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Abstract: International guidelines have progressively addressed global warming which is caused
by the greenhouse effect. The greenhouse effect originates from the atmosphere’s gases which
trap sunlight which, as a consequence, causes an increase in global surface temperature. Carbon
dioxide is one of these greenhouse gases and is mainly produced by anthropogenic emissions. The
urgency of removing atmospheric carbon dioxide from the atmosphere to reduce the greenhouse
effect has initiated the development of methods to covert carbon dioxide into valuable products.
One approach that was developed is the photocatalytic transformation of CO2. Photocatalysis
addresses environmental issues by transferring CO2 into value added chemicals by mimicking
the natural photosynthesis process. During this process, the photocatalytic system is excited by
light energy. CO2 is adsorbed at the catalytic metal centers where it is subsequently reduced. To
overcome several obstacles for achieving an efficient photocatalytic reduction process, the use of
metal-containing polymers as photocatalysts for carbon dioxide reduction is highlighted in this
review. The attention of this manuscript is directed towards recent advances in material design and
mechanistic details of the process using different polymeric materials and photocatalysts.

Keywords: photocatalysis; CO2 conversion; carbon dioxide reduction; artificial photosynthesis;
metal-containing polymers; metallopolymers; porous organic polymers; porous coordination
polymers; metal-organic frameworks; metal-organic layers

1. Introduction

In 2015, the United Nations stated 17 Sustainable Development Goals to fight climate
change. Sustainable Development Goal 13 contains the mission of climate action: Adapting
to climate change and investing in low-carbon development [1]. The mission started by
dramatically decreasing greenhouse gas (GHG) emissions. Carbon dioxide is one of the
GHGs, evolving from natural processes, but mainly from artificial activities. The amount
of CO2 in the atmosphere has notably risen from the beginning of the industrial era and
is steadily increasing. In 1750, at the beginning of the industrial revolution, the CO2
concentration in the atmosphere was 277 parts per million (ppm) [2] and has expanded to
up to over 400 ppm measured in May 2022 [3].

Four different approaches can lead to a reduction in CO2 in the atmosphere:
(1) Improving energy efficiencies in general, (2) use of energy sources that have zero
or lower carbon dioxide exhaust such as solar or wind resources, (3) capturing the atmo-
spheric CO2 geologically or (4) converting CO2 into valuable materials [4]. Conversion of
carbon dioxide faces a number of hurdles since CO2 is the final product of carbon combus-
tion and is a relatively inert gas. The reduction potential of CO2 vs. the Normal Hydrogen
Electrode (NHE) E0 is −1.9 V, showing that in an electrochemical process, conversion
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demands high energy caused by high overpotential for a reaction taking place [5]. To
overcome this drawback, catalysts are used to enable the economic conversion of CO2 into
fuels and chemicals. Transforming atmospheric CO2 into C1/C2 fuels and other valued
chemicals, such as carbon monoxide, methanol, formic acid, or methane, is a sustainable
strategy for global carbon balance [6–10].

This review focusses on metal-containing polymers as catalysts for photochemical CO2
conversion. Nowadays, metal-containing polymers, also known as metallopolymers, are at
the forefront for discovering new and sustainable homogeneous, as well as heterogeneous,
catalysts. The combination of metal and polymer moieties merges the advantage of both
materials: Metal centers build up the functional core as redox-active species, whereas
polymeric materials are able to optimize the catalyst performance while acting as stabilizing
structures due to their feature of being tunable. Especially for carbon dioxide conversion,
metal-containing polymers can support photocatalytic [11–15], electrocatalytic [16–20],
photo-electrocatalytic [13,15,21–23] or thermochemical [24] reduction reactions.

A photocatalytic reduction system comprises different components, namely, a catalyst,
a photosensitizer and an electron sacrificing agent. Photosensitizers (PS) offer the abil-
ity to absorb light in the visible region and form electron-hole pairs. Sacrificial agents
(SA) work as electron donors by reducing the photosensitizer [25,26]. This process scales
down the recombination of electron and holes. That means that the redox potentials of the
sacrificial agents and the photosensitizer have to be in accordance with each other. The
photosensitizer is the species in the system that absorbs most of the light. The longevity
of the excited state of the PS is required to be high enough to be reduced by the sacrificial
agent. Therefore, organometallic photosensitizers consisting of metal atoms as the center
combined with organic ligands, such as [Ru(bpy)3]2+ with 2,2′-bipyridine (bpy) ligands,
were used. Water was mostly utilized as a sacrificial hole scavenger and solvent. However,
oxidation from water to O2 required four electron holes (Table 1) and the generated O2
could act as an oxidizing agent having an adverse effect on the reduction reaction [27].
Therefore, organic substances were used as additional sacrificial agents, i.e., triethanolamine
(TEOA), triethylamine (NEt3 or TEA), 1-benzyl-1,4-dihydronicotinamide (BNAH) or
1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) [28].

After reduction by the SA, the photosensitizer can transfer the electron to the cat-
alyst and return to the ground state. The metal center must be an electron-rich metal
atom with filled d-orbitals as found in second- or third-row metals such as ruthenium
or rhodium [25]. Organic ligands provide π-electron-accepting units for metal-to-ligand
charge transfer (MLCT). The strong spin-orbit coupling in the second- or third-row metals
enabled a pathway for excited electrons that switch multiplicities through intersystem
crossing (ISC) [29,30]. Besides receiving electrons from the photosensitizer, the catalytic
species needs to accumulate the electrons for facilitating the multi-electron reduction of
CO2. For this purpose, CO2 needs to be adsorbed on the catalytic center. Metalorganic
complexes are used with Mn(I), Re(I), Ru(II), Co(II), Ni(II), Ir(III) and Fe(III) transition
metal centers that can coordinate carbon dioxide [25]. The surface adsorption activates
the CO2 molecules and forms partially charged CO2

δ•− species. CO2 adsorption occurs
via oxygen coordination, carbon coordination or mixed coordination. Either the oxygen
atoms coordinate with their electron lone pairs by donating them to Lewis acid centers
on the surface, the carbon accepts electrons from a Lewis base, or a mixed coordination
of both processes happens. Adsorbed CO2

δ•−molecules are no longer linear and have
a bended structure [31]. After the catalyst assembles the electrons, these are transferred to
CO2, which is reduced to give the reduction products, such as carbon monoxide, formic
acid or methane (Scheme 1).

The whole process can be optimized by tuning the band energy of the light absorb-
ing molecule. The light energy needs to be higher than its band gap to provide the
required energy. Therefore, the photons of sunlight are divided up according to their ener-
gies/wavelengths into photons in the ultraviolet light range (λ < 400 nm, Ephoton > 3.1 eV),
visible light range (λ = 400–700 nm, 1.7 ≤ Ephoton ≤ 3.1 eV), and infrared light range



Polymers 2022, 14, 2778 3 of 28

(λ > 400 nm, Ephoton < 1.7 eV). The sunlight consists of 95% visible and infrared irradia-
tion [32]. To be able to absorb light in this range, the band gap of the photocatalytically
active materials is designed to be smaller than 3.1 eV. The band gap can not only be tuned
for favorable light absorption but can also be adjusted for suitable potentials for subsequent
redox reactions. The conductive band (CB) of the photocatalyst needs to be raised to a level
which is higher than the reduction potential of CO2, while the valence band (VB) must
exceed the oxidation potential of the electron donor in energy [14]. The reactions to the
different products have distinct potentials. Table 1 presents the half-cell reactions and their
appropriate potentials vs. the normal hydrogen electrode (NHE) at pH = 7 (E0’) [33,34].
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Scheme 1. Basic mechanism for the photocatalytic CO2 reduction including sacrificial agent (SA),
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Table 1. Half-cell reactions and potentials vs. the NHE at pH = 7 [33,34].

Half-Cell Reaction E0’ in V

2 H2O→ O2 + 4 H+ + 4 e− +0.82
2 H+ + 2 e− → H2 −0.41

CO2 + 2 H+ + 2 e− → CO + H2O −0.52
CO2 + 2 H+ + 2 e− → HCOOH −0.61

CO2 + 4 H+ + 4 e− → C + 2 H2O −0.20
CO2 + 4 H+ + 4 e− → HCHO + H2O −0.48
CO2 + 6 H+ + 6 e− → CH3OH + H2O −0.38
CO2 + 8 H+ + 8 e− → CH4 + 2 H2O −0.24

In 1982, Lehn and Ziessel published one of the first innovative studies on the photo-
chemical generation of carbon monoxide and hydrogen from CO2 and H2O. The authors
used Ru(bipyridine)3

2+ as the photosensitizer, Co2+ as the reducing intermediate/catalyst,
and NEt3 as the electron donor dissolved in an aqueous acetonitrile solution. The addition
of bipyridine affected the amount and ratio of generated gas. Lehn and Ziessel proposed
an intermediate formation of Co(I) species in a reduction system together with [Ru(bpy)3]2+,
but its nature was unknown at that point. It was only known that Co acted as a binder
as well as an electrocatalyst for CO2 reduction [34]. Since then, interest in systems for
CO2 photoreduction reaction has continuously grown due to their advantages over other
methods: (1) The whole process is controllable and can be carried out under mild condi-
tions in matters of reaction temperature and pressure; (2) when catalysts are completely
recyclable, the overall consumption of all substances can be minimized, resulting in solely
small molecule and atmospheric CO2 consumption; (3) the light source can be chosen indi-
vidually by applying, e.g., renewable resources such as solar energy, and (4) the systems
are modular and can easily be scaled-up [4,35,36].

