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Abstract: This paper proposes a novel method for multi-class classification and uncertainty quantifi-
cation of impact events on a flat composite plate with a structural health monitoring (SHM) system by
using a Bayesian neural network (BNN). Most of the existing research in passive sensing has focused
on deterministic approaches for impact detection and characterization. However, there are variability
in impact location, angle and energy in real operational conditions which results in uncertainty in the
diagnosis. Therefore, this paper proposes a reliability-based impact characterization method based
on BNN for the first time. Impact data are acquired by a passive sensing system of piezoelectric (PZT)
sensors. Features extracted from the sensor signals, such as their transferred energy, frequency at
maximum amplitude and time interval of the largest peak, are used to develop a BNN for impact
classification (i.e., energy level). To test the robustness and reliability of the proposed model to
impact variability, it is trained with perpendicular impacts and tested by variable angle impacts. The
same dataset is further applied in a method called multi-artificial neural network (multi-ANN) to
compare its ability in uncertainty quantification and its computational efficiency against the BNN
for validation of the developed meta-model. It is demonstrated that both the BNN and multi-ANN
can measure the uncertainty and confidence of the diagnosis from the prediction results. Both have
very high performance in classifying impact energies when the networks are trained and tested with
perpendicular impacts of different energy and location, with 94% and 98% reliable predictions for
BNN and multi-ANN, respectively. However, both metamodels struggled to detect new impact
scenarios (angled impacts) when the data set was not used in the development stage and only used
for testing. Including additional features improved the performance of the networks in regularization;
however, not to the acceptable accuracy. The BNN significantly outperforms the multi-ANN in
computational time and resources. For perpendicular impacts, both methods can reach a reliable
accuracy, while for angled impacts, the accuracy decreases but the uncertainty provides additional
information that can be further used to improve the classification.

Keywords: structural health monitoring; passive sensing; impact classification; Bayesian neural
network; artificial neural network; uncertainty measurement

1. Introduction

The application of composite materials in the aerospace industry has grown in recent
years owing to their unique properties. However, their mechanical properties can be
significantly influenced by the occurrence of impact induced damages in composite, such
as delamination and matrix cracking, which are difficult to identify [1–3]. Impact damage,
from the perspective of detectability, can be classified as clearly visible impact damage
(CVID) and barely visible impact damage (BVID). CVID can easily be detected in the
process of regular maintenance while BVID is much more difficult to be detected and can
be potentially hazardous to the safety of components or even the whole system. Non-
destructive inspection (NDI) techniques, such as ultrasonic C-scan detection and acoustic
emission (AE), are commonly used to check the integrity of composite and detect BVID [4,5].
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However, the current NDI methods are time-consuming, expensive and require access to
the part. Another challenge of NDI is the lack of continuous monitoring [6]. Therefore,
a more convenient, cheaper and faster method is urgently needed for BVID detection.
Structural health monitoring (SHM) has become a popular method for BVID detection as it
reduces the cost of detection and maintenance, and most importantly, achieves continuous
monitoring by using a network of sensors [7]. The real-time data collected from sensors
contain the knowledge of the real behavior of the structure in service. By analyzing these
data, the energy of an external impact can be extrapolated, and the influence of damage
can be assessed to determine if further inspections or maintenance are needed [8]. SHM
has the ability to replace the conventional schedule-based inspection and maintenance and
save a large amount of time and expenses [9]. However, for the SHM to be applicable in
the field as an NDI technique, it must demonstrate 90/95% reliability and probability of
detection under operational and environmental conditions of the real structure.

The fundamental purpose of SHM is to improve the safety of critical systems and
reduce maintenance costs [10,11]. Depending on the sensing methodology, SHM techniques
can be generally divided into two types: active sensing and passive sensing. For active
sensing, both actuators and sensors are required. Actuators emit an excitation on the
monitored structures and then it is recorded by sensors. By analyzing the difference
between signals, information about the presence and the characteristics of damage can be
determined. This method provides more information; meanwhile, it makes the monitoring
system more complicated [12]. For passive sensing, only sensors are integrated with the
structure and the dynamic response of the structure is recorded constantly. It allows
the system to detect possible impacts in real time, although an energy efficient system is
required to optimize its power consumption as impact events are random and transitory
and the structure is required to be monitored continuously in service [11,13,14].

