
Citation: Hernández-Fernández, J.;

Cano, H.; Aldas, M. Impact of Traces

of Hydrogen Sulfide on the Efficiency

of Ziegler–Natta Catalyst on the Final

Properties of Polypropylene.

Polymers 2022, 14, 3910. https://

doi.org/10.3390/polym14183910

Academic Editors: Ana María

Díez-Pascual, Gianluca Cicala

and Shin-Ichi Yusa

Received: 2 August 2022

Accepted: 16 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Impact of Traces of Hydrogen Sulfide on the Efficiency of
Ziegler–Natta Catalyst on the Final Properties of Polypropylene
Joaquín Hernández-Fernández 1,*, Heidi Cano 2 and Miguel Aldas 3

1 Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, University of Cartagena,
Cartagena 130015, Bolivar, Colombia

2 Department of Civil and Environment Engineering, Universidad de la Costa, Calle 58 #55-66,
Barranquilla 080002, Atlántico, Colombia

3 Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria,
Escuela Politécnica Nacional, Quito 170517, Ecuador

* Correspondence: jhernandezf@unicartagena.edu.co; Tel.: +57-301-5624990

Abstract: Sulfur compounds are removed from propylene through purification processes. However,
these processes are not 100% effective, so low concentrations of compounds such as H2S may be
present in polymer-grade propylene. This article studies the effects of H2S content on polypropylene
polymerization through the controlled dosage of this compound with concentrations between 0.07 and
5 ppm and its monitoring during the process to determine possible reaction mechanisms and evaluate
variations in properties of the material by TGA, FTIR, MFI, and XDR analysis. It was found that the
fluidity index increases directly proportional to the concentration of H2S. In addition, the thermo-
oxidative degradation is explained by means of the proposed reaction mechanisms of the active center
of the Ziegler–Natta catalyst with the H2S molecule and the formation of substances with functional
groups such as alcohol, ketones, aldehydes, CO, and CO2 by the oxidation of radical complexes.
This study shows for the first time a reaction mechanism between the active center formed for
polymerization and H2S, in addition to showing how trace impurities in the raw materials can affect
the process, highlighting the importance of optimizing the processes of removal and purification of
polymer-grade materials.

Keywords: hydrogen sulfide; ligands; polypropylene; catalyst; degradation

1. Introduction

Raw materials are of great importance during the synthesis of polypropylene on an
industrial scale. In this process, catalysts (Ziegler–Natta (ZN) catalyst), co-catalysts (Tri-
ethyl aluminum (TEAL)), monomers (propylene), selectivity agents, and gases (hydrogen
and nitrogen) are used [1,2] in order to ensure that one of them has a transition metal
in its structure or can act as a Lewis acid [1,2]. The production of polypropylene con-
sists of several stages, beginning with the initiation reaction where the activation occurs,
which would be the active center and the double bond of propylene [3]. Next follows the
polymerization stage where the chain of monomers is formed and finally the termination
step, where the chain formation reaction is terminated. Because the catalyst (titanium (IV)
chloride) is a strong Lewis acid, it tends to form several complexes with a wide variety of
ligands [4,5]. For this reason, the effect of impurities that can react with it has been studied
and quantified [6–12].

The chemical compound of inorganic nature, hydrogen sulfide (H2S), is composed
of one sulfur atom and two hydrogen atoms in a bent geometry analogous to the water
molecule, in which the two hydrogen atoms join the sulfur at an angle of 100◦, and is a weak
acid [13–15]. The H2S compound has the ability to bond with transition metals (M), forming
metal sulfides that are generally insoluble. The transition metals that have an affinity for the
formation of these complexes are those that have partially filled d orbitals and empty s and
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p orbitals [16,17]. Unlike the above, sulfur has available d orbitals that allow it to form d-d
bonds, which can also occur in early transition metals in low oxidation states [15], on which
polarizabilities and the number of lone pairs must be considered, on which the effectiveness
of accepting electrons will depend [18,19]. The formation of these compounds in the catalysis
of polymeric materials is of great interest due to their organometallic characteristics, such as
their ability to form vacant coordinated sites to understand the reactivity and behavior in
catalysis [20,21]. Generally, for these studies, analytical techniques such as spectrophotometry
and X-rays are used to understand the interaction of sulfuric ligands with transition metals
and determine the oxidation of the compounds [13,22].