However, the mechanistic details for photocatalytic CO2 reduction including photo-
sensitizer and sacrificing agents in the mechanistic circles are complex and mechanistic
investigations are still ongoing. On the other hand, research on material design and efficien-
cies is simultaneously continuing to grow. The number of publications on photocatalytic
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carbon dioxide reduction exponentially increased up to 12,800 publications in the year 2021
alone (Figure 1). Additionally, publications on photocatalytic carbon dioxide reduction
including polymers exponentially increased to 5790 in 2021, showing the high potential of
polymers for assisting carbon dioxide conversion.
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Challenges have emerged for photocatalysts in their performance due to low CO2
adsorptions, conversion efficiencies, and selective product generation [11,36–38]. Addi-
tionally, most of the photocatalytic systems lack stability, as it was revealed in several
studies that a catalyst can barely be used for several catalytic cycles [11,36]. Stability issues
caused by charges also influence the efficiency, showing that electrons and holes have
to be separated adequately within the material to enhance stability. Moreover, the light
absorption range is often limited and efforts need to be made to adjust this range to be in
the visible light region. To sum up the requirements for photocatalytic systems: (1) suitable
band gaps, (2) light absorption abilities in a broad range, (3) the efficient charge separation
of electrons and holes, and (4) several adsorptive as well as reactive sites.

Recent advances have been made to overcome these obstacles such as new tailor-
made materials combining photocatalysts and polymeric materials, which are summarized
in this review article. As the number of materials for CO2 reduction is enormous, this
manuscript focusses on recent developments in metal-containing polymeric systems. Dif-
ferent classes of 1D-coordination polymers and 2D-/3D-coordination networks, including
supramolecular and coordination polymers, porous organic frameworks and metal-organic
frameworks (MOFs) as photocatalysts, in addition to further strategies, are presented. De-
spite ongoing discussion regarding whether metal-organic frameworks can be considered
as 3D-coordination polymers [39], we herein define MOFs and covalent organic frame-
works (COFs) as coordination networks, a sub-category of coordination polymers, as also
recommended by IUPAC [40].

2. 1D-Coordination Polymers
2.1. Re/Ru-Systems

In 2018, Rieger et al. published a micellar support for Re-metal complexes for CO2
reduction. They were the first to use an end group-functionalized polymer for the selec-
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tive complexation of a rhenium complex. The authors synthesized a block copolymer via
yttrium-mediated group-transfer polymerization (GTP) using hydrophobic 2-vinylpyridine
(2VP) and hydrophilic diethyl vinylphosphonate (PDEVP) as monomers. AB-block copoly-
mers (A = poly(2-vinylpyridine) (P2VP), B = poly(diethyl vinylphosphonate) (PDEVP))
were end-group functionalized with ortho-methylated bipyridines which were introduced as
initiators of the yttrium catalysts. The photosensitizer and photocatalyst [Re(CO)3(bpy)Cl]
was attached to the end-groups by complexation to yield Re-bpy-P2VP-PDEVP-block
copolymers. Dynamic light scattering showed the ability of the polymers to self-assemble
to micelles with tunable sizes dependent on the polymer chain lengths while protecting
the Re-metal center in the micellar core. The systems were tested as photocatalysts for
CO2 reduction in N,N-dimethylformamide (DMF) with TEOA as the sacrificial electron
donor under LED light irradiation. In comparison to the respective molecular catalyst,
the complexation to a P2VP-PDEVP-block copolymer structure increased the catalytic
performance, producing CO as the exclusive product with a turnover number (TON) of
13 containing a 0.1 mM catalyst. The pure catalyst itself showed a TON of 6.5 in the same
setup. It was proven that the attachment of a metal complex did not limit the catalytic
properties and even enhanced them, resulting in higher TONs [41].

Since water is the most abundant and ecological solvent, in 2022, He et al. introduced
the first visible light-induced material for photocatalytic CO2 reduction in aqueous media
without the need for the addition of any further photosensitizer. The authors used triblock
amphiphilic micelles which are able to self-assemble in water. The polycarbonate-based tri-
block polymeric micelles contained a rhenium complex in the backbone, namely Re(dcbpy)
(dcbpy = 2,2′-bipyridine-5,5′-dicarboxylic acid), as a photocatalyst [42]. The material
was synthesized by the copolymerization of CO2 and epoxide, followed by subsequent
thiol-ene click reactions according to a previous publication [43]. In detail, tris-carbonyl-
bromo(2,2′-bipyridine-5,5′-dicarboxylic acid) rhenium(I) (RETC) was synthesized by mix-
ing [Re(CO)5Cl] and the bipyridine compound H2BPYDC, followed by the synthesis of the
Re-hydrophobic polymer (RETC-HP) with bifunctional RETC as a chain transfer agent and
propylene oxide (PO) as a monomer unit (Figure 2). Triblock Re-polymers (RETC-TB) were
produced by using allyl glycidyl ether (AGE) as the second block. Thiol-ene click reaction
of the RETC-TB with thioglycolic acid resulted in an amphiphilic Re-polymer (RETC-AP).
Transmission electron microscopy (TEM) measurements of RETC-AP displayed spherical
micelles with uniform particle sizes in water. The micelles had a core–shell structure with
the hydrophilic polymer blocks in the outer sphere. The Re-functionality was protected
in the hydrophobic core part. Polycarbonate chains suppressed dimerization of Re to
maintain its activity. The functionality, as well as the morphology and porosity of the
amphiphilic polycarbonate micellar rhenium catalysts, were easily regulated by the size
of the hydrophilic and hydrophobic blocks. Photoreductions of CO2 were performed in
water with TEOA as a sacrificial agent. Only CO and H2 were detected as products. CO
selectivity was higher than 99% and the TON could be boosted to be 110, which is 37 times
higher compared to the molecular Re catalyst in the organic solvent [42].

The newest approach by Rieger et al. took advantage of Lewis pair mediated GTP with
different Lewis acidic trialkyl aluminum compounds and Lewis basic phosphines to result
in well-defined polymers with bipyridine monomer units for Re- and Ru-complexation.
4-Vinyl-4′-methyl-2,2′-bipyridine (VBpy) was catalytically polymerized for the first time
and a combination of Al(i-BU)3 and PMe3 was determined as the optimum combination as
a catalyst for polymerization. A two-step synthesis was performed to load the bipyridine
bearing polymers, first with [Re(CO)5Cl] as the catalytic centers, followed by Ru(dmb)2Cl2
(dmb = 4,4′-dimethyl-2,2′-bipyridine) performing as a photosensitizer to give macromolec-
ular rhenium-ruthenium complexes (Figure 3). In comparison to earlier studies, multiple
bipyridine units were available in the polymer and not solely the end-group/initiating
species was utilized. Polymer-complex structures were characterized by ultraviolet–visible
(UV-vis), photoluminescence (PL) and infrared (IR) spectroscopy, as well as by inductively
coupled plasma mass spectrometry (ICP-MS). The photocatalytic activity was measured
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under visible light irradiation in DMF with the addition of TEOA as the base and BIH as
the sacrificial electron donor. Attachment of the rhenium and ruthenium centers to the
poly(vinyl bipyridine) (PVBpy) offered proximity to these metal centers for an enhanced
intramolecular electron transfer. PVBpy with a photocatalyst-to-photosensitizer ratio of
5% Re(I) compared to 95% Ru(II) showed a TON of 6088 and a turnover frequency (TOF)
of 66 h−1 for the conversion of CO2 to CO due to effective electron transfers from the one
electron reduced Ru(II) to the Re(I) centers [44].
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Figure 3. Two-step synthesis of the PVBpyRe/Ru photocatalyst by loading with Re(CO)5Cl and
Ru(dmb)2Cl2 [44].

Kim and Choi reported a molecular photosensitizer-catalyst assembly without the
need of any chemical linkage, since linking the photosensitizer and the catalyst could re-
quire complex synthesis procedures. It can also cause disadvantages due to the close
interactions of the functional centers on the one hand but prevents catalyst leaching
on the other hand. Therefore, the authors utilized a Nafion polymer backbone (Nf) as
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a platform for attaching the photosensitizer and catalyst by electrostatic attraction [45].
Nafion ionomers were synthesized by the copolymerization of a perfluorinated vinyl ether
comonomer with tetrafluoroethylene (Figure 4) [46]. The light absorber [Ru(bpy)3]2+ (RuL)
and the catalyst fac-Re(bpy)(CO)3Cl:Re(I) (Re(I)) were both physically assembled on the
Nafion platform in DMF. Re(I) was attached via hydrophobic interactions, as shown by
infrared spectroscopy in the solid state. Washing with DMF proved only a weak bonding by
physical interactions because Re(I) was easily washed away. RuL was linked in a stronger
way via ionic interactions between the cationic RuL and the anionic sulfonic Nf group
to form RuL-Nf. The binding was further characterized by monitoring the absorbance.
UV-vis spectra of RuL-Nf in DMF showed that the Nf had no influence on the absorption
characteristics of RuL. Photocatalytic reduction in carbon dioxide with Re(I)-RuL-Nf was
tested in DMF with TEOA as the electron donor. CO production was analyzed by gas
chromatography. RuL showed enhanced deactivation with higher RuL concentrations,
indicating a self-sensitizing destruction. Upon excitation, the excited RuL* either reacted
with the electron donor, or with itself by a self-destructive process. The role of the Nf
was suggested to hinder this self-destruction and thus maintain the photoactivity and
durability of the RuL photosensitizer. After reaction with TEOA, the excited and reduced
RuL transferred its electron to the Re(I) followed by CO2 reduction to CO. The TON of
Re(I)-RuL-Nf was calculated to be up to 454 after 10 h. This value was four times higher
than the TON of 110 when using the molecular Re(I)-RuL catalytic system without Nafion
fixation, proving the increased efficiency when using a Nafion backbone. Additionally, the
presence of water dramatically decreased the photocatalytic reduction implying that water
is not needed as a proton donor [45].
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Another approach was provided by Marinescu et al. in 2019. The authors modified
different supporting electrode materials with surface-immobilized conjugated polymers by
electropolymerization. For this purpose, a [2,2′-bipyridine]5,5′-bis(diazonium) rhenium
complex was dissolved in acetonitrile with additional 0.1 M tetrabutylammonium hexafluo-
rophosphate as a conducting salt. Clean electrodes (TiO2 electrodes) were used as working
electrodes. Electrochemical grafting was performed by cyclic voltammetry (CV) in several
cycles. An increase in current measured by CV proved successful electropolymerization
and an increasing amount of redox-active rhenium-bipyridine species available on the
electrode surface. Film thickness grew with the number of CV cycles and, thus, with the
number of catalyst-bipyridine species. The resulting orange films of poly(Re(CO)3Cl[2,2′-
bipyridine]-5,5′diyl) were characterized by scanning electron microscopy (SEM) and atomic
force microscopy (AFM) among other techniques, showing a uniform and smooth film
growth across the chosen substrates. Photocatalysis studies of the conjugated polymers on
mesoporous TiO2 substrates were conducted in DMF with TEOA as sacrificial agent. While
the pure TiO2 substrates only generated 0.11 µmol CO in 5 h, the substrate with the lowest
amount of conjugated polymer, electropolymerized with using solely one CV scan, showed
a TON of 70 and a TOF of 14 h−1 after 5 h of irradiation. Using a substrate with higher
catalyst loading, produced by five CV cycles, increased the TON to up to 31 with a TOF
of 6.1 h−1. Films with even higher catalyst loadings did not exceed these numbers, which
indicated that only small quantities of deposited active material remained active over the
5 h of irradiation [47].
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2.2. Ni, Fe, Mn-Systems

