with sustainable
development. Sisal fiber (SF) is a natural fiber crop of the agave family, mainly grown
in tropical and subtropical regions. It is composed of cellulose, some hemicellulose and
a small amount of lignin. Sisal fiber has relatively high fiber strength and long fibers,
compared with other plant fibers [12]. The presence of hydroxyl groups in SF leads to poor
compatibility between SF and hydrophobic polymer matrices [3]. Physical and chemical
methods are often used to improve the interface properties of plant-fiber-reinforced resin
composites [13]. Ott et al. [14] treated jute fiber with alkali to obtain good adhesion between
the fiber and matrix.

Due to poor interface bonding properties and the inherent defects of plant fibers, it is
difficult to achieve the desired level of performance improvement in plant-fiber-reinforced
composite materials at present. Researchers have been studying the improvement of
the pretreatment process for fibers and polymers, mainly focusing on the use of more
effective surface modification technology to improve the interface bonding performance
between the fiber and the matrix [15–19]. The kind, composition, form and concentration
of fiber fillers are all involved in determining the properties of fiber-reinforced composites.
Generally, natural-fiber-reinforced plastic composite materials are manufactured using
traditional manufacturing techniques, such as injection molding, extrusion molding and
compression molding. Although the addition of plant fibers in resin has certain advantages
in reducing costs and improving performance, the characteristics of plant fibers make it
difficult to blend well with polymer matrices, especially in continuous processing like
extrusion. They are often cut into short ones, or milled for feeding. In addition, strong melt
blending will reduce the aspect ratio of plant fibers [20]. Saurabh Chaitanya [9] developed
short sisal fiber-reinforced PLA biocomposites using injection molding. It was found that
the strength of the composites did not improve well due to poor fiber dispersion. The
aspect ratio of fibers has an important influence on the characteristics of biocomposites.
Processing technology should be able to maintain a high fiber aspect ratio and uniform
dispersion in the developed biocomposites [21]. Continuous long fibers could help to
promote homogeneous stress and strain fields, which play a key role in the improvement
of mechanical properties [22]. Shinji Ochi [23] prepared long fiber premixes by placing
kenaf fiber into a PLA emulsion and drying it. Then unidirectional long-fiber-reinforced
composites were fabricated by hot-pressing. This is a solution method for premixing.

In this paper, a facile and economical extrusion-rolling melt blending method was
applied to prepare continuous long sisal fiber/PLA premixes, and then they were molded
to obtain biocomposite materials. Compared to traditional blending methods, this kind
of unidirectional continuous long sisal fiber-reinforced PLA composites benefited from
enhanced interface adhesion between the fiber and the PLA matrix, and good dispersion of
dispersed phases, attributed to the fact that the long fiber premix was produced through
rolling compression. The SF remained a continuous long length in the composites. The
effect of long sisal fiber on the mechanical properties of the composite materials was studied.
For comparison, random short sisal fiber/PLA composites were prepared through open
milling and compression molding. The results demonstrate that this processing technology
is a prospective method for plant-fiber-reinforced polymer composites manufacture.
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2. Materials and Methods
2.1. Materials

Sisal fiber was purchased from Dongfang Sisal Group Co. (Guangdong, China). The
length of high-quality sisal fibers was at least 95 cm, and the moisture regain of the fiber was
not more than 13%. The sisal fiber has a tensile strength of about 500 MPa and an elongation
at break of 2.0~2.5% [24]. Injection grade PLA 3051D, manufactured by American Nature
Works, had a specific gravity of 1.24 g/cm3 and a melt flow rate of 14 g/10 min (210 ◦C,
2.16 kg). Sodium hydroxide with analytical purity was purchased from Nanjing Chemical
Reagent Co. (Jiangsu, China).

2.2. Fiber Treatment

Prior to blending with PLA, sisal fibers were subjected to alkali treatment. While wash-
ing with sodium hydroxide, some small molecular weight impurities such as wax, pectin
and part of the lignin and hemicellulose in the fibers were dissolved and removed [13,25,26].
Meanwhile, the alkali treatment reduced the fiber diameter and thus increased the aspect
ratio of the fibers [27]. This increased the effective fiber surface area and facilitated interface
adhesion between the fiber and the matrix [28]. For this treatment, the long fiber raw
materials were immersed in a prepared 2 wt% NaOH aqueous solution for 40 min at room
temperature. After that, the fibers were taken out and washed with distilled water several
times until the solution was neutral. Then the treated fibers were placed in an oven and
dried at 80 ◦C for 12 h for later use. Figure 1 shows pictures of the sisal fiber before and
after alkali treatment.