H2S can be present in propylene due to failures during its production. Propylene is
produced through the catalytic cracking of hydrocarbons, which contain organic sulfur
compounds that are removed via desulfurization processes such as hydrotreatment, ab-
sorption, or the use of sulfide-reducing catalysts, to name a few [23–26]. These treatments
are not completely effective, so traces of unremoved compounds become impurities in
the oil-derived compounds. Usually, the presence of these sulfuric compounds in LPG is
studied to improve removal processes [27]. However, their effects on the polymerization of
LPG derivatives are scarce and do not allow us to understand their interactions with the
compounds used during polymerization, such as catalysts and co-catalysts, which would
allow us to understand how the final material obtained can be affected.

Polymerization determines the properties of the polymer obtained. If it is affected by
the presence of unwanted compounds; these effects can be seen in the final properties of
the material [28,29]. In the case of sulfides, it is important to consider the polymerization
process to determine how it influences the series of reactions that occur during polymer-
ization [30]. In some cases, it is considered a polymerization inhibitor, and in others, an
opportunity to control polymerization [31–33]. In this research, the effects that H2S has
on the efficiency of the Ziegler–Natta catalyst and on the thermal and physicochemical
properties of PP obtained are evaluated, and its purpose is to propose reaction mechanisms
that allow an understanding of the interaction of H2S with the raw materials used for PP
production. For this purpose, four samples of PP with different doses of H2S are synthe-
sized; the components formed in each stage of production and the final properties of the
resin obtained will be evaluated.

2. Materials and Methods
2.1. Reagents

H2S with a purity of 99.99% from Merk, Germany, was used, and it was mixed with
the balance of liquefied petroleum gas (LPG) in concentrations ranging from 0.07 to 5 ppm
via an in-line diffuser. For the production of PP, polymer-grade propylene (Shazand
Petrochemical, Arak, Iran) was used, along with a fourth-generation Ziegler–Natta catalyst
with MgCl2 support, and as an internal donor, diisobutyl phthalate (DIBP) supplied by
Sudchemie, Germany; triethylaluminum (TEAL) is 98% pure from Merk, Germany, diluted
in n-heptane. Cyclohexyl methyl dimethoxysilane (CMDS) from Merk, Germany, as an
external donor, and hydrogen and nitrogen gases were also used [34,35].

2.2. Polymerization

The gas-phase polymerization process was performed following the polypropylene
synthesis process using ZN catalysts as presented by Hernández. The process consists of a
fluidized bed reactor which is purged before starting the process with nitrogen, followed
by feeding 1.2 metric tons per hour of propylene (1.2 TM/h) and 30 g per hour of hydrogen
(30 g/h) from the bottom, in addition to 5 kg per hour of catalyst (5 kg/h), 0.24 kg per hour
of co-catalyst (0.25 kg/h), one mole per hour of selectivity control agent (1 mol/h), and
nitrogen, as shown in Figure 1. This process is discontinuous (batch) and occurs at a
temperature of 70 ◦C and 27 bar pressure. The H2S addition is performed in the propylene
supply line. The hydrocarbon residues are removed from the resin by means of a stream of
nitrogen and steam to obtain a virgin resin [2,36].
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Figure 1. PP production scheme.

For compound analysis, samples were taken at various points during the process
(Figure 1). Samples of propylene (1A), nitrogen (2B), hydrogen (3C), and H2S (4D) were
taken from the feed. In the reactor, samples were taken of the gases that were formed during
the reaction (5E), of the catalyst before (7F) and inside (6F) the reactor, and of the unreacted
propylene (8H) that was recycled into the process; in the degassing stage, samples were
from the PP resin (9I) obtained before removing the hydrocarbon remains, from the gases
entrained (10J) by nitrogen and water vapor, and finally from the final PP (11K), as shown
in Table 1. For the identification of each substance, the indicative of the sampling point is
placed followed by the concentration of H2S used (e.g., for propylene in the feed when the
concentration of H2S is 0.07 ppm, 1A-0.07).

Table 1. Identification of samples and sampling points.