Cheaper and more abundant non-noble metals were also tested, as their potential for
practical applications is greater due to their lower prices, greater availability, and lower
toxicities. Very recently, Wang, Wang and Cao used another technique for immobilizing
catalysts on semiconductors for an enhanced charge separation. They published a hybrid
assembly with Nickel poly-pyridine polymers (NiP) binding on CdS quantum dots (QDs)
via thiophene immobilization. NiP was synthesized by polymerizing 2-vinylthiophene
and nickel poly-pyridine complex (NIL) mediated by azobisisobutyronitrile (AIBN) [48].
MPA-CdS QDs (MPA = 3-mercaptopropionic acid) were prepared according to another
publication [49]. Since NiP contained thiophene units, mixing NiP and MPA-CdS QDs
resulted in CdS-Ni assemblies due to the binding affinity between sulfur and cadmium
The assembly was investigated by high-resolution TEM (HR-TEM), X-ray photoelectron
spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), and ICP-MS. Photo-
catalytic activity in terms of CO2 reduction was tested in a mixture of water and TEOA
as the electron donor. The new material assembly provided syngas production with
5500 µmol g−1 h−1 under visible light irradiation. Syngas is an important feedstock for
the chemical industry, consisting primarily of hydrogen and carbon monoxide as it is
industrially used, e.g., for Fischer-Tropsch processes. The syngas composition could be
controlled upon changing the ratios of MPA-CdS QDs and NiP during the assembly. With
a 1:1 ratio of the two material components, the H2/CO ratio was observed to be around 4:1.
The H2/CO ration was adjustable from 4:1 to 1:3 with lower NiP concentration compared
to CdS cores indicating that the nickel center was more sensitive to H2 production, whereas
higher CdS amounts seemed to yield more CO [48].

3. 2D- or 3D-Coordination Networks
3.1. Supramolecular Polymers and Polymer Gels

Another strategy to design photosynthetic systems are self-assembled supramolecular
polymers. This class of material opens the possibility for customizable systems with tailored
functionalities. Covalently connected polymer gels enable the co-location of, e.g., a photo-
sensitizer and a catalyst, as nature presents in its photosynthesis and energy-conversion
devices. The covalent bonding of functional groups for photocatalytic reduction within
the artificial supramolecular systems increases the efficiency of electron transfer, leading
to an enhancement of chemical transformations [50]. Moreover, certain structures are able
to undergo π-stacking. Previous research has shown that π-π stacked supramolecular
polymers are accompanied by enhanced charge separation [51]. Stupp et al. specialized
in synthesizing self-assembled supramolecular polymers that can feature both: photosen-
sitize CO2 reduction reactions while remaining stable in aqueous reaction media. Their
strategy included using supramolecular polymers containing chromophores for light ab-
sorption and a catalyst that can promote CO2 reduction [52]. Amphiphilic structures are
the prerequisite for the self-assembly of tailored structures in an aqueous environment [53].
Therefore, amphiphilic chromophores with diareno-fused ullazine cores were used as
monomers. 1,3-dipolar cycloaddition of azomethine ylide with dipolarophile tert-butyl
6-maleimidohexanoate was used for the synthesis of compounds 1 and 2 (Figure 5). For
generating amphiphilicity, monomers bearing monoimide groups containing carboxylic
acids as hydrophilic head group were introduced. n-Pentyl tails served as hydrophobic
units. The extension of the ullazine core and its π-system by two benzo (1) or two thieno
rings (2) improved the absorption ability for visible light, as proven by UV-vis absorption
and fluorescence spectroscopy. Aqueous self-assembly was enabled by dissolving the
free acids in water using equimolar amounts of NaOH, followed by the addition of NaCl.
Self-assembled in water, the monomers built entangled fibers on a nanoscale, as proven by
cryogenic transmission electron microscopy (cryo-TEM) resulting in hydrogel formation.
The hydrogels were further coupled with a binuclear cobalt catalyst. Photocatalytic CO2
reduction was first performed in acetonitrile (MeCN) and water mixtures, but also in
pure water, while all experiments contained TEOA as a sacrificing electron donor. CH4
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and CO were produced with turnover numbers of TONCO = 1136 and TONCH4 = 490
using the self-assembled cobalt-nanofibers (1) with benzo rings, and TONCO = 1525 and
TONCH4 = 865 for the other system, and (2) with thieno rings under blue 450 nm light
irradiation for 48 h. The photocatalytic activity of fibers (2) was also shown to be stable
over 6 days in a fully aqueous medium with turn over numbers of 4625 and 1518 for CO
and CH4, respectively. Mechanistic studies revealed an oxidative electron transfer from
the sacrificing agent TEOA to the sensitizing hydrogel, which donated electrons to the
cobalt-active sites for CO2 reduction, resulting in CO and CH4 production [52].
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two thieno rings (2); (b) Molecular graphics of ullazine (2) and its self-assembly into a supramolecular
fiber. Adapted with permission from Ref. [52]. Copyright 2022, American Chemical Society.

Recently, Maji et al. reported on a metal-organic coordination polymer gel as a material
for carbon dioxide reduction. As the low molecular weight gelator (LMWG), the authors
used a porphyrin core connected to four terpyridine units (TPY-POR). It was synthesized by
an amide coupling reaction of 4,4′,4′′,4′′′-(Porphine-5,10,15,20-tetrayl)tetrakis benzoic acid
with 2,2′:6′,2′′-terpyridine-4′-yl-propane-1,3-diamine (Figure 6). While the four amide units
acted as H-bonding sites, the terpyridine units were used to bind four metal complexes.
Moreover, the terpyridine moieties served as the linkers, improving exciton mobility and
overall charge mobility. Self-assembly was proven by HR-TEM and powder X-ray diffrac-
tion (XRD) studies. The porphyrin-based monomers self-assembled together with Ru(II)
ions to a fully coordinated polymer gel (Ru-TPY-POR CPG) (Figure 6a) [54]. Ru(II) was
chosen due to its well-studied photocatalytic activity [55]. The self-assembly was promoted
by intermolecular π-π stacking and H-bond interaction between the chromophores. The
nanoscopic material combined a chromophore acting as a photosensitizer and a catalyst
and thus enabled charge transport within the entire network. This novel metal-organic
gel showed impressive conversion of CO2 to CO in the presence of triethylamine (TEA)
sacrificial electron donor under visible light irradiation in an acetonitrile/water mixture.
A high production rate of 3500 µmol g−1 h−1 with a selectivity of over 99% over CH4
was observed when using TEA as SA (Figure 6b). Furthermore, the catalyst was stable
without losing its performance for more than six cycles [54]. Previous research showed
that the addition of BNAH was beneficial for photoreduction due to lower oxidation po-
tential in comparison to TEA [56]. In this study, the addition of BNAH along with TEA
facilitated the formation of CH4 with a selectivity of 95% over CO, with a high production
rate of 6700 µmol g−1 h−1. CH4 was more difficult to produce as it required an 8e−/8H+
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reduction process but quenching of BNAH enabled this complex reduction (Figure 6c). All
photocatalytic reactions, with and without the addition of BNAH, were also proved to
happen equally under natural sunlight irradiation instead with the use of an artificial Xe
lamp providing visible light. Mechanistic investigations included in situ diffuse reflectance
infrared Fourier-transform spectroscopy measurements and quantum chemical calcula-
tions for computing Gibbs free energies. It was revealed that the porphyrin units acted as
a photosensitizer and [Ru(TPY)2]2+ as the catalytic centers for CO2 reduction. The first
mechanistic step was the photoexcitation of porphyrin accompanied by one electron trans-
ferred to [Ru(TPY)2]2+, resulting in [RuII(TPY•−)(TPY)]+. The intermediate was then
reduced to [RuI(TPY•−)(TPY)]. One pyridine nitrogen was substituted by CO2 to form
[RuII(TPY)(η2-TPY)(COO2−)]. The next protonation step was shown to be thermody-
namically favored resulting in [RuII(TPY)(η2-TPY)(COOH−)]+. Further protonation was
accompanied by the elimination of a water molecule to result in [RuII(TPY)(η2-TPY)(CO)]2+.
Reduction and desorption of CO enabled the regeneration of [RuII(TPY•−)(TPY)]+. This
regeneration step could not be shown in the presence of BNAH. When BNAH was ox-
idized, deprotonation and further dimerization to BNA2 was induced [54]. The reduc-
tion potential of the BNA2 dimer exceeded the one of BNAH, facilitating the quenching
of the photosensitizer [56]. [RuII(TPY•−)(η2-TPY)(CO)]+ was protonated by BNAH to
[RuII(TPY•−)(η2-TPY)(COH)]+. The higher reduction potential of BNAH enabled fur-
ther reduction and protonation to [RuII(TPY•−)(η2-TPY)(CH2O)]+, [RuII(TPY•−)(η2-TPY)
(OCH3)]+, and [RuII(TPY•−)(η2-TPY)(HOCH3)]+. Protonation and simultaneous reduc-
tion promoted water elimination to produce [RuII(TPY•−)(η2-TPY)(CH3)]+. Final proton-
coupled electron transfer released CH4 and [RuII(TPY•−)(TPY)]+ was regenerated. These
mechanistic insights revealed that covalent linkage of the photosensitizer and the catalyst
could be a key factor for high performances and the choice of SA is critical for product
selectivity [54].
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(dmso = dimethyl sulfoxide) to form a coordination polymer gel; (b) Visible or sunlight driven CO2