An impact on a thin plate will create a type of elastic wave, known as Lamb wave,
which propagates through the plate. However, Lamb waves are multi-modal and differ-
ent modes are excited at different frequencies, and it varies with impactor composition,
angle of impacts, temperature and other varying parameters [13], which makes impact
characterization a real challenge for aircraft structures. Many researchers have developed
methodologies for detecting and localizing impact events on aeronautical structures. How-
ever, this information alone is not sufficient for passive sensing, as there are many impacts
occurring on structures in service, but only the ones that are of high energy and have
the potential to cause damage to the structure are of interest. Therefore, reliable impact
characterization is of high importance for the assessment and application of any SHM
system to real structure. For a real aircraft structure, another challenging factor is the large
amount of data collected from sensors during operation, which makes it impossible to be
analyzed by conventional numerical algorithms as both time and computational resources
are limited [14]. As a result, machine learning methods, particularly neural networks, have
been widely applied to extract useful information from large data sets efficiently. Some
of the neural networks, like artificial neural networks (ANNs) and convolutional neural
networks (CNNs), have been successfully implemented in SHM, especially in damage de-
tection, impact localization and impact classification [15–20], as well as the corresponding
sensor optimization [21].

However, due to the uncertainty contained in both data and model, the reliability
of prediction results from neural networks has become a new concern. Conventional
neural networks can only give direct prediction results which sometimes could be wrong
while Bayesian neural networks (BNNs), an emerging technique in machine learning,
allow probabilistic interpretations for predicted outcomes [22]. However, BNNs have
not been used for uncertainty quantification of passive sensing systems. Therefore, to
quantify the uncertainty (which results from variability in impact scenarios in terms of
uncertainty in impact location, impact angle and impact energy) and to improve the
reliability and robustness in impact classification, BNNs are applied in this work for the
first time. Two types of uncertainty are included in this work, aleatoric and epistemic
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uncertainties, which is one of the novel contributions. To further compare the BNN
performance in terms of computational time and cost, a method called multi-ANN is also
utilized in this work. The main objective of this paper is to develop an accurate model
to efficiently classify the energy levels of different impact events based on the signals
obtained from a network of sensors. The target of the research is to evaluate whether
modern probabilistic machine learning algorithms such as BNN will increase the reliability
of the prediction, compared to traditional methods such as ANN or CNN. The uncertainty
of the developed model is quantified through BNN and the reliability and robustness of the
proposed method is tested. To simulate a realistic variability in the impact tests, different
impact angles and impactor materials are selected and tested experimentally to generate a
large data set. A thorough feature extraction investigation is carried out to find the most
suitable parameters to characterize the energy of an impact, which is the most important
output from a passive sensing system.

2. Machine Learning Methodologies

The signal processing methods in SHM can be divided into two main categories:
model-based methods and data-driven methods [23]. The former focuses on building a
mathematical model to reflect the dynamic response to a known impact or damage and it
requires sufficient prior knowledge which is not always available in real applications. Some
assumptions are made to simplify the process of building such models, the most popular
one of which is the linear assumption. It significantly reduces the complexity of models
while in fact, non-linearity is quite common in composites and cannot be ignored [24].
Due to this limitation, data-driven methods, especially machine learning, have become the
major analytical tool in SHM.

Implementing machine learning techniques in SHM usually contains several steps:
data pre-processing, feature extraction and model building. Once features are extracted,
they can be fed into an automatic classifier to detect possible anomalies (so-called unsu-
pervised learning) or to predict the energy level and localization of an impact (so-called
supervised learning). Unsupervised learning has played an important role in SHM as it
does not require any prior knowledge. Rizzo et al. proposed an outlier analysis to detect
and quantify cracks in the structure [25]. Ramasso et al. suggested a novel consensus
clustering method of acoustic emission time-series to estimate damage sequence in com-
posite [26]. Rastin et al. developed a deep learning-based method to identify and quantify
structural damage based on convolutional autoencoders [27].

Compared to unsupervised learning, supervised learning methods show higher perfor-
mance and wider application prospects when some prior knowledge is available. ANNs, as
one of the earliest proposed supervised deep learning methods, are employed for damage
detection, impact force reconstruction and impact localization [15,24]. ANNs are a mathe-
matical model which simulates a biological neural system, and hence has the ability to deal
with non-linear problems. Compared to normal ANNs, Li et al. proposed a multi-feature
fusion method to detect damage based on a support vector machine (SVM) algorithm,
which was proved to overperform ANNs [28]. The performance of ANN and SVM for
impact detection were compared by Yue et al. [29] to confirm their improved performance.
CNNs are a more popular choice as they fuse a complicated feature extractor and classifier
into one model, which makes them more attractive for more complex tasks, like damage
localization. Abdeljaber et al. first explored a one-dimensional CNNs method used for
vibration-based damage detection and localization [30]. A more interesting utilization of
CNNs in SHM is to transfer Lamb wave signals to 2D images and it was proved to achieve
higher accuracy by Tabian et al. [6]. To solve the problem of missing data in measured
signals, a long short-term memory network (LSTM) was suggested by Li et al. [31].