Feeding Reaction Degassing

Point 1A 2B 3C 4D 5E 7F 6F 8H 9I 10J 11K

State of origin LPG Gas Gas LPG Inside the reactor Catalytic
system Recovered Exits of

reactor
Retired in
the purge Dust

Substance Propylene N2 H2 H2S Gases ZN ZN Propylene PP resin Gases PP resin
ID-0 1A-0 2B-0 3C-0 4D-0 5E-0 7F-0 6F-0 8H-0 9I-0 10J-0 11K-0

ID-0.07 1A-0.07 2B-0.07 3C-0.07 4D-0.07 5E-0.07 7F-0.07 6F-0.07 8H-0.07 9I-0.07 10J-0.07 11K-0.07
ID-0.9 1A-0.9 2B-0.9 3C-0.9 4D-0.9 5E-0.9 7F-0.9 6F-0.9 8H-0.9 9I-0.9 10J-0.9 11K-0.9
ID-5 1A-5 2B-5 3C-5 4D-5 5E-5 7F-5 6F-5 8H-5 9I-5 10J-5 11K-5

2.3. Analysis

The thermal stability and melt index of the obtained samples were evaluated to assess the
effects on the final properties. The PerkinElmer TGA7 equipment was used to analyze how the
H2S content affects the degradation of the PP resin obtained. The TG and DTG curves were ob-
tained by heating 10 mg of the samples at a rate of 20 ◦C min−1 in a nitrogen atmosphere [37,38],
with a Tinius Olsen MP1200 plastometer used to measure the melt flow index (MFI) of the
PP resins obtained. The samples were heated to 230 ◦C and the melt was displaced with a
2.16 kg piston, following the norm ASTM D1238-10 [39]. The MFI data were used to calculate
the average molecular weight of the samples using the Bremner approximation [40,41].

To verify the concentrations and to know the compounds obtained throughout the
synthesis, X-ray fluorescence, Fourier transform infrared analysis, and gas chromatography
were used. With the Malvern Axios FAST equipment, the concentrations of sulfur and H2S
were determined at the different sampling points and X-rays were obtained from the sam-
ples placed in the sample holders. A Nicolet 6700 infrared spectrometer (Thermo Scientific)
was used with the attenuated total reflectance (ATR) method to analyze the samples, in the
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form of films of 300 mm diameter and 100 m thickness created by compression molding the
PP in a CARVER 3895 hot press [42], to determine the structural changes in the PP matrix
caused by the reaction of the catalyst with H2S. To ensure the concentrations of H2S in the
propylene line, an Agilent Technologies 7890B GC-MS was used, and the PP resin samples
were studied using the Agilent 7694E headspace sampler with a cycle time of 60 min and
an oven at 150 ◦C [37], following the method of Hernandez [37].

3. Results
3.1. Polymerization Stage

Polymerization is divided into three stages. The first stage consists of the activation of
the propylene double bond and the conformation of an active site through the alkylation of
a Ti ion found in the surface layer of –TiCl3 [43,44]. In this stage, an intermediate is created
by the union of the unsubstituted carbon with the transition metal. This is followed by
the monomer polymerization stage, where a coordinate complex is formed between the
added monomer, the growing chain, and the catalyst [3]. The last stage is the completion
of the polymer chain. For this process, the active complex is deactivated with H2 or the
elimination of a hydride [44,45]. Since H2S can bind to the transition metal present in the
active site of the catalyst, its presence in the monomer can inhibit polymerization, with
effects on the performance of the process and the final properties of the resins obtained. To
study this, the compounds that are formed in each stage are identified and quantified to
propose reaction mechanisms.

Identification of H2S in the Polymerization Stage and Proposed Reaction Mechanism
Reaction of H2S with TiCl4/MgCl2

The H2S content varies depending on the stage of the process in which the measure-
ment is made. The first record of H2S in the process is at point 4D. This measurement
refers to the concentration entered. In a normal process, the presence of compounds at this
point indicates that the propylene to be used contains impurities. The next point to look for
H2S is at the recycle line (8H), since the partial or no presence of a compound at this point
indicates that H2S is partially or fully reacting with the compounds in the polymerization
reactor. The last point where H2S is identified and quantified in the polymerization stage is
in the reactor (5E). The analysis of this point is supported by the previous measurement and
indicates that H2S is part of the polymerization reaction. Using the information obtained
from these points by FTIR, a reaction mechanism is proposed and is represented in Figure 2.

In the chain propagation stage during PP synthesis, propylene is transferred to Ti-PP,
where the olefin is inserted into the PP-alkyl chain [46,47]. This propagation is affected by
the presence of impurities that act as inhibitors of different polarities that react with the
active Ti center, which depends on the energetic factors: in the case of H2S, the coordination
with the Ti center on the Ti surface. For MgCl2, Ti-H2S is favored by 15.1 kcal mol−1 [11].
This represents how H2S competes with propylene to bind to the active site Ti of –TiCl3, in-
terfering with the formation of propylene complexes and their insertion. Where π-complex
is initially formed, it coordinates the H2S with the Ti of the TiCl4/MgCl2 complex. This is
due to the predominance of the free electrons of hydrogen sulfide over those of propylene
that interact with the electropositive Ti [48,49]. The H2S-Ti reaction prevails over the forma-
tion of -complexes in Ti-propylene since the latter has no barriers and the energy gain is
lower. To reverse these interactions, it is necessary to remove the impurities present in the
system and resume polymerization [49].