reduction with TEA as single electron donor (SED); (c) Visible or sunlight driven CO2 reduction with
TEA and BNAH as SED. Reprinted with permission from Ref. [54]. Copyright 2022, Wiley-VCH.

In 2020, Sun et al. presented the first pyridyl-salen-based ligands (H2L) with metal-
containing (Mn(III) or Fe(III)) coordination polymers (CPs) that can build supramolecular
structures with hydrogen bonds. The ligand combined a pyridine moiety with salen
ligands containing N2O2 coordination pockets [57]. Pyridine moieties are known to be
stable catalysts for aqueous electrochemical reductions in multiple-electrons and multiple-
protons [58–60] but lack light absorption. Salen moieties have attractive light absorption
properties and electron transfer ability together with the CPs. No matter which metal
center was used (Mn(III) or Fe(III)), the coordination polymers showed high photocatalytic
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activity, as measured by electrochemical impedance spectroscopy (EIS). Nevertheless, Fe(III)
materials had a slightly faster interfacial charge transfer and, thus, a better performance
than Mn(III). EPR studies helped to unravel the reaction mechanism of the pyridyl-salen co-
ordination polymer system paired with TEOA hydrogen and electron donor. These results
implied that the ligand center acted as the catalytic active site and not the Fe(III)/Mn(III)
metal center in the reduction from CO2 to CO. CO was observed as the only product in the
gas phase. It was produced by the Fe(III) CP with 31.6 µmol g−1 h−1, by Mn(III) CP with
14.3 µmol g−1 h−1, and by the single ligand with 4 µmol g−1 h−1. After light absorption
and reduction by TEOA, the ligand radical of H2L was formed, reducing CO2. The superior
catalytic activity of the porous organic polymer together with Fe(III) coordination could
be explained by improved light absorption, as well as the enhanced separation of charge
carriers [57].

Recently published in 2022, Mellot-Draznieks and Dolbecq revealed insights into the
mechanism of photocatalytic CO2 reduction via density functional theory (DFT) calcula-
tions. Therefore, the groups synthesized three heterometallic molybdenum(V) phosphates
containing polyoxometalate (POM) units under hydrothermal conditions. A metal ion of ei-
ther Mn(II) or Co(II) was embedded between two P4Mo6

V anionic rings. For the generation
of a completely inorganic photocatalyst, Fe(II) ions were mixed with the Mn(II)-containing
reaction medium building a 3D network of Fe-Mn. Fe(II) and Fe(III) as well as Mn(II)
centers connect the POM units in a network acting as counter ions to extra phosphate
ions, that do not belong to P4Mo6 rings (Figure 7a). Besides the latter novel structure,
additional structures were synthesized by [Ru(bpy)3]2+ complexes that were added to both
Mn(II) and Co(II) POM unit solutions. The Ru bipyridine complexes served as counter
ions to the anionic chains that were connected via Mn(II) and Co(II) ions to Ru(bpy)-Mn
and Ru(bpy)-Co hybrids. Testing all three compounds for photoreduction, solely Fe-Mn
and Ru(bpy)-Mn complexes were able to catalyze the reduction of CO2 to CH4 and CO as
a side product. TEOA was used as a sacrificing agent and [Ru(bpy)3]2+ as a photosensitizer.
DFT calculations of these bipyridine systems revealed new knowledge leading to a novel
proposed mechanism, in which [Ru(bpy)3]2+ acted as a catalyst and the POM material as
a co-catalyst (Figure 7b). The [Ru(bpy)3]2+ complex was reduced via photoionization in
a one-electron process to yield the [RuII(bpy)2(bpy•−)]+. One-electron charge transfer to
the solvent (water) reconverted this structure to a [Ru(bpy)3]2+ species. The electron was
solvated and could reduce CO2 to CO2

•− because of its tendency to localize in an empty
π* molecular orbital of the carbon dioxide. The reduced CO2

•− coordinated to a metal(II)
ion (e.g., Mn(II)) via its carbon atom by replacing a water ligand that was coordinated to
the metal atom, forming a metal-COO•− intermediate. This Mn-COO•− intermediate was
further reacted to Mn-COOH via electron transfer from a POM cluster and proton transfer
from HTEOA+. At this point, reduced POM units, acting as a co-catalyst, and the sacrific-
ing agent, which can generate protons via photooxidation, were both involved. Another
suggestion was made that TEOA• might act as a proton and electron donor concurrently.
For C-O(H) cleavage, Mn-COOH was again protonated by a second HTEOA+. The author
showed the necessity of a metal-containing photosystem because otherwise CO2

•− itself
would dimerize to oxalate. Further suggestions were made that CO could probably be
reduced to CH4 by the POM materials and TEOA without the influence of [Ru(bpy)3]2+.
For the system containing Co(II)-POM units and [Ru(bpy)3]2+, DFT calculations could
additionally show that these systems were unable to reduce CO2. The authors stated that
Co(II) units dimerized while adsorbing an additional electron, making them inactive for
CO2 reduction [61].

3.2. Porous Organic Polymers

Porous organic polymers (POPs) are macromolecules mainly composed of carbon,
nitrogen, and oxygen atoms, in addition to other non-metallic chemical elements that are
linked covalently. POPs possess high porosity with permanent pores due to their tailor-
made structures. They can be classified by crystallinity to distinguish between crystalline
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covalent organic frameworks (COFs) and amorphous polymers. Amorphous polymers
contain a wide variety of materials such as conjugated microporous polymers (CMPs),
hyper-crosslinked polymers (HCPs), etc. [62]. Covalent triazine frameworks (CTFs) are
another class of POPs that, based on current research, contain crystalline and amorphous
materials. Their aromatic CN-linkage of the triazine unit, as well as the absence of weak
bonds, gives them unique characteristics [63]. The porous structure makes the substrate
accessible for small gas molecules and thus provides enhanced gas adsorption ability.
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Figure 7. (a) Generation of chains by connected M(P4Mo6) sandwich-type POMs with Mn(II) ions,
side (left) and top view (right); (b) Schematic presentation of the mechanism of the photocatalytic
reduction of CO2 to CO with [Ru(bpy)3]2+ as a photosensitizer and TEOA as sacrificial agent using
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with permission from Ref. [61]. Copyright 2021, American Chemical Society.

POPs in general are a class of versatile materials due to their broad light absorption
range caused by the tunable positions of both: the valence and conduction band. They
offer even more tunable characteristics such as surface area or the incorporation of different
functionalities by adding various building blocks or active sites. The surface area is
characterized by the Brunner-Emmet-Teller (BET) specific surface area. Besides the surface
area, pore sizes as well as chemical structure are variable to tune the CO2 adsorption
capability [62,64].

Thornton et al. introduced four general steps for the catalytic process of CO2 reduc-
tion with zeolite catalysts [65]. Zeolites are aluminosilicates in which the crystalline 3D
structure is built from four-connected tetrahedral frameworks making them microporous
minerals [66]. The zeolites’ photocatalytic mechanism can be adapted to POPs: (1) Carbon
dioxide diffuses into the active sites of the material, (2) CO2 is adsorbed on the active
catalytic sites, (3) carbon dioxide is converted into product species, and (4) the product
molecules are desorbed and leave the material [65].

3.2.1. Crystalline Frameworks

COFs offer an extended π-system due to the covalent organic framework and the
supplementary crystallinity. The high conjugation degree enhances the transport and
separation of photogenerated electrons and holes, which boosts charge separation for
enhancing the lifespan of excited states [67].