Polymers 2021, 13, x FOR PEER REVIEW 3 of 12 
 

 

technology is a prospective method for plant-fiber-reinforced polymer composites manu-
facture. 

2. Materials and Methods 
2.1. Materials 

Sisal fiber was purchased from Dongfang Sisal Group Co. (Guangdong, China). The 
length of high-quality sisal fibers was at least 95 cm, and the moisture regain of the fiber 
was not more than 13%. The sisal fiber has a tensile strength of about 500 MPa and an 
elongation at break of 2.0~2.5% [24]. Injection grade PLA 3051D, manufactured by Amer-
ican Nature Works, had a specific gravity of 1.24 g/cm3 and a melt flow rate of 14 g/10 min 
(210 °C, 2.16 kg). Sodium hydroxide with analytical purity was purchased from Nanjing 
Chemical Reagent Co. (Jiangsu, China). 

2.2. Fiber Treatment 
Prior to blending with PLA, sisal fibers were subjected to alkali treatment. While 

washing with sodium hydroxide, some small molecular weight impurities such as wax, 
pectin and part of the lignin and hemicellulose in the fibers were dissolved and removed 
[13,25,26]. Meanwhile, the alkali treatment reduced the fiber diameter and thus increased 
the aspect ratio of the fibers [27]. This increased the effective fiber surface area and facili-
tated interface adhesion between the fiber and the matrix [28]. For this treatment, the long 
fiber raw materials were immersed in a prepared 2 wt% NaOH aqueous solution for 40 
min at room temperature. After that, the fibers were taken out and washed with distilled 
water several times until the solution was neutral. Then the treated fibers were placed in 
an oven and dried at 80 °C for 12 h for later use. Figure 1 shows pictures of the sisal fiber 
before and after alkali treatment. 

  
Figure 1. Sisal fibers (a) before and (b) after alkali treatment. 

2.3. Premixes Preparation 
2.3.1. Preparation of Continuous Long Sisal Fiber/PLA Premixes  

The continuous long sisal fiber/PLA premixes were prepared using an online extru-
sion-rolling blending system made in the laboratory, as shown in Figure 2. The PLA bar 
was first extruded by the extrusion equipment, the Brabender single screw extrusion mod-
ule (PLASTI-CORDER, Germany). The heating temperature profile for the feeding zone, 
compression zone, metering zone and the die exit was set at 170, 180, 180 and 170 °C, 
respectively. It was found that when the screw speed was 2 r/min and the belt speed was 
more than 1.35 m/min, a stable mass flow rate of extruded PLA bar could be obtained. In 
this case, the PLA bar could maintain a certain degree of fluidity when it was extruded 
out of the die, and the temperature of the extrudates was not too high to adhere to the 
rubber belts. 
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2.3. Premixes Preparation
2.3.1. Preparation of Continuous Long Sisal Fiber/PLA Premixes

The continuous long sisal fiber/PLA premixes were prepared using an online extrusion-
rolling blending system made in the laboratory, as shown in Figure 2. The PLA bar was
first extruded by the extrusion equipment, the Brabender single screw extrusion mod-
ule (PLASTI-CORDER, Germany). The heating temperature profile for the feeding zone,
compression zone, metering zone and the die exit was set at 170, 180, 180 and 170 ◦C,
respectively. It was found that when the screw speed was 2 r/min and the belt speed was
more than 1.35 m/min, a stable mass flow rate of extruded PLA bar could be obtained. In
this case, the PLA bar could maintain a certain degree of fluidity when it was extruded
out of the die, and the temperature of the extrudates was not too high to adhere to the
rubber belts.