Although the accuracy of conventional machine learning models has reached a rel-
atively high level, more attention should be paid to the reliability of predicting outputs
and the robustness of models as structures using SHM are often safety-critical to the whole
system, especially aircraft. Jiang et al. proposed a damage detection method based on
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probabilistic neural networks (PNNs) which provided predicting results with high con-
fidence [32]. However, PNNs require huge computational resources which limit their
application in big data and complex models [33]. Huang et al. combined a Bayesian model
updating and a vibration-based damage detection method to properly treat the uncertainty
in the damage detection process [34]. Morse et al. proposed a strategy for reliably catego-
rizing impacts by their energies based on a combination of ANNs and Bayesian updating
method [16]. However, his impact events did not include variability in the angle or material
of the impactor.

Since the 1990s, Bayesian theory has been introduced into machine learning to quantify
uncertainty in models and datasets, but it was not until 2015 that the efficient framework of
BNNs proposed by Blundell et al. made its practical application a reality [35–37]. Kendall
and Gal presented an improved BNN to quantify aleatoric uncertainty and epistemic
uncertainty in computer vision [22]. Yin and Zhu utilized an optimally designed BNN
to detect damage in a steel truss bridge [38]. Due to the ability to output probabilis-
tic results fast and accurately, BNNs are chosen as the primary analytical tool for this
study. The next section summarizes the fundamentals of BNN before presenting the novel
developed methodology.

3. Fundamental of Bayesian Neural Network
3.1. Bayesian Neural Network

Bayes theorem is an important theory in the field of statistics, based on which the
observable data can be used to infer the probability of event results. The combination of
Bayesian theory and machine learning means that uncertainty is contained in conventional
machine learning models. Kendall and Gal divided the uncertainty into two categories:
aleatoric uncertainty and epistemic uncertainty [22]. The former refers to the uncertainty
inside the dataset which could come from many realistic reasons, such as the noise and
perturbation of PZT sensors. It cannot be reduced as more data are added into training.
However, epistemic uncertainty, also known as model uncertainty, will decrease with the
growth of input data into the model. When the model lacks knowledge of some dataset,
it is prone to make unreliable decisions based on the datasets trained before. Therefore,
epistemic uncertainty directly reflects the reliability of the prediction and can be used to
examine the robustness of the model as well.

BNNs can evaluate epistemic uncertainty by converting weight and bias parameters
of traditional neural networks, like ANNs, from constants to probability distributions (see
Figure 1). The following derivations show a probabilistic model and an algorithm called
variational inference which was used to implement a practical and efficient BNN [22,37].

Figure 1. (a) ANN where each weight wi,j has a fixed value, (b) BNN where each weight is assigned
a distribution.
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3.1.1. Probabilistic Model

A neural network can be regarded as a probabilistic model P(y|x, w) where x repre-
sents the input data and w represents the parameters in the network. For classification tasks,
y refers to a set of classes and correspondingly P(y|x, w) follows a categorical distribution.
Given a dataset with n training points as D = {xi, yi} : where |D| = n, it is easy to construct
the likelihood function:

P(D|w ) =
n

∏
i=1

P(yi|xi, w)

The maximum likelihood estimate (MLE) of parameters w can be obtained from
maximizing this likelihood function and, usually, the negative log likelihood is chosen
to optimize objectives, which refers to the cross-entropy of softmax loss for a categorical
distribution, shown as:

wMLE = argmax
w

n

∑
i

log P(yi|xi, w)

Although MLE is widely used in conventional neural network, it is prone to over-
fitting during training. To overcome the overfitting, regularization can be introduced by
multiplying the likelihood with a prior distribution P(w) :

P(w|D ) ∝ P(D|w )P(w)

Maximizing P(D|w )P(w) gives the maximum a posteriori (MAP) estimate of w. The
learning objectives for categorical distribution here are the softmax loss plus a regularization
term coming from the log prior:

wMAP = argmax
w

n

∑
i

log P(yi|xi, w) + log P(w)

Both MLE and MAP give point estimates of w, which are not always reliable. Bayesian
inference aims to calculate the posterior distribution of the weights based on training data
P(w|D ), so that the uncertainty parameters can be quantified.

3.1.2. Variational Inference

Unfortunately, it is impossible to obtain analytical solutions to P(w|D). Therefore,
an approximation algorithm is considered. To approximate the posterior distribution, a
variational distribution is defined as q(w|θ). The similarity between q(w|θ) and P(w|D)
can be measured by the Kullback–Leibler (KL) divergence, which is defined as

KL[q(w|θ )P(w|D )] = Eq(w|θ) log
q(w|θ )
P(w|D )

After applying the Bayes theorem to the posterior distribution P(w|D) and making
some manipulations, the cost function can be given as:

KL[q(w|θ )P(w|D )] = KL[q(w|θ )P(w)]− Eq(w|θ) log P(D|w ) + log P(D)

The first two terms on the right hand side of the equation are also known as the
variational free energy F(D, θ). In order to minimize the KL divergence between q(w|θ )
and P(w|D ), the divergence free energy requires to be minimized:

F(D, θ)= KL[q(w|θ )P(w)]− Eq(w|θ) log P(D|w )