Noble metals, such as Re or Ru, have shown to be suitable components for photo-
catalytic CO2 conversion, especially when mixed with organic networks. The groups of
Thomas and Han used FeCl3-promoted oxidative coupling polymerization of 5,5′-di(9H-
carbazol-9-yl)-2,2′-bipyridine (CM1) or 3,8-di(9H-carbazol-9-yl)-1,10-phenanthroline (CM2)
to produce porous polycarbazole networks and included catalytic rhenium(II) centers
in their materials (Figure 8). The authors compared two materials: a bipyridine-based
(CPOP-30) and a phenanthroline-based (CPOP-31) polycarbazole network. Both materi-
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als contained nitrogen-units for anchoring Re(I) active species, so that the polycarbazole
networks could be metalated to CPOP-30-Re/CPOP-31-Re via the post-synthetic route by
metalation of the polycarbazole. Direct polymerization of carbazole-rhenium monomers
resulted in CPOP-30′-Re. All carbazole networks, CPOP-30-Re, CPOP-30’-Re and CPOP-
31-Re, formed covalent organic frameworks (COFs) with a regular π-π stacked structure.
The metal-loaded polymer networks were used as photocatalysts in organic solvents, with
an additional sacrificial agent TEOA or TEA. CPOP-30′-Re lacked in performance as it
only had a CO production of 3.2 3 µmol within four hours and 10 mg of catalyst. The
pyridine-based COF CPOP-30-Re outperformed the phenanthroline-based CPOP-31-Re
framework. The phenanthroline framework had a larger delocalization of charges and less
negative reduction potential, weakening the thermodynamic driving forces and thus the
performance in CO2 reduction. The authors found out that the frameworks themselves also
performed as light-harvesting photosensitizers besides keeping chelating sites. With the
pyridine-based framework, CO formation could be achieved with production rates up to
623 µmol g−1 h−1 in less than 10 h with a CO selectivity of almost 98% [68].
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Figure 8. Direct polymerization of carbazole-based, rhenium-bearing monomers resulting in CPOP-
30′-Re and synthesis of rhenium-metalated polypyridine-based porous polycarbazole networks
(CPOPs) via post-synthetic metalation of CPOP-30 or CPOP-31. Reprinted with permission from
Ref. [68]. Copyright 2019, American Chemical Society.

In a similar approach, Chen, Sprick, and Cooper used bipyridine units in an oligomer-
linked framework for anchoring Re(I) complexes. The authors utilized Knoevenagel conden-
sation reactions of 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) and 5,5′-bis(cyanomethyl)-
2,20-bipyridine to obtain a fully π-conjugated backbone and thus an increased conjugation
framework. Besides bipyridine for anchoring [Re(CO)5Cl] complexes via post-synthetic
modification, the COF comprised cyanovinyl-groups due to the Knoevenagel reaction,
which supported CO2 uptake. Transient absorption spectra revealed a long-lived charge
separated state by the presence of Re within the COF. Computational calculations including
DFT and time-dependent (TD) DFT calculations proved electron transfer upon electronic
excitation from the COF backbone to the anchored Re-complexes. Photocatalytic reduction
experiments were performed under visible light in acetonitrile, with TEOA as a sacrificial
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agent. CO production showed a selectivity of 81% and a rate of up to 1040 µmol g−1 h−1. With
the addition of a supplementary photosensitizer 4,4′-bis(1,1-dimethylethyl)-2,2′-bipyridine-
N1,N1′]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-N]phenyl-C]iridium(III)-hexa-
fluorophosphate (Ir[dF(CF3)ppy]2(dtbpy))PF6 (dF = difluoro, ppy = 2-phenylpyridine,
dtbpy = 4,4′-di-tert-butyl-2,2′-dipyridyl)), embedded in the accessible pores of the COF,
the CO production rate was maximized to 1400 µmol g−1 h−1 and a selectivity of 86%
was reached by an electron transfer mechanism between the photosensitizer and COF by
oxidative quenching. Moreover, colloidal Pt was added via in situ photodeposition. The
formation of syngas was enhanced and the H2:CO ratio was influenced from 1:4 to up to
10:1 by adding different amounts of Pt between 0 and 4 wt.%. Higher amounts of Pt caused
higher selectivity towards H2 [69].

Zhang and Huang designed a 2D-COF consisting of 2,2-bipyridyl-5,5-dialdehyde
(BPDA) and 4,4′,4”-(1,3,5-triazine-2,4,6-triyl)trianiline (TTA) reacted via solvothermal re-
actions (Figure 9a). Postsynthetic incorporation of [Re(CO)5Cl] formed Re-COF systems.
Single COFs stacked together in an AA stacking mode (Figure 9b,c) so that all layers showed
identical lateral coordinates. These observations were supported by simulations using
Material Studio 8.0 since this stacking was calculated to be the most probable state. In situ
diffuse reflectance UV-vis spectroscopy helped to reveal mechanistic details (Figure 9d).
Absorption of light induced an intramolecular charge transfer by the Re-COF structure,
which was immediately quenched by TEOA, resulting in a TEOA+-(COF-Re)− state with
charge separation. Afterwards, CO2-Re complexes were formed after Cl− dissociated from
the Re precursor. Finally, CO was steadily generated, which was assigned as the rate
limiting step of the reaction [70].
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permission from Ref. [70]. Copyright 2019, American Chemical Society.

A novel approach in the field of photocatalysts for CO2 reduction was reported in 2017
by Inagaki and Ishida et al. They were the first to use periodic mesoporous organosilica
(PMO) containing bipyridyl ligands in the pore walls. These bipyridyl units facilitated the
coordination of two different metal complexes: a Ru photosensitizer (Ru(PS)) and a Ru
catalyst (Ru(Cat)) by stepwise reaction to build a heterogeneous photocatalyst structure
with the active sites being embedded inside the pores. Photochemical reduction in CO2
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under visible light with the Ru(PS)-Ru(Cat)-Bpy-PMO system in aqueous dimethylamine
(DMA) solution and BNAH as electron donor yielded CO and formate as products. Molar
fractions of the photosensitizer and catalyst (x, y) were determined by XRD measurements.
Moreover, the molar fraction of Ru(Cat) (y) was also quantified by the amounts of CO being
dissociated from the Ru(Cat) under UV-light irradiation. The (x, y) ratio could influence
the product selectivity. The CO selectivity increased by raising molar fractions of Ru(PS) to
x = 0.11 and Ru(Cat) to y = 0.055, resulting in TONs over 162 h−1 and a CO selectivity of
47% vs. 37% for formate. The durability of the tested POMs was sufficient to be recycled
and reused at least three times [71].

Cheaper and more abundant non-noble metals were also tested as photocatalysts in
COF structures. In 2019, Lan et al. reported on COF structures built from covalently linked
5,10,15,20-tetrakis(4-aminophenyl)-porphinato (TAPP-M, M = 2H, Zn, Ni, Cu) and 2,3,6,
7-tetra(4-formylphenyl)-tetrathiafulvalene by Schiff-base condensation resulting in (TTCOF-
M). Testing CO2 reduction without using any sacrificial agent or co-catalyst, only TTCOF-
Cu and TTCOF-Zn, showed significant photocatalytic activity. TTCOF-Zn showed the
highest CO production, with values of 12.33 µmol after 60 h; TTCOF-Cu performed weaker
and caused a CO production of 8.65 µmol. The authors proposed an intrinsic mechanism for
their COFs with metalloporphyrin and tetrathiafulvalene moieties. After photoexcitation,
the tetrathiafulvalene moieties functioning as HOMO centers transferred the electrons to the
metalloporphyrins serving as LUMO centers. Afterwards, the electrons were transported
to the catalytic metal centers in the TAPP units for CO2 reduction, while H2O was oxidized
by tetrathiafulvalene gaining electrons for charge balance. No photosensitizer, sacrificial
agents or co-catalyst were needed for a CO selectivity of almost 100% [72].

Wang et al. designed porphyrin-tetraphenylethene-based COFs (MP-TPE-COF) with an-
chored Ni(II) metals. The anchored Nickel caused a CO production rate of 525 µmol g−1 h−1

with 93% selectivity, as well as a high durability in aqueous solution. TEOA served as
an electron donor and [Ru(bpy)3]Cl2 as a photosensitizer. Besides DFT calculations, mech-
anistic investigations included EIS and steady-state photoluminescence measurements:
the photosensitizer was excited and reduced Ni(II) to give Ni0 which could adsorb and
activate CO2. Protonation generated coordinated COOH species to the Ni(II) intermediate.
Protonation and water release produced CO as a product and regenerated Ni(II) active
sites [73].

2,2′-bipyridine-based COFs with single Ni sites were reported by Yu and Zou in
2019. Condensation of 1,3,5-triformylphloroglucinol and 5,5′-diamino-2,2′-bipyridine un-
der solvothermal conditions led to the 2,2′-bipyridine-based COF (TpBpy). Treatment of
TpBpy with Ni(ClO4)2 inserted Ni ions to give Ni-TpBpy. FT-IR spectroscopy and 13C-
NMR spectroscopy revealed the preservation of the COF structure after Ni loading and
XPS measurements confirmed the successful Nickel loading. N2 adsorption and desorp-
tion measurements showed a decrease in the BET surface area from 973 to 580 m2 g−1,
which further indicated the loading with Ni(II) ions in the COF structure by chelation
of the bipyridine binding units. The photocatalytic activity in CO2 reduction was mea-
sured in aqueous acetonitrile, with TEOA as a sacrificing agent and a Ru photosensitizer.
The system induced a CO production rate of 811 µmol g−1 h−1 with a selectivity of 96%.
The experimental data and DFT calculations opened suggestions for a mechanism: the
[Ru(bpy)3]2+ photosensitizer was first excited. Then, the excited electrons were transferred
through the COF to the adsorbed CO2 on the Ni(II) sites. Higher CO2 affinity of the
Ni sites in comparison to H+ adsorption determined the selectivity of the formed prod-
uct in terms of inhibiting H2 formation. Compared to free CO2, adsorbed species had
a bended configuration demonstrating its activation by metal sites (Figure 10). In general,
the bipyridine moiety hosted the CO2 and metallic catalytic centers and additionally facili-
tated the activation of CO2. This combined functionality could be enabled by synergistic
effects between the catalytic sites and the framework [74].



Polymers 2022, 14, 2778 16 of 28

Polymers 2022, 14, x FOR PEER REVIEW 16 of 29 
 

 

showed the highest CO production, with values of 12.33 μmol after 60 h; TTCOF-Cu per-

formed weaker and caused a CO production of 8.65 μmol. The authors proposed an in-

trinsic mechanism for their COFs with metalloporphyrin and tetrathiafulvalene moieties. 