3.2. The Degassing Stage

In this stage, the gases present in the resin leaving the reactor are eliminated by
purging with nitrogen and steam. At the points that are studied at this stage, it allows us to
confirm if H2S is adsorbed or absorbed by the PP produced.
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Detection and Quantification of H2S in PP Resin Degassing

In the degassing of the PP resins, points 9I, 10J, and 11K were evaluated to determine
the interaction and presence of H2S with the polymeric matrix. Together with the formation
of compounds, the compounds and their concentrations are shown in Figure 3. At point 9I,
it is determined if the H2S remains as a residue in the reactor or if it is transported by the
resin when adsorbed or absorbed. At point 10J, samples of the purged gases are obtained,
and it is determined whether H2S was adsorbed by the matrix, which is the case if the
values for H2S at this point are nonzero. Finally, point 11K is evaluated. The presence of
H2S in the polymer matrix indicates that the products obtained are contaminated and have
a high probability of not meeting the desired characteristics and specifications, presenting
thermal instability, affecting the degradation of the material and the fluid index, among
others, so they would become waste. Figure 3 shows how, as the concentration of H2S
in the system increases, the concentration of gases also increases at the different points
sampled as secondary products of the H2S-Ti interaction, obtaining compounds such as
alcohol in concentrations of 50.2, 81.5, and 180.1, respectively, for the concentrations of
H2S (0.07, 0.9, and 5 ppm); ketone in concentrations of 80.2, 160.1, and 220.1, respectively,
for the concentrations of H2S (0.07, 0.9, and 5 ppm); aldehydes in concentrations of 60.2,
121.5, and 242.7, respectively, for the concentrations of H2S (0.07, 0.9, and 5 ppm); acids in
concentrations of 97.1, 210.1, and 351.7, respectively, for the concentrations of H2S (0.07,
0.9, and 5 ppm); and CO2 in concentrations of 1.5, 5.5, and 11.3, respectively, for the
concentrations of H2S (0.07, 0.9, and 5 ppm), for point I, increasing the concentration of
these compounds at point J and decreasing at point K. In addition, there was evidence of
the presence of 0.2 ppm carbon monoxide (CO) when the concentration of H2S is equal to
0.9 ppm and 1.1 ppm of CO when the concentration of H2S is 5 ppm at point I.

Compounds such as alcohols, ketones, etc., are products of the Alkoxy-PP-virgin
radical that has formed and undergone homolytic cleavage of the single bond adjacent to
the carbon of the oxygenated radical. This homolysis forms the methyl-PP-virgin ketone
and the radical PP. The radical formed by the catalyst and the H2S attacks the tertiary
carbon of the methyl-PP-virgin ketone to abstract the hydrogen atom and thus propagate
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the oxidation of the more stable carbon [50]. This new radical reacts with the oxygen atom
to form ketones. On the other hand, the PP radical at the end of the chain reacts with oxygen,
giving rise to methanol-PP-virgin which, by abstraction of the tertiary carbon proton of the
radical formed by the catalyst and H2S, forms an intermediate radical that, by reacting with
oxygen, decomposes to form methanol and formaldehyde. Methanol-PP-virgin gives rise
to an aldehyde-PP-virgin which, by homolysis of the H–C bond of the terminal carbonyl
group, forms the carbonyl-PP-virgin radical, which in turn, by reactions with hydroxyl
radicals and hydrogen, gives rise to CO, CO2, and formic acid [42].
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3.3. Influence of H2S on the Properties of PP
3.3.1. Effects on the Melt Flow Index (MFI) of PP

The melt index allows determination of the molecular changes of the polymer by its
relationship with the average molecular weight, which can be affected during polymeriza-
tion either by incomplete polymerization, chain shortening, or the presence of impurities
in the polymer matrix [51–53]. Figure 4a shows the values obtained in the fluidity index
for each sample, which increases directly proportional to the concentration of H2S present
in the sample, in a linear correlation with an R2 value of 0.9971. This indicates that H2S
affects the properties of the material by being part of the polymerization reaction through
the formation of stable complexes that will form part of the polymer chain. This can be
concluded because when studying the catalyst residues (Ti, aluminum, chlorine, and iron),
they do not present significant variations, so the effects on the MFI are due to H2S [50]. In
addition to the variation in the MFI, there is evidence of a change in the molecular weight
of the samples, which was calculated using the Bremner formula, yielding the data shown
in Figure 4b. The change in molecular weight (Mw) is due to the formation of small chain
cuts and the structure’s fracturing. Due to the above, it is expected that the Mw decreases
inversely proportional to the MFI [54].