By rearranging the KL term, the above equation can be written as:

F(D, θ) = Eq(w|θ) log q(w|θ )− Eq(w|θ) log P(w)− Eq(w|θ) log P(D|w ) (1)



Polymers 2022, 14, 3947 6 of 22

It is obvious that all three terms in Equation (1) contain the expectation of q(w|θ ).
Therefore, by sampling w(i) from variational distribution q(w|θ ), this expression can be
approximated and the final cost function is given by:

F(D, θ) ≈ 1
M

M

∑
i=1

[
log q

(
w(i)|θ

)
− log P

(
w(i)

)
− log P

(
D
∣∣∣w(i)

)]
(2)

where M is the batch size. Generally, not all the data are input into the network in one
training process (also known as an epoch) due to the inefficiency. Instead, the whole dataset
is split into smaller batches and then fed into the network, which enables this algorithm to
process large-scale data.

3.1.3. Training and Prediction

A training process in the neural network always includes a forward-propagation and
a backward-propagation. For the forward-propagation, a single sample is drawn from
the variational posterior and used to calculate the cost function, Equation (2). A popular
choice is to assume the variational posterior as a Gaussian distribution and then θ can
be represented as θ =

(
µ, σ2) where µ is the mean vector of the distribution and σ is

the standard deviation vector. Naturally, the number of parameters in a BNN is doubled
compared to a conventional neural network.

During a backward-propagation, µ and σ are updated by calculating their gradients. A
method called reparameterization trick is applied here to sample from a given distribution
and then map the sampled ε to the gradients by using a transfer function t (µ, σ, ε).
Taking a standard normal distribution as an example ε ∼ N (0, 1) and defining σ =
log(1 + exp(ρ)) to ensure that σ is always non-negative, the deterministic function can be
given as:

t(µ, ρ, ε) = µ + log(1 + exp(ρ))·ε

where · represents pointwise multiplication.
To make a prediction based on the well-trained model, BNNs utilize Bayes theorem,

according to which, mathematical description of prediction can be given as:

P(y|x, D ) =
∫

P(y|x, w )P(w|D )dw (3)

where x is a testing data point which the model has not seen before, and u is the unknown
label of x. Generally, BNNs can utilize the well-trained model with probabilistic parameters
to make a set of predictions. This process is also known as Monte Carlo (MC) sampling or
simulation. By using an MC sampling from the well-trained BNN, the predicting results
can be counted. Calculating Equation (3) should be equivalent to averaging results from an
infinite set of neural networks, which is not possible due to the limitation of computational
resources. In this work, a finite set of ANNs, called multi-ANNs, is applied to approach the
ideal results and compare it with BNNs.

After obtaining a set of predictions, epistemic uncertainty in the weights is easy to be
measured. For a classification task, this can be approximated as follows:

P(y = c|x, X, Y ) ≈ 1
T

argmax( f w(x))

where c is the label of the class, T is the number of MC sampling and w is a set of masked
weights which follow w ∼ q(w|θ ). A set of predictions can form a probability vector that
can be further summarized to calculate the uncertainty by using the predictive entropy H:

H = −
C

∑
c=0

Pc log Pc
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Higher predictive entropy corresponds to higher epistemic uncertainty. The predic-
tive entropy directly measures the magnitude of epistemic uncertainty and can be an
appropriate metric to reflect the confidence of prediction for each test sample.

3.2. Multi-Artificial Neural Network

Multi-ANNs are a finite set of conventional ANNs with the same architecture. Figure 2
shows a simple example of an N-ANNs, each of which has two layers and four neurons
in total.

Figure 2. An example of multi-ANNs.

Multi-ANNs can be regarded as a type of ensemble learning algorithm, similar to
the bootstrap aggregating (also known as bagging) algorithm. The bagging algorithm
obtains varied results by drawing samples from the whole training dataset to input into the
network several times while in multi-ANNs, probabilistic results are given by inputting the
whole dataset into N-ANNs whose initial weights and biases follow a specified distribution,
usually Gaussian distribution. Based on these N-ANNs, the testing dataset is used to
make N sets of predictions. Considering each single testing sample, N predicting results
should follow varied unknown categorical distributions, which are similar to those from the
BNN. The aim to apply the multi-ANN method in this study mainly consists of two parts:
comparing the ability of multi-ANN and BNN to measure the uncertainty in diagnosis and
comparing the temporal and computational efficiency of both methods. To achieve this, the
parameters and metrics of BNNs and multi-ANNs will be set consistently.

4. Data Acquisition and Pre-Processing

In order to simulate variability of impact scenarios which may occur on real structures,
an experimental set up has been designed and impact test rig built, capable of varying
impactor height, angle, material and location [39,40]. There are still limitations to how high
the impact energy can be; however, as it was demonstrated from the published work, the
impact energy response is scalable [41]. Therefore, the proposed impact test campaign is an
acceptable case study for the development of the methodology, which can be then extended
and upscaled to more complex structures, geometries and impact scenarios in future work.