While the PLA was stably extruded, the dried fiber bundles were introduced into
the initial end of two conveyor belts through a fiber guide device to meet the extruded
PLA bar. After that, the upper and lower conveyor belts pulled and rolled them to obtain
continuous premixes of long sisal fiber and PLA. In order to achieve a better blending effect,
as shown in Figure 2, the upper and lower conveyor belts were arranged at a particular
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angle (θ = 17◦). As a result, the conveyor belts not only provided traction, but also had two
different twisting effects (v1, v2, perpendicular to the extrusion direction) on the blends, as
shown in the sectional view of Figure 2. Therefore, the fibers were twisted together with
the extruded PLA bar. This allowed the PLA bar to be better coated or entangled with the
fiber for better adherence.
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Figure 2. Structure diagram of online extrusion-rolling blending system(1 Extruder; 2 PLA extrudates; 3 Conveyor belts;
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The mass flow rate of PLA stayed the same after stable extrusion. On this condition,
sisal fiber/PLA premixes with fiber loadings of 10%, 20%, 30% and 40% were prepared by
introducing fiber bundles of different mass size, as shown in Figure 3. The liner mass of
fiber bundles can be computed with the following formula:

mi =
m0

1 − i
− m0

where m0 and mi are the linear mass of stable extruded PLA bar and fiber bundles, respec-
tively; i is the fiber loading (i = 10%, 20%, 30%, 40%). Finally, the continuous premixes
were cut to 8–10 cm for a later molding process. It should be noted that this online
extrusion-rolling premixing process could continuously premix long fiber reinforcements
of unlimited length. The damage to fiber length and mechanical strength during this
process was small, and the fiber could maintain a good orientation. Being an ecofriendly
and practical technique, the extrusion-rolling melt blending method could be a feasible
approach towards preparing continuous long fiber premixes.
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2.3.2. Preparation of Short Sisal Fiber/PLA Premixes

The length of plant fiber is easy to decrease under severe mechanical shear in some
commonly used fiber-reinforced biocomposite processing methods (like extrusion, injection
and internal mixing) [29]. Therefore, for comparative analysis, mixtures of short sisal fiber
and PLA were prepared using an open two-roller mill (SK-160B, China). PLA pellets dried
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at 80 ◦C for 3 h were melted in the open mill, and then sisal fibers were added for blending.
The open mill had a front roll temperature of 185 ◦C, a rear roll of 180 ◦C and a roll speed
of l0 r/min. To facilitate feeding, the sisal fibers were cut to ~10 mm prior to mixing. After
blending for 5 min, the premixes were taken off and cooled down for later molding. The
fiber loadings of short sisal fiber/PLA premixes were 10%, 20%, 30%, 40%, respectively.

2.4. Molding of Composites

The premixes obtained by the two different blending methods were hot-pressed into
composite sheets by a compression-molding machine (QLB-25D/Q, China). The molding
temperature was set to 185 ◦C, and the pressure was set to 10 MPa. The premixes were
first preheated in a mold for 10 min, then vented, and then were finally hot-pressed for
5 min at the set temperature and pressure. In addition, as to the long sisal fiber/PLA
premixes, they were uniformly put in the mold in parallel to produce unidirectional long
sisal fiber-reinforced PLA composites. Finally, a composite sheet was obtained by cooling
the mold.

For comparison, some fibers were cut short to have the same length as the hot-press
mold. Then they were laminated into the mold with PLA pellets to make laminated SF/PLA
composites with fiber loadings of 10% and 20%, respectively. Composites with fiber
additions over 20% could not be molded well with direct hot-pressing because the feeding
process was very difficult. Meanwhile it was not easy to control the fiber arrangement or
dispersion in composites. Figure 4 is the comparison of long sisal fiber-reinforced PLA
composites (LSFCs), short sisal fiber-reinforced PLA composites (SSFCs) and the laminated
composites, where the red arrow represents the direction of fiber elongation. Premixes
were molded into sheets with dimensions of 100 × 100 × 4 mm3 for flexural or impact tests
and 160 × 80 × 1 mm3 for tensile tests, respectively.
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2.5. Composite Characteristics
2.5.1. Mechanical Tests

The tensile, flexural, and impact properties of the composites were tested to determine
their mechanical behavior. The obtained composite sheets were cut into standard sample
size, according to ISO527 for the tensile test, ISO178 for the flexural test and ISO180 for the
notched Izod impact test. For LSFCs, the test samples were cut along the fiber orientation
to retain long fibers.