3.3.2. Thermal Degradation of the Material

The degradation of the samples was analyzed by means of TGA, where the curves
represented in Figure 5 were obtained. It is observed that the thermal stability of the
material decreases as the concentration of H2S present in the system increases. This change
occurs due to the presence of inhibitors such as H2S in the polymerization of the material,
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generating compounds with different functional groups in higher concentrations that
evidence the incomplete polymerization of the material and altering the behavior and
macromolecular structure of the resins obtained.
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When evaluating the thermal degradation of the resins obtained, it is evident that
PP-0 and PP-0.07 present similar behaviors, where there is a single drop in weight, which
although they are not the same due to the effects of H2S, their behavior is constant. Unlike
the above, samples PP-0.9 and PP-5 show fluctuations in weight loss, which occurs in two
stages. If we compare the weight loss, this also varies very markedly for each sample. Five
percent of the weight of each sample occurs at approximately 366 ◦C for PP-0, at 300 ◦C for
PP-0.07, at 90 ◦C for PP-0.9, and at 80 ◦C for PP-5. Reaching 50% of its weight occurs at
approximately 420, 390, 275, and 205 ◦C for PP-0, PP-0.07, PP-0.9, and PP-5, respectively.

4. Discussion

The presence of H2S in LPG has been studied to predetermine and evaluate the per-
centage of removal of the sulfuric compounds present in it. However, the effects of this
compound on the properties and characteristics of polypropylene have not been studied. To
understand how H2S affects polypropylene’s properties, it is necessary to study polymer-
ization reactions and how this compound interacts with catalysts and co-catalysts during
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polypropylene synthesis. The proposed reaction mechanism was performed following two
parameters: 1. the interaction between the organometallic compounds and the sulfuric
compounds to determine the reaction mechanisms and propose the most appropriate one;
2. using FTIR and chromatography to identify which compounds are produced. These
techniques are widely used and are known for their ability to present links and truthful
compounds that guarantee the proposed method [55–57].

The FTIR study of the resins shows how as the concentration of H2S in the system
increases, the concentration of gases also increases at the different points sampled, as
secondary products of the H2S-Ti interaction, increasing its production between 2.09 and
6.03 times the concentration of the gases at the lowest concentration of H2S (0.07 ppm) and
between 4.6 and 29.45 times when the concentration of H2S is 5 ppm. In addition, there
is evidence of the presence of carbon monoxide (CO) when the concentration of H2S is
equal to or greater than 0.9 ppm. This has been found in other studies where the presence
of inhibitory compounds promotes the increase of by-products due to interference in the
polymerization reaction [58–60].

Regarding the changes in the MFI and in the thermal degradation of the material,
previous studies have shown that the presence of impurities or non-polymerization com-
pounds affects these two characteristics. The first is due to factors such as chain shortening
and polymerization inhibition, which affect the average molecular weight and therefore its
melt flow [61–63]. These factors in turn influence the decrease in the thermal degradation
of the material, which is drastically reduced when the concentration of a compound such
as H2S increases [38,64–66].

5. Conclusions

In this study, it is possible to observe the effects of H2S on the thermal stability and
MFI of PP from the analysis of the reactions of this compound with the active titanium
center of the ZN catalyst, followed by oxidation, producing radical complexes of aldehydes,
ketones, alcohols, carboxylic acids, CO, and CO2 formed by the reactions of the radicals
O-O-S-TiCl4-MgCl2 and (.O-O-S-O-O-)2-TiCl4-MgCl2, decreasing the thermal stability of
the material and affecting the MFI that is related to the molecular weight average. The
results obtained show that even small traces of impurities in the raw materials can act as
polymerization inhibitors when reacting with the ZN catalyst, decreasing its efficiency in
addition to affecting the properties of the polymers produced. This can be evidenced by
the increase in the production of secondary compounds such as carboxylic acids, ketones,
alcohols, and aldehydes. As well as H2S, traces of various impurities can be found that can
affect the polymer in the same way, reducing the polymerization yield and producing materials
that must go through revaluation processes such as pyrolysis. However, it is unknown how
the presence of these impurities in the polymer matrix can affect these processes.
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