4.1. Experimental Setup

The setup consisted of a drop impact tower, a fixture for holding the specimen and a
200 mm × 290 mm flat quasi-isotropic panel with the following layup [0/+45/−45/90]2s
made of M21 T800s carbon fiber prepregs, as shown as Figure 3a [41]. The flat plate was
placed on a silicone heating mat with a temperature control unit to adjust the temperature
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for different experiments (25 ◦C as a baseline). Eight vibration motors were placed along
the four edges of the plate to simulate background noise/vibration and eight PZT sensors
(PIC 255) were bonded to the periphery of the panel. The rectangular area bounded by the
sensors was split into a 7 × 5 grid which represents 35 different impact locations, shown in
Figure 3b. An 8-channel oscilloscope (NI PXI-5105) was connected to the sensors to record
signals with a sampling rate of 2 MHz via 10× attenuation oscilloscope probes. In total,
100,000 samples were obtained from the experimental test campaign.

Figure 3. Experimental setup and configuration. (a) Impact set up; (b) Experimental configuration of
the 8 PZT sensors and 35 impact locations.

Impacts of different energy levels were generated by dropping a 20 mm diameter
impactor with different added mass. Impact angle was also varied by tilting the guiding
rail. For each location and configuration, each impact was repeated four times. Therefore,
a total of 140 tests were contained in each impact case defined in Table 1. Impact energy
levels were labelled as 0, 1 and 2 based on the gravitational potential energy which can be
calculated from the formula E = mgh, where E is the potential energy and h is the drop
height. Case A was performed to build a baseline model and measure the uncertainty for
impacts under the baseline temperature (25 ◦C) and angle (90◦). Case B was used to verify
the reliability and robustness of the trained model when impacts under different angles
were tested.

Table 1. Impact test scenarios.

Case Material Height/mm Mass/g Angle/◦ Temperature/◦C Energy/mJ

A1 Steel 50 100 90 25 49
A2 Steel 50 200 90 25 98
A3 Steel 100 100 90 25 98
A4 Steel 100 200 90 25 196
B1 Steel 50 100 45 25 49
B2 Steel 100 100 45 25 98
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4.2. Data Pre-Processing

If the data obtained from the PZT sensors cannot contain high levels of noise and too
much information (e.g., if the discreet signals are used in their entirety), it could result
in wrong regularization and prediction. Therefore, an appropriate pre-processing step is
necessary which mainly includes two steps: noise reduction and feature extraction, which
are presented next.

4.2.1. Noise Reduction

The raw data from the PZT sensors for each impact were stored in a matrix consisting
of 100,000 rows and 8 columns. Each column represented a sensor, and each sensor was
sampled 100,000 times continuously. Figure 4 shows an example of the signals from eight
PZT sensors under a specific impact at location 1. Before the impact occurred, there was
a long silent period during which the voltage did not change, and this period could be
ignored as it did not make any contribution.

Figure 4. Sample signals recorded by 8 PZT sensors from impact at location 1.

Although the signals appear to be smooth in Figure 4, there are a large number of micro-
fluctuations inside the signals when the image is magnified. These fluctuations come from
the noise inside the apparatuses, which can be problematic for further data manipulation.
Therefore, applying filters in data processing is necessary. Two filters, a Savitzky-Golay
filter (SGF) and a Butterworth high-pass filter, are applied here independently to determine
which one performs better. The SGF is a popular 1-D filter that utilizes polynomial to
achieve the least square fitting in a sliding window. An SGF with the window length of
five and the order of the polynomial two is used after some adjustments to parameters.
Separately, a third order Butterworth high-pass filter with a cut-off frequency of 100 Hz
is also applied to compare which filer is most appropriate. Figure 5a shows the effect of
filters on the main part of the signal and Figure 5b shows a close-up. It is obvious that the
SGF significantly smooths the signal and outperforms the Butterworth filter, without losing
important information contained in the signal. Finally, this filter was applied to the data
from each case.
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Figure 5. Sample signal with different filters: (a) 20,000 data points (b) 50 data points.

4.2.2. Feature Extraction

The dataset after noise reduction still cannot be used as input to the neural network
directly as it is too large. Therefore, feature extraction is necessary. Feature extraction
mainly consists of two categories: physical and non-physical features. To obtain a well-
fitting non-linear model, physical features play a more important role. Considering the
efficiency, simple features that are easy to extract are chosen to classify the energy level of
different types of impacts. A common feature used in SHM to classify the energy contained
in a signal is its peak amplitude as it reflects the peak value of energy absorbed by the
material during the impact. However, this parameter does not contain any information on
the duration of the impact which is directly related to the mass (small mass, large mass),
or the material (hard, soft) of the impactor, which are necessary for a detailed impact
categorization. Compared to the peak amplitude, a more direct mapping between the
energy and the signal is obtaining the transferred energy of the impact which is the integral
of the absolute values of the voltage signal. Figure 6 shows the transferred energy of two
impacts at the same location, respectively from case A1 and case A2. The mass of the
impactor in case A2 is twice as large as that in case A1 so that the transferred energy of case
A1 should be doubled as well, which corresponds to the results.