An electronic all-powerful experiment machine (Instron 5566) was employed to test the
tensile properties and flexural properties of the composite samples. The tensile rate for all
composite samples was 2 mm/min, and the loading speeding for flexural properties testing
was 2 mm/min. A cylinder support beam impact-testing machine (Dynatup POE2000)
was used to conduct the impact strength tests. All tests were performed with at least five
samples at room temperature, and the corresponding properties were averaged.
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2.5.2. Scanning Electron Microscopy

The cryo-fractured surface microstructures of the compression molded sheets of
SSFCs and LSFCs were studied using a Quanta 200 (FEI, USA) scanning electron micro-
scope (SEM).

3. Results and Discussion
3.1. Tensile Tests

The mechanical properties of composites are not only determined by the mechanical
properties of the matrix and fiber themselves, but are also related to the content of the fiber,
the length of the fiber, the orientation of the fiber and the strength of the interface between
the fiber and the matrix. Figure 5 shows the tensile results of both composites. It can be
seen from Figure 5a that the tensile strength of SSFCs reduced with the addition of short
sisal fiber, compared with pure PLA. Sisal fibers show obvious hydrophilicity, while PLA
molecules are hydrophobic [3]. The poor compatibility between PLA and sisal fibers makes
it easy for defects to appear in the interfacial layer of the composite, such as voids [30],
which greatly affects interfacial strength. Because of the shearing effect of the open mill
during the blending process, the retain length of the sisal fiber was further shortened in
SSFCs. Therefore, when the composite material was subjected to stretching, the stress on
the matrix could not be transferred well to the fiber. In addition, the presence of more fiber
ends in SSFCs was likely the cause of stress concentration and thus accelerated cracks in
the composite material [9]. As fiber content increased, the probability of interfacial defects
increased as well.

However, the premixes of SF and PLA prepared by the extrusion-rolling premixing
process had basically no mechanical damage, and the fiber still maintained its original
length and mechanical strength in the matrix. During hot-press molding, the fibers were
placed in the best orientation. Therefore, when the composite material was under tension,
the fiber and the matrix could effectively transmit tensile stress. The presence of continuous
long fibers could avoid defects caused by short fibers. Therefore, the strength of the
composite material was mainly determined by the fiber and the matrix themselves. The
tensile strength of the composite material increased along with the increase in fiber loading.
The tensile strength reached a maximum of 200.44 MPa when the fiber content was 40 wt%,
which was 3.06 times that of pure PLA. As can also be seen in Figure 5b, the continuity or
orientation of fiber in the LSFCs made the tensile modulus increase rapidly as the fiber
content increased.

Figure 5c is a graph of the elongation at break of different composites with different
fiber loadings. It could be seen that the elongation at break of the composite materials
obtained by the two blending methods was somewhat lower than that of pure PLA. It was
a collaborative result of the brittleness of the PLA and the low elongation at break of the
sisal fibers. The LSFC material had a smaller decrease in tensile elongation at break. This
was due to the fact that in LSFCs, the fibers maintained their original length and good
orientation. When the composites were stretched, the fiber and the PLA matrix exhibited
different resistance to deformation. Attributed to the weaker interface binding between
the fiber and the matrix, there was a relative slip between the two phases, which was a
so-called fiber pull-out. Fiber pull-out is a process of overcoming friction to produce slip,
which allows an increase in elongation at break of the composites.

Figure 5d shows a partial comparison of the tensile strength of laminated composites
and LSFCs. The laminated composites were directly prepared with long SF and PLA by
hot-pressing. The tensile strength of the LSFC material increased with the addition of SF,
and it was slightly higher than that of the laminated composites with the same fiber content.
As for the laminated composite, it was difficult to mold by directly hot-pressing with high
fiber loadings of more than 20%. For laminated composites, different lay-up methods need
to be considered to ensure a uniformly mixed fiber and matrix [31]. This extrusion-rolling
blending technology could prepare continuous long plant-fiber-reinforced premixes, and
the fibers obtained a good dispersion in the matrix.
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3.2. Flexural Tests

Figure 6 shows the curve of the flexural strength of the two composites as a function
of fiber loadings. It can be seen from Figure 6 that the flexural performance of the SSFC
materials had no obvious improvement compared with pure PLA. However, the LSFC
materials shown a significant increase in flexural strength as the fiber content increased.
The maximum flexural strength of the long fiber-reinforced composite material reached
216.77 MPa. The load-sharing capacity of the composites mainly depends both on the
interface bonding between the fiber and the matrix, and on the orientation and dispersion
of fibers [32,33]. Low interface bonding strength had a great influence on the mechanical
properties of fiber-reinforced composites. Nonetheless, fiber continuity and orientation in
the LSFC materials greatly reduced this effect. In the direction of the applied bending load,
all fibers in fracture surface could participate in sharing stress on the matrix.