After photoexcitation, the tetrathiafulvalene moieties functioning as HOMO centers trans-

ferred the electrons to the metalloporphyrins serving as LUMO centers. Afterwards, the 

electrons were transported to the catalytic metal centers in the TAPP units for CO2 reduc-

tion, while H2O was oxidized by tetrathiafulvalene gaining electrons for charge balance. 

No photosensitizer, sacrificial agents or co-catalyst were needed for a CO selectivity of 

almost 100% [72]. 

Wang et al. designed porphyrin-tetraphenylethene-based COFs (MP-TPE-COF) with 

anchored Ni(II) metals. The anchored Nickel caused a CO production rate of 525 μmol g−1 

h−1 with 93% selectivity, as well as a high durability in aqueous solution. TEOA served as 

an electron donor and [Ru(bpy)3]Cl2 as a photosensitizer. Besides DFT calculations, mech-

anistic investigations included EIS and steady-state photoluminescence measurements: 

the photosensitizer was excited and reduced Ni(II) to give Ni0 which could adsorb and 

activate CO2. Protonation generated coordinated COOH species to the Ni(II) intermediate. 

Protonation and water release produced CO as a product and regenerated Ni(II) active 

sites [73]. 

2,2′-bipyridine-based COFs with single Ni sites were reported by Yu and Zou in 2019. 

Condensation of 1,3,5-triformylphloroglucinol and 5,5′-diamino-2,2′-bipyridine under 

solvothermal conditions led to the 2,2′-bipyridine-based COF (TpBpy). Treatment of 

TpBpy with Ni(ClO4)2 inserted Ni ions to give Ni-TpBpy. FT-IR spectroscopy and 13C-

NMR spectroscopy revealed the preservation of the COF structure after Ni loading and 

XPS measurements confirmed the successful Nickel loading. N2 adsorption and desorp-

tion measurements showed a decrease in the BET surface area from 973 to 580 m2 g−1, 

which further indicated the loading with Ni(II) ions in the COF structure by chelation of 

the bipyridine binding units. The photocatalytic activity in CO2 reduction was measured 

in aqueous acetonitrile, with TEOA as a sacrificing agent and a Ru photosensitizer. The 

system induced a CO production rate of 811 μmol g−1 h−1 with a selectivity of 96%. The 

experimental data and DFT calculations opened suggestions for a mechanism: the 

[Ru(bpy)3]2+ photosensitizer was first excited. Then, the excited electrons were transferred 

through the COF to the adsorbed CO2 on the Ni(II) sites. Higher CO2 affinity of the Ni 

sites in comparison to H+ adsorption determined the selectivity of the formed product in 

terms of inhibiting H2 formation. Compared to free CO2, adsorbed species had a bended 

configuration demonstrating its activation by metal sites (Figure 10). In general, the bipyr-

idine moiety hosted the CO2 and metallic catalytic centers and additionally facilitated the 

activation of CO2. This combined functionality could be enabled by synergistic effects be-

tween the catalytic sites and the framework [74]. 

 

Figure 10. Schematic diagram of the photocatalytic CO2 reduction by a 2,2′-bipyridine-based COF 

with embedded Nickel sites. Reprinted with permission from Ref. [74]. Copyright 2019, American 

Chemical Society. 

Figure 10. Schematic diagram of the photocatalytic CO2 reduction by a 2,2′-bipyridine-based COF
with embedded Nickel sites. Reprinted with permission from Ref. [74]. Copyright 2019, American
Chemical Society.

Further networks such as porous polycarbazoles or porous covalent triazine frame-
works were investigated as materials to support photocatalytic carbon dioxide reduction.
Just recently in 2022, Byun and Wang published their work on crystalline porous organic
polymers (CPOPs) consisting of polycarbazoles functionalized with various transition-
metal complexes. The CPOPs were synthesized by simple one-pot oxidative coupling
polymerization by using 1,3,5-tri(9H-carbazol-9-yl)benzene as a precursor, promoted by
FeCl3. CPOPs themselves, showed a capacity to capture CO2 due to their microporosity
and a high surface area. After synthesis, the obtained CPOPs were dispersed in chloroform
and mixed with either iron chloride, cobalt chloride, or nickel chloride for metal impreg-
nation to give CPOP-Fe, CPOP-Co, and CPOP-Ni, respectively. The metal species were
anchored within the porous network, as proven by scanning electron microscopy, FT-IR,
powder-XRD, N2 physisorption, and diffuse reflectance (DR) measurements. The unpaired
electrons in the 3d-orbitals of the transition metal centers were delocalized and were able
to react with anti-bonding π-orbitals of CO2. Photocatalytic activity was tested in aqueous
acetonitrile solution under visible light irradiation with [Ru(bpy)3]2+ as a photosensitizer
and TEOA as a sacrificial agent. The mechanism for a Ni-loaded CPOP was proposed as
follows: PS2+ was excited by light absorption and PS2+* was formed. TEOA reduced this
state to give PS+. The excited electron was transferred to the Ni active site at which CO2
was coordinated to the metal. Activation of the C=O double bond led to negatively charged
CO2

−. The electron was transferred to the adsorbed CO2 and formed a CO2* intermediate.
After further protonation and reduction, H2O and CO were released (Figure 11). Different
metal ions had an impact on the kinetics of activation and, consequently, product selectivity
and production rate. The CPOP-Co showed the best results, with a CO production rate of
31,000 µmol g−1 h−1; however, this just led to a CO selectivity of 55%. While CPOP-Ni
produced CO with a production rate of 28,000 µmol g−1 h−1 with 89% selectivity, CPOP-
Fe lacked in both production rate and selectivity compared to the other two transition
metals [75].

Huang and Cao were the first to use porous covalent triazine frameworks (CTFs),
modified with a rhenium-based catalyst, for photocatalytic CO2 conversion [76]. CTFs
had already been known as gas adsorption materials due to their porous structure [76–78].
The CTF structure was based on 2,6-dicyanopyridin (CTF-py), so that the nitrogen units
provided the possibility to act as anchor sites for metal catalyst molecules. A [Re(CO)5Cl]
complex, which can act as both photosensitizer and photocatalyst, was coordinated to
these nitrogen sites via ionic thermal synthesis to give Re-CTF-py networks. In a gas–solid
system including TEOA as a sacrificing agent, CO was produced with a rate of up to
353 µmol g−1 h−1 and a TON of 4.8 within 10 h. In this solid-gas system, the photocatalyst
was not dissolved in a solution, instead the Re-CTF-py was dispersed on a quartz film and
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a MeCN/water mixture was added to the cell. Leaching of the active Re sites was prevented
and the catalyst showed better recyclability [76].
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Wang, Zeng, and Jiang opened the path for a scalable bottom-up synthesis of
two-dimensional (2D) COF nanosheets. The synthesis approach included an imine-
exchange strategy. 5,10,15,20-tetra(p-aminophenyl)porphyrin (H2TAPP) reacted with 4,
4′-biphenyldialdehyde (BPDA) under solvothermal conditions. Afterwards, the addition
of an excess amount of 2,4,6-trimethylbenzaldehyde (TBA) enabled the 2D imine-linkage
to give COF-367 nanosheets (NSs) (Figure 12). TBA prevented π-π stacking of the single
COF nanosheets due to methyl side groups, enabling anisotropic growth along the pla-
nar nanosheet direction. Using CoTAPP instead of H2TAPP resulted in Co(II) porphyrin
(CoPor)-based COF-367-Co NSs. As a proof-of-concept, the photocatalytic performance
of the COF-367-Co NSs was explored under visible light irradiation. In an 0.1 M KHCO3
aqueous solution with [Ru(bpy)3]2+ photosensitizer and ascorbic acid (AA) as the sacrificial
agent and electron donor, the production rate of CO from CO2 was remarkably high, with
a value of 10,162 µmol g−1 h−1 and a CO selectivity of 78% in comparison to H2. The
whole COF-367-Co catalytic system remained almost stable with a production rate of still
10,000 µmol g−1 h−1 after six successive cycles. The bulk material, not having a 2D-layered
structure, exhibited a CO production rate of only 124 µmol g−1 h−1. Mechanistic inves-
tigations were performed using photoluminescence and ultrafast transient absorption
spectroscopic experiments. These experiments revealed that [Ru(bpy)3]2+ became excited,
while AA sacrificed one electron to the Ru to achieve [Ru(bpy)3]+. This electron was further
transferred from the Ru complex to the COF. Within the COF, CO2 was coordinated to the
Co(II) atoms. With the electron transfer, COOH* was formed as the coordinated intermedi-
ate species. This formation turned out to be the reaction limiting step. DFT calculations
revealed a small energy barrier of 0.47 eV for the intermediate formation process. The small
energy barrier facilitated the process to occur at room temperature. These insights uncov-
ered that the 2D nanosheet structure enhanced the photocatalytic performance because of
its large aspect-ratio. The 2D morphology caused a large number of active sites for a high
adsorption capacity on the surface. Compared to the respective bulk material, in which the
active sites are rather hidden inside the bulk, the accessibility of active sites on the surface
of the nanosheets increased the rate of CO2 reduction [79].
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3.2.2. Amorphous POPs