Figure 6. Transferred energy plots for (a) Case A1 and (b) Case A2 impacts.

Transferred energy is an appropriate feature for perpendicular impacts, while for
angled impacts it may not give convincing results as some of the energy is dissipated
through sliding or friction. To solve this problem, some other features are considered and
tested in this work. The frequency components corresponding to the maximum amplitude
are extracted from signals by a fast Fourier transform (FFT) method. FFT is a more efficient
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algorithm obtained by improving the algorithm of discrete Fourier transform (DFT). It
converts the time-domain signal into the frequency-domain signal, so as to extract the
required frequency-domain features. Figure 7a shows an FFT example of the filtered signal
that can be found in Figure 5. The frequency of the maximum amplitude is 20 Hz.

Figure 7. (a) FFT of the filtered signal, (b) main peaks and the time intervals of a signal.

Wavelength is not a common feature for energy classification as it does not directly
provide strength information contained in impact events. However, it can be combined
with the transferred energy to train the neural networks in some special impact cases that
do not cause significant amplitude but still contain enough energy to cause damage. The
time interval of the main peak can build a mapping into the wavelength of the time-domain
signal. Therefore, by finding the time interval of the largest peak, the wavelength can
be measured. Figure 7b indicates the main peaks by red “×” and their time intervals by
green lines.

The features are extracted from each senor for every impact and Table 2 shows an
example of features extracted from case A. It is obvious that the difference between mag-
nitudes of these three features is significant, which is easy to lead to non-convergence of
the networks. Therefore, these features require to be scaled into a similar magnitude. A
standard scaler is applied here to make the processed data follow the standard normal
distribution with the mean value as 0 and the standard deviation as 1. After scaling, the fea-
tures can be fed into the neural networks according to different experimental requirements.
In the result presented in the next section, the first feature, transferred energy, will be first
applied to perpendicular impact data, including cases A and B. Then the second and third
features will be applied to both perpendicular and angled impact data to evaluate whether
they provide additional information for those impacts.

Table 2. Features extracted from case A. Si represents the sensor number i.

Label Energy/J(S1) . . . Energy/J(S8) Frequency/Hz(S1) . . . Frequency/Hz(S8) Time int/s(S1) . . . Time int/s(S8)

0 0.04968 0.04552 20 58 0.01287 0.00788
0 0.04943 0.04592 20 58 0.01293 0.00806
0 0.04958 0.04609 20 58 0.01302 0.00791
0 0.04911 0.04601 20 58 0.01298 0.00794
0 0.04062 0.04641 20 20 0.03223 0.01758

. . . . . . . . . . . . . . . . . . . . .
1 0.07705 0.03190 21 21 0.02126 0.01660

. . . . . . . . . . . . . . . . . . . . .
2 0.10343 0.05218 21 20 0.02105 0.01538
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5. Results and Discussion

This section introduces the results obtained from both BNN and multi-ANNs. The
BNN and ANN used in this work have the same architecture, as shown in Figure 8, and
are implemented by TensorFlow and TensorFlow Probability. The input layer includes
16 neurons or 8 neurons depending on which features are used. The second and third layers
contain 64 and 32 neurons, respectively. For the output layer, it has three neurons as the
number of classes is three. A DenseFlipout layer from TensorFlow Probability is used in
BNN to achieve the variational inference method mentioned in Section 3.1, and the default
prior distribution of the kernel follows a standard normal distribution. These two networks
are first trained by the data from case A to obtain a baseline model and then tested by the
other data from case A to examine the performance of the baseline model. The purpose
of training a baseline model is to show the ability of the proposed method to classify the
impacts correctly and the reliability of the BNN when it makes predictions based on a
dataset which it has never seen. Therefore, this baseline model will be further tested by
data in case B to demonstrate the influence of uncertainty from impacts in different angles.

Figure 8. The structure of the BNN and ANN used in this study.

5.1. Perpendicular Impacts
5.1.1. Single ANN

For impacts perpendicular to the plate surface, the transferred energy is an appropriate
feature to verify the performance of the proposed models. The overall number of samples
from case A is 560. These data are first randomly split into training, validation, and testing
datasets in 6:2:2 ratio to adjust and optimize the hyperparameters of the network. These
hyperparameters include the number of neurons, activation function, learning rate, batch
size and epochs. To fit the model and evaluate the performance of training, validation and
testing, the categorical cross-entropy is used as the loss function and accuracy is applied
as an appropriate metric. An Adam optimizer with a learning rate of 0.001 is adopted
to achieve a fast and efficient fitting and the number of epochs is set as 100 to reach a
sufficient convergence. These data are firstly input into a single ANN and the plots of loss
and accuracy are shown in Figure 9. The decline of the loss curve is very smooth, which
proves that the model fits well. The accuracy curve has a satisfying shape as well and the
accuracy of evaluation reaches 99.1%. The results show that ANN can classify the energy
level of impacts with high accuracy based on the transferred energy.
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Figure 9. The plots of (a) loss and (b) accuracy for a single ANN.

