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Additive manufacturing (AM) methods have grown and evolved rapidly in recent
years. AM for polymers is particularly exciting and has great potential in transformative
and translational research in many fields, such as biomedical [1–3], aerospace [4,5], and
electronics [6,7]. Current methods for polymer AM include material extrusion, material
jetting, vat photopolymerization, and powder bed fusion. As these techniques matured
and developed, more functionalities have been added to AM parts. Such functionalities
include multi-material fabrication [8–10] and integration with artificial intelligence [11].
These have resulted in polymer AM to evolve from a rapid prototyping tool to actual
manufacturing solution.

In this special issue, state-of-the art research and review articles are collected. They focus
on the process–structure–properties relationships in polymer AM. In total, one review and
nine original research articles are included. Gülcan et al. provided a comprehensive review
on the material jetting technique for polymer AM by analyzing the effect of the critical
process parameters and providing benchmarking with other manufacturing processes [12].
In their research, Nagarajan et al. investigated the use of polymer composites that contain
ferromagnetic fillers for applications in electronic and electrical devices. These composites
were processed using material jetting and alignment of the fillers was achieved using
magnetic field [13]. Wu et al. also used material jetting to produce novel composite
materials that are multi-material [14]. Udroiu studied the use of material jetting produced
surfaces for aerodynamic models [15]. Samat et al. evaluated the mechanical and in vitro
properties of material extruded thermoplastic polyurethane and polylactic acid blend
for tracheal tissue engineering [16]. Zhang et al. also used material extrusion of blends
for their experiments. They studied biodegradable polyesters and adjusted the blend
compositions to tailor the mechanical performance [17]. Catana et al. studied the bending
resistance of polylactic acids and compared them to the simulations. They found that
the AM parts deviated from simulations due to fluctuations in process parameters [18].
Jiang and Drummer studied the effect of curing strategy on the part accuracy produced
by vat photopolymerization [19]. Gueche et al. investigated the feasibility of using di-
carboxylic acids to produce solid oral forms with copovidone and ibuprofen using powder
bed fusion [20]. Finally, Schlicht et al. developed new scanning strategies using quasi-
simultaneous exposure of fractal scan paths for powder bed fusion of polymers that can
reduce the energy consumption of the process [21].
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