In 2019, Tan et al. stated that high CO2 conversions needed both efficient photo-
catalysis with high CO2 uptakes and short diffusion paths. Therefore, they reported on
a novel material which consisted of a porous hyper-crosslinked polymer on TiO2 function-
alized graphene (HCP-TiO2-FG). TiO2 is a low cost photocatalyst, HCPs provided a porous
network. By the linkage, the advantages of all materials were combined. The material
was synthesized by a synthetic strategy which included in situ knitting [80]. First, the
functionalized TiO2-Graphene (TiO2-FG) was manufactured from TiO2-graphene (TiO2-G)
by a solvothermal process and the hydroxyl groups on the TiO2 surface were converted
to phenyl groups [81]. The polymer layer was hyper-crosslinked on this TiO2-FG skele-
tal structure. Polymer layers were hyper-crosslinked on the TiO2-FG by knitting of the
phenyl groups and 1,3,5-Triphenylbenzene (syn-PhPh3), resulting in HCP-TiO2 [82]. Due to
the porosity, a high surface area of 988 m2g−1 and a CO2 uptake efficiency of 12.87 wt.%
were measured. Without the use of sacrificial agents or a co-catalyst, CH4 production via
a multi-electron process in a gaseous set-up reached a value of 27.63 µmol g−1 h−1 and
a CH4 selectivity of 83.7% was measured. Methane is a higher valued product than CO as
CH4 can be used as a raw product to be transformed into more complex organic molecules.
The composite structure enables a high CO2 uptake in its pores, as well as short diffusion
paths between adsorption and catalysis. Moreover, the HCP absorbed light in a broad range
and the graphene layer improved charge separation due to fast charge mobilities [80]. In
a similar approach, the same group used HCPs grafted onto a TiO2 surface metalized
with Pd (HCP-TiO2-Pd). Pd nanoparticles could capture photogenerated electrons and
worked as an electron trap. This approach improved the charge separation for the com-
plete reduction reaction. The HCPs were synthesized by copolymerizing N-heterocyclic
carbenes (NHC) and benzene. The HCP contained N-heteroatom sites. These were induced
defects acting as anchor points for Pd nanoparticles which performed as a co-catalyst.
Friedel-Crafts reaction was used to link the phenyl groups of the TiO2 surface with the
HCP network. Because the heteroatom-induced defects of the HCP were spread over the
whole material, the Pd sites were distributed evenly (Figure 13). Extensive morphology
investigation including high-angle annular dark-field (HAADF) and energy-dispersive
spectroscopy (EDS) mapping images proved the covalent linkages, building of a porous
HCP network and uniform dispersion of active sites. The photocatalytic performance was
tested in a gas–solid reaction system under visible light irradiation, but without the addi-
tion of further sacrificial agents or photosensitizers. HCP-TiO2-Pd showed a production
rate of CH4 of 237 µmol g−1 h−1 and a selectivity of more than 99.9%. Structural stability
was also given; the production rate was maintained with a value of over 80%, even after
five cycles. Pd favored subsequent hydrogenation reduction in CO2, enabling methane
formation with a high selectivity [83].

Wang and Zang integrated catalysts to POPs with two different environments, which
were metallophthalocyanine and salphen moieties [84]. Metallophthalocyanine POPs
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with M-N4 (M = Co, Ni, Cu or Fe) sites are already widely known as active materials for
electro- and photocatalysis of CO2 [73,85,86]. Besides the M-N4 metallophthalocyanine
environment with M = Ni, salphen M-N2O2 (M = Ni, Co) moieties were integrated in the
materials as a second environment. The material was synthesized by polycondensation
reaction of nickel(II)-2,3,9,10,16,17,23,24-octakis(amino)phthalocyanine ((NH2)8NiPc) with
2,6-diformylphenol (DFP) in a dimethylacetamide/mesitylene mixture and with the reg-
ulating agent aniline. This step was followed by treatment with Ni(OAc)2 × 4 H2O or
Co(OAc)2 × 4 H2O, resulting in a porous framework with atomically isolated Ni-N4 and
M-N2O2 (M = Ni, Co) sites (Figure 14), denoted as NiPc-NiPOP or NiPc-CoPOP (Figure 14).
FT-IR spectroscopy, XPS, Fourier transformed extended X-ray absorption fine structure
(FT-EXAFS) spectroscopy, high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) and EDS mapping revealed an amorphous structure of the
samples and confirmed that one metal ion was incorporated in each of the salphen pockets.
The BET surface area was determined to be 333 m2 g−1. Nonlocal density functional theory
(NLDFT) proved the mesoporous character and the accessibility of the catalytic sites. Pho-
tocatalytic experiments were conducted under visible light in acetonitrile/water solution
with additional [Ru(bpy)3]2+ photosensitizer and TEOA sacrificial agent and monitored by
gas chromatography. The NiPc-NiPOP material had an extraordinary CO generation of
7.77 mmol g−1 with a CO selectivity of 96% after four hours of reaction time and performed
better than NiPc-CoPOP. Control experiments and theoretical DFT studies showed that the
salphen Ni-N2O2 units were more active for CO2 reduction than the metallophthalocyanine
sites [84].
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3.3. Metal-Organic Frameworks

Metal–organic frameworks (MOFs) are hybrid crystalline materials, also known as
porous coordination polymers (PCPs) or porous coordination networks (PCNs) [87]. They
are built by metal ions or metal clusters, serving as nodal points, that are coordinatively
linked by organic ligands [88]. The combination of different metals and organic linkers
opens the path to millions of distinct MOFs, i.e., over 500,000 have been predicted and
90,000 synthesized so far [89]. Therefore, the number of MOFs reported regarding CO2
reduction studies is also enormously high. We recommend comprehensive reviews [90,91]
on MOFs for carbon dioxide photocatalytic reduction.

MOFs can build 1D, 2D and 3D structures. Among the structural diversity, the main
MOF systems that have been investigated so far are zeolitic imidazolate frameworks
(ZIFs), carboxylate MOFs, and zirconium-based MOFs [92]. The properties of a MOF
are determined by the network connectivity of the single molecules. MOFs have a large
internal surface area, and their pores have controllable sizes which have adsorptive sites
for capturing gas molecules [14,93]. Tailored MOFs offer the opportunity of incorporating
functional species, e.g., in the form of nanoparticles, within the frameworks, which can be
prepared within the cavities or be directly encapsulated in the MOFs [94]. Tunable pore
sizes as well as surface areas and chemical composition make MOFs versatile materials for
photocatalytic CO2 conversion [95,96]. In a MOF, the metal clusters can serve as reductive
sites for CO2 reduction, while the organic linkers enhance CO2 adsorption and charge
transport [87,91].

In 2014, Luo et al. used iridium as an active light-harvesting agent due to its broad
light absorption range and the longevity of its excited states. Ir(III) was embedded into a bi-
functional iridium-yttrium coordination polymer photocatalyst of Y[Ir(ppy)2(dcbpy)]2[OH]
(ppy = 2-phenylpyridine, dcbpy = 2,2′-bipyridine-4,4′-dicarboxylate). The generated com-
plex acted as a photosensitizer for harvesting visible light and, at the same time, as a catalyst
for CO2 reduction. The [Y(OH)2(CO2)2]∞ chains were constructed by Y3+ ions acting as
multi-coordination centers bridged by two OH- units and two carboxylate groups. This
coordination enhanced the stability to construct a 3D supramolecular framework. CO2 was
reduced to HCOO− in a mixture of MeCN and TEOA with a TOF of 119 µmol g−1 h−1. The
authors proposed a mechanism for MOF-stabilized photocatalyst-mediated CO2 reduction
as follows. After the catalyst was excited by visible light irradiation, TEOA reduced this
state as a sacrificial agent. When two adjacent excited units underwent a one-electron
transition and transferred an electron to CO2, carbon dioxide was reduced to HCOO− in
a two-electron process [97].

Jiang, Zhang, and Xiong implemented MOFs in a photocatalysis for gaseous reactions
under UV light irradiation in 2014. For this purpose, the catalyst was not dissolved in
an aqueous media and only interacted in its solid form with gaseous molecules. Effective
molecular adsorption and activation were crucial for such a system. The authors developed
a hybrid MOF-metal core–shell structure, as proven by TEM and SEM images. The microp-
orous core of the MOF was built by Cu3(BTC)2 (BTC = benzene-1,3,5-tricarboxylate) and
a semiconductor (SC) TiO2 was included as a macroporous shell for generating excitons
(Figure 15). The MOF-TiO2 structure was referred to as Cu3(BTC)2@TiO2. CO2 was able to
penetrate the macroporous shell structure and was captured in the microporous MOF core
in which it was adsorbed on the Cu sites. The mechanism was investigated via ultrafast
transient absorption. When TiO2 was photoexcited, electron-hole pairs were formed. The
electron was transferred to the Cu3(BTC)2 MOF structure including the catalytic metal
atoms. Upon receiving the electrons, Cu was activated, and CO2 reduction of adsorbed
molecules took place via an eight-electron process, resulting in CH4. The CH4 produc-
tion rate of Cu3(BTC)2@TiO2 was determined as 2.64 µmol g−1 h−1, whereas bare TiO2
produced 0.52 µmol g−1 h−1 CH4 and 2.29 µmol g−1 h−1 H2. The MOF structure and SC
improved the charge transfer from the SC to MOF and thus the charge separation within
the SC [98].
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Figure 15. (a) Illustration of the core–shell structure; (b) TEM image; (c) SEM image of
Cu3(BTC)2@TiO2 structure. Reprinted with permission from Ref. [98]. Copyright 2014, Wiley-VCH.

Recent publications indicated that solely superficial layers on surfaces were involved
in photoreactions due to restricted diffusion barriers [99–102]. Consequently, a new class
of material has emerged which are 2D metal-organic layers (MOLs). MOLs are basically
a monolayer version of MOFs, also referred to as MOF nanosheets.