5.1.2. Bayesian Neural Network

The BNN accepts similar hyperparameters to the ANN and the only difference between
them is that the former uses the Flipout estimator with a well-designed KL divergence
function to optimize the probabilistic parameters and the learning rate is set as 0.01. The
same data are input into the proposed BNN and the plots of loss and accuracy are shown
in Figure 10. The shape of the loss curve is similar to Figure 9a, while the accuracy curve
is quite different from Figure 9b. The accuracy first rises rapidly to about 0.9 and then
fluctuates significantly as the training progresses. The fluctuation mainly comes from the
probabilistic parameters in the BNN, for which these parameters are random variables and
follow a probability distribution.

Figure 10. The plots of (a) loss and (b) accuracy for the BNN.

For a more in-depth evaluation, the accuracy of BNN reaches 94% max, which is
lower than the result from the single ANN. However, the decline of evaluation accuracy
is accompanied by the ability to measure the uncertainty and the improvement of the
reliability of the BNN. A simple way to show this is to make several predictions based
on the same trained model and count the probability of the correct predictions, which
is also known as the Monte Carlo method. Figure 11 shows the results obtained from
100 Monte Carlo sampling. It counts the probability of correct predictions (P) over the total
100 predictions for 112 test samples and the results show that for most of the test samples,
P reaches a satisfying level.

Since the impact categorization is based on detecting the impact energies in different
classes, it is important to know how close the predicted impact energy levels are to the
true values. This is important when the high impact energies fall close to the damage
initiation levels and a wrong prediction can cause a significant cost to the performance
of the structure. Therefore, a new measure related to the reliability and confidence of the
decision making is introduced here. In order to distinguish different levels of predictions
and intuitively reflect their reliability, the predictions are further classified as follows:
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• 0.9 < P ≤ 1 Reliable
• 0.1 < P ≤ 0.9 Unreliable
• 0 < P ≤ 0.1 False

Figure 11. The probabilistic results from Monte Carlo sampling.

The distribution of classified results is shown in Figure 12a. Most predictions are
“reliable” while there are still a few “unreliable” results. Recalling that the accuracy of
evaluation is 94%, the percentage of “reliable” predictions is lower than this, reaching
around 88%. This is because the accuracy of evaluation comes from a single prediction
while Monte Carlo sampling provides more information about the reliability of results
which influences the percentage of “reliable” predictions. By adjusting the threshold of
P, this percentage varies as well. Furthermore, for a single testing sample, Monte Carlo
method could obtain a categorical distribution which the predictions should follow.

Figure 12. The distribution of classified results with BNN. (a) Single test sample. (b) Three single
testing samples.

Figure 12b shows the results of a test case where three testing samples were selected
and their categorical distributions of predictions are presented. It is clear that from left
to right, the uncertainty of predictions and the probability of false prediction gradually
increase. In order to measure the epistemic uncertainty of these test samples, the predictive
entropy presented in Section 3.1.3 is calculated as 0.05, 0.48 and 0.66, respectively. It also
proves the phenomenon that the higher predictive entropy should correspond to the higher
probability of false prediction.

5.1.3. Multi-ANN

From Section 3.1, the results from the BNN should be equivalent to averaging results
from an infinite set of ANNs, which is not possible due to the limitation of computational
resources. In this section, the number of ANN in the Multi-ANN is set the same as the
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number of Monte Carlo sampling used in the BNN so that the results of predictions can be
compared under the same standard. Multi-ANNs are a finite set of conventional ANNs with
the same architecture. The flowchart of how to build multi-ANNs is shown in Figure 13.

Figure 13. A flowchart of building multi-ANNs.

The probabilistic results from 100 ANN and their distribution are shown in Figure 14.
Compared with the BNN (Figure 12), it seems that multi-ANN gives a more reliable result
as the “reliable” predictions account for 98% of the total predictions; however, 2% is “false”
prediction. In contract, while for the BNN the probability of correct prediction, P, is 95% as
“reliable”, there are only 5% “unreliable” predictions and no “False” predictions, which is
more important for the application of SHM.