The picture on Figure 7 shows fracture diagram of two different composite materials
after bending failure. It is clear that the fiber broke when the composite cracked. The
addition of fibers improved the flexural modulus of the composite material, as shown in
Figure 6b, indicating that the stiffness of the resulting composite material increased.

3.3. Impact Strength

The notched impact strength of the two composite materials had been improved to
a different degree compared to pure PLA, and both of them show a trend of increasing
impact strength as their fiber content increased (Figure 8). Among them, SSFC material
had a maximum impact strength of 8.216 KJ/m2 when the fiber content was 40 wt%,
which was 2.62 times higher than that of pure PLA. Meanwhile, the impact strength of
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continuous long sisal fiber-reinforced composite material increased to 54.470 KJ/m2, which
was 23.52 times that of pure PLA. There are three ways for fiber-reinforced composites to
absorb impact energy [34]: matrix breakage, fiber breakage and fiber pull-out. PLA is a
notch-sensitive material, and its impact strength is low. When the composite material is
subjected to impact stress, the breakage or pull-out of the fiber can dissipate more energy,
which correspondingly improves the impact strength of the composite material.
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The energy absorbed in terms of fibers being pulled out of the matrix has been reported
to be higher than that absorbed during fiber breakages [35,36]. Poor compatibility makes
the interface bonding strength between the fiber and the matrix poor. When subjected to
impact loads, cracks are often generated in the weakest interfacial layer on composites,
which eventually leads to material fracture. In SSFC material, the fibers were short and
dispersed randomly. Only a few fibers were broken or pulled out during the impact
fracture, so the improvement in the notched impact performance of SSFCs was limited
(Figure 9). In LSFCs, the fibers maintained their original length and were arranged in
parallel. When subjected to an impact load, a large number of fibers were broken or
partially pulled out, absorbing a large amount of energy, which thus improved the impact
strength of the material greatly. As the fiber content increased, this advantage became
more and more outstanding. Therefore, the extrusion-rolling premixing method could
significantly improve the impact strength of LSFC material.

3.4. SEM Microstructure of Composites

Figure 10 shows the micrographs of the fracture surfaces of two composites with a
fiber loading of 20%. It can be seen that there were many holes and the fracture surface was
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quite uneven in SSFCs, which were caused by the debonding of the fibers from the matrix
during the destruction of the composite. That implied only a few fibers were subjected to
stress. Therefore, short fibers had a poor reinforcing effect on the composites. For LSFCs,
though, the fracture surface was relatively neat and the PLA matrix had a good wrapping
effect on the fibers. The fibers appeared partially pulled out during the fracture process.
The long fibers were all involved in the force at fracture, which was also the reason for the
obvious enhancing effect of the LSFC material.
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4. Conclusions

In this paper, two kinds of sisal fiber-reinforced polylactic acid biocomposites with
different fiber lengths were prepared, including random short sisal fiber-reinforced PLA
composites prepared by open milling and unidirectional long sisal fiber-reinforced PLA
composites prepared by extrusion-rolling blending and molding. The effects of preparation
technology and fiber length on the tensile, flexural and impact properties of composite
materials were studied.

The results show that, for LSFC material, the tensile and flexural strength or modulus
improved with increases in fiber content. Due to poor compatibility between PLA and
fiber, the addition of fibers made the tensile strength of the composite decrease in SSFCs.
The elongation at break of both composites decreased with the addition of fiber loadings,
but the decrease in LSFCs was smaller than that of SSFCs. The notched impact strength
of LSFCs had been significantly improved compared with pure PLA and SSFCs. The
extrusion-rolling blending process did little damage to the fiber length and its mechanical
strength, and the fiber orientation in the composite material was controllable. Continuous
long fibers could reduce the stress concentration problem caused by weaker interfacial
performance between the two phases. Therefore, the mechanical strength and modulus of
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the composite material had been highly improved. Extrusion-rolling blending technology
is a prospective method for plant-fiber-reinforced polymer composites manufacture.
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