In 2018, Lin et al. published the first photosensitizing MOL made from secondary
Hf12 building units and [Ru(bpy)3]2+-derived dicarboxylate ligands by solvothermal reac-
tion. Carboxylate exchange reactions enabled a modification of the Hf12-Ru surface with
an additional rhenium(I) or manganese(I) catalyst (Figure 16). The monolayer structure of
1.6 nm thickness was analyzed via HR-TEM, XRD and AFM measurements among others.
The materials Hf12-Ru-Mn or Hf12-Ru-Re possessed both functionalities of a photosensitizer
and metal catalyst. CO2 photoreduction was carried out in acetonitrile after the addition
of TEOA, and BNAH or 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH)
as an electron donor. Hf12-Ru-Re together with BIH showed a product selectivity for CO
of 98% and a TON of up to 3849 in 24 h under artificial light irradiation. Using BNAH as
sacrificial electron donor the TON reached 2092 in 24 h. Remarkably, CO2 reduction under
sunlight radiation was feasible with the Hf12-Ru-Re MOL and BIH and could reach a TON
of 670 within 6 h of irradiation. Photophysical and electrochemical mechanism studies
included methods such as phosphorescence spectroscopy, CV and differential pulse voltam-
metry (DPV). It revealed that the BIH reduced Hf12-Ru units, acting as photosensitizing
centers, which were then negatively charged enough to reduce the catalytic rhenium units
(Figure 16) [103].
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Figure 16. Schematic synthesis of Hf12-Ru-Mn and Hf12-Ru-Re and proposed sunlight-driven
mechanism. Reprinted with permission from Ref. [103]. Copyright 2018, American Chemical Society.

Peng et al. reported on MOLs made from Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaim-
inotriphenylene) with a planar Ni-N4 coordination motif [104]. The material had been
known as a semiconducting metal-organic graphene analogue with a high conductivity
for charge transportation [105]. The height profile measured by AFM microscopy revealed
a thickness of 4.2 nm which showed that the nanosheet was made out of only few layers
of 2D MOFs. For CO2 reduction, the MOL performed as a co-catalyst in hybrid catalytic
systems under visible light irradiation with [Ru(bpy)3]2+ as photosensitizer and TEOA
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as sacrificial agent. In a solvent mixture of water and acetonitrile, CO was formed with
a selectivity of 97% and a production rate of 3450 µmol g−1 h−1. Even after six cycles, the
material proved to be stable [104]. The photocatalytic activity of Ni3(HITP)2 was further
improved by adding reduced graphene oxide (rGO) that interacted with the catalyst via
Coulomb interactions. The heterostructure had an impact on the electronic structure of the
metal centers due to electrostatic charge transfer and π-π interactions. The CO production
rate was improved to up to 3800 µmol g−1 h−1 with 92% CO selectivity. PL and PL decay,
as well as ultraviolet photoelectron spectroscopy (UPS), accompanied by DFT calculations,
suggested a division of the mechanistic process into three main steps: (1) photon absorbance
of the photosensitizer and thus being transformed to the excited state, (2) the photosensitizer
transferred its excited electron to the Ni3(HITP)2 located in the nanosheet layer, (3) CO2 was
reduced to CO at the Ni-N4 sites. In detail, the photoexcited electron in the [Ru(bpy)3]2+*

was delocalized in the π* orbital. The formed hole was neutralized by reduction from the
sacrificial electron donor TEOA. The electron was transported within the conduction band
of the nanosheet to the Ni-N4 sites caused by the metallicity of the MOL. Ni-N4 sites acted
as catalysts due to their enhanced electron density. Electrophilic adsorption of CO2 and H+

on catalytic Ni-N4 sites was promoted. COOH* was formed as an adsorbed intermediate
on the catalytic centers. Protonation of the intermediate plus reduction released H2O and
CO. The rGO enhanced the electrophilicity of Ni-N4 sites and performed as an electron
relay of the photogenerated electrons to the conduction band of the metal centers for
reduction [106].

Gao et al. published new noble-metal-free hybrid photocatalytic nanosheets with
2D zinc(II) porphyrin-based networks of 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin
(TCPP), called Zn-MOF NSs or Zn-MOLs. Photocatalytic reduction was utilized with
a binuclear cobalt complex, namely [Co2[(OH)L](ClO4)3 (L = N[(CH2)2NHCH2(m-C6H4)
CH2NH(CH2)]3N), as co-catalyst, besides TEOA as an electron donor. AFM measurements
revealed a thickness of 4.7 nm of the NSs. The photocatalytic system including the co-
catalyst showed a high CO selectivity of 91% and a TON of 118, which was almost twice
the value compared to the bulk material of the respective Zn-MOF (TONCO = 64). The Zn-
MOLs proved also to be stable under visible light irradiation. The 2D network had a higher
charge transport ability and thus an enhanced charge separation compared to the bulk
material [107]. Based on findings from Lu et al. [108], Gao et al. proposed a mechanism
for the CO2 photoreduction to CO with Zn-MOLs (Figure 17). The building block of
the Zn-MOL nanosheets, which is ZnTCPP, formed [ZnTCPP]* after being photoexcited.
TEOA reduced this intermediate to [ZnTCPP]-. CO2 was coordinated to the binuclear
cobalt complex containing Co2

II,II which formed a carbonate-bridged complex. Via proton-
coupled electron transfer with the help of [ZnTCPP]-, complex b was formed containing
two Co centers with two different oxidation states (Co2

II,III). After another proton-coupled
electron transfer with [ZnTCPP]-, c was formed containing two CoII centers. Finally, CO was
released, and the binuclear cobalt complex can be reintroduced in the catalytic cycle [107].
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4. Conclusions

This review summarizes the recent developments in photocatalytic CO2 conversion
using metal-containing polymers. New materials and mechanistic insights were revealed
for different material classes, such as supramolecular and coordination polymers, porous
organic polymers, and porous coordination polymers (MOFs and MOLs). Table 2 presents
an overview of the key reports mentioned in this review.

Table 2. Overview of key reports including used catalyst system, solvent, light source and the main
product after photocatalytic CO2 reduction.

Catalyst Support Photocatalytic System Solvent Light Source Main
Products Ref.

Triblock
amphiphilic micelles Re (Cat, PS), TEOA (SA) H2O 500 W Xe

(λ ≥ 400 nm) CO, H2 [42]

Poly(vinyl bipyridine) Re (Cat), Ru (PS),
TEOA+BIH (SA) DMF green LED

(λ = 520 ± 30 nm) CO [44]

Polymers on
quantum dots

CdS-Ni assembly
(Cat, PS), TEOA (SA) H2O LED

(λ = 420 nm) CO, H2 [48]

Ullazine
supramolecular

polymers

Co (Cat), Chromophores
(PS), TEOA (SA) MeCN/H2O blue LED

(λ = 450 nm) CO, CH4 [52]

Metal-organic
coordination
polymer gel

Ru (Cat), Porphyrin (PS),
TEA/BNAH (SA) MeCN/H2O 300 W Xe lamp

(λ > 400 nm) CO, CH4 [54]

Bipyridine COF Re (Cat), Ir (PS), TEOA (SA) MeCN
300 W Xe

(λ > 420 nm
cut-off filter)

CO, H2 [69]

PMO with
bipyridyl ligands Ru (Cat), Ru (PS), BNAH (SA) DMA/H2O 500 W Hg

(λ > 430 nm) CO, HCOO− [71]

Porous CTF Re (Cat, PS), TEOA none 300 W Xe
(λ = 200–1100 nm) CO [76]

HCP-TiO2-Pd TiO2 (Cat), Pd (co-Cat) none 300 W Xe,
UV-vis light CH4 [83]

Metallophthalocyanine
and salen POPs Ni (Cat), Ru (PS), TEOA (SA) MeCN/H2O white LED

(λ = 400–800 nm) CO [84]

Hybrid MOF-metal
core–shell structure Cu (Cat), TiO2 (PS) none 300 W Xe

(λ < 400 nm) CH4 [98]

MOLs made
from Ni3(HITP)2

Ni (Cat), MOL (co-Cat),
Ru (PS), TEOA (SA) TEOA/H2O/MeCN 100 W LED

(λ = 420 nm) CO [104]

1D-coordination polymers were revealed to be a simple material for CO2 reduction.
Even systems without the necessity of an additional photosensitizer were already published.
Moreover, supramolecular and coordination polymers are a class of efficient supports
for photocatalysts. Amphiphilicity of the systems helped to prevent the degradation of
the catalytic centers in an aqueous system. Additionally, self-assembled materials and
hydrogels facilitated simple co-location of photosensitizer and catalysts. Proximities of
the catalytic metal centers enhanced intramolecular charge transfers, but mechanistic
details on new materials are still missing. Porous organic polymers that were synthesized
as 3D frameworks or 2D layers performed as a versatile class of materials due to their
porosity. Their tunable characteristics such as light absorption ability and energies of
the band gaps were used for improvements concerning selectivity and stabilities. The
field of POPs supported by non-noble metals or inorganic semiconductors, especially, was
recently broadened and complemented by unraveling mechanistic details. Metal-organic
frameworks have shown to have accessible pores for small molecules and can additionally
already carry photocatalytically active metal centers in their basic structure. Research on
this enormous variety of structures has shown that the composition of the whole system and
the choice of solvent have a strong impact on carbon dioxide adsorption ability, product
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selectivity, catalyst stability, productions rates, etc. In general, high electron densities
and improved electron-hole separation support CH4 formation over carbon monoxide
generation. However, since both products are still C1 building blocks, photocatalyst
efficiencies have to be pushed to the next level for C2 product formation.

Most of the presented photocatalytic performances have been executed in saturated
CO2 atmospheres and watery systems on a lab scale. For translation of these systems to
an industrial-relevant production scale, some drawbacks need to be improved. One draw-
back is that the flue gas for conversion is often not pure CO2 gas. Other gases, such as
N2, NO2, can also be contained in the gas streams. The selectivity for CO2 adsorption in
the presence of other gas molecules on the catalytic metal centers needs to be maximized.
Moreover, gas streams have rather low pressures. Efficient adsorption of carbon dioxide
on catalytic active sides under low CO2 pressure and concentrations must be facilitated
for generating an industrial relevance of photocatalytic carbon dioxide reduction. As
a consequence, sophisticated processes are so far only performed under laboratory utiliza-
tion and need to be translated to industrial scales.
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