Figure 14. The probabilistic results from 100 ANN. (a) Probability of correct predictions. (b) Their
distribution. (c) Results from three test samples.
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Although the results from multi-ANN look better than those from the BNN, the
efficiency of these two methods also needs considering. To compare the temporal efficiency,
the time used by different numbers of ANNs and Monte Carlo sampling is recorded and
presented in Figure 15. The time cost of multi-ANN increases linearly and rapidly as the
number of ANN increases, while the time cost of the BNN remains stable. Figure 16 shows
the computational resource usage of the 100 ANN and of the BNN with 100 times Monte
Carlo sampling. The peak of CPU usage is not very different between the two figures, while
the multi-ANN cost more computational resources in the same time interval and consume
computational resources continuously.

Figure 15. The time efficiency of different numbers of ANNs and Monte Carlo sampling.

Figure 16. The CPU usage of (a) the BNN and (b) multi-ANNs.

To summarize, both BNN and multi-ANN are able to classify the energy level of
perpendicular impacts to an acceptable accuracy. Using the same structure of neural
networks, multi-ANNs obtain a higher probability of correct predictions for the test samples
compared to BNN, while the probability of false alarm is also higher since BNN has
higher probability of unreliable detection (uncertain decision making) but 0% of False
classification. However, multi-ANNs require much more time and computational resources
than ANNs, which could be the principal limit of applying multi-ANN in the real-life
environment. The question now is, which one has better prediction when there is larger
variability in the impact scenarios, for example, including angled impact which introduces
uncertainty. This will demonstrate which network can better reach a generalization and
will be investigated next.
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5.2. Angled Impacts

The previous section used only the data from case A in Table 1 where the impacts are
perpendicular to the plate. As expected, both BNN and multi-ANN obtain satisfying results
of predictions. The following section assesses the scalability and reliability of the predictive
model for classification of impact scenarios that have not been used in the training of the
meta-models before and have some certain degree of uncertainty and variability, as these
will be more representative of the real operational and environmental conditions. The BNN
is first trained with the data from case A and tested with data from both cases A and B. Case
A includes 560 samples in total and case B includes 280 samples in total, and 80% of the
data from case A are randomly chosen to train the BNN. The other 20% of data from case A,
including 112 samples and the same amount of data from case B, are used to test the trained
BNN. To compare the effects of different features, the transferred energy is first used as
the single input parameter in both BNN and multi-ANN, followed by including multiple
features such as the frequency and the time interval of the largest peak, respectively.

5.2.1. Single Feature

The results of the BNN based on mixed data which are only trained and tested with
a single feature, i.e., transferred energy, are shown in Figure 17. In Figure 17a, a total of
224 samples are used for testing, of which the first half are from case A and the second
half are from case B. The predictions of the first half are more reliable than those of the
second half as there are many test samples with very low probability of correct prediction
P. Figure 17b highlights this by demonstrating the number of “False” predictions which
reaches 51, which is 22% of overall test cases (A+B), but accounts for 45% of the samples
from case B. In other words, the accuracy of predicting case B (which has not been used at
all in the development and training of the neural network) is only 55% while the accuracy
of case A still remains at a high level, which is to be expected. By investigating the
results in depth, it is found that all the “False” predictions are from case B2, which are
impacts of 50 mm height and contain an energy of 49 mJ. This result is not surprising
as the characteristics of perpendicular impacts and angled impacts are very different,
hence a model trained by perpendicular impacts cannot predict angled impacts with high
probability. The summary of the overall results in presented in Table 3.

Figure 17. The results of the BNN based on mixed data with transferred energy. (a) Probability of
correct predictions. (b) Their distribution.

To compare the scalability between BNN and multi-ANN, the multi-ANNs are trained
in the same way and their results are presented in Figure 18. The first half of the test
samples show the same trend as that in Section 5.2.1 as they all belong to perpendicular
impacts. For the second half, the multi-ANNs have an increased “False” prediction as the
number of “False” predictions reaches 61, accounting for 55% of the samples from case B.
Therefore, the multi-ANNs perform worse than the BNN when the well-trained models
are tested by the data they have never seen. Moreover, considering the huge gap in the
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temporal and computational efficiency between the two models, the BNN is undoubtedly a
better choice.

Table 3. Comparison of BNN performance to ANN.

Meta Model Input Feature * Training Set Testing Set Reliable
Classification

Unreliable
Classification

False
Classification

BNN 1 A A 94% 6% 0%

BNN 1 A A+B 70% (only 55% for B) 8% 22%

BNN 1+2 A A+B 70% 8% 22%

BNN 1+3 A A+B 54% 39% 7%

Multi-ANN 1 A A 98% 0% 2%

Multi-ANN 1 A A+B 70% (only 44% for B) 2% 28%

Multi-ANN 1+2 A A+B 70% 3% 27%

Multi-ANN 1+3 A A+B 70% 18% 12%

* Input features: 1. Transferred energy, 2. Signal frequency at maximum amplitude and the time interval of the
largest peak.

Figure 18. The results of multi-ANN based on mixed data with transferred energy. (a) Probability of
correct predictions. (b) Their distribution.

Generally, the transferred energy feature alone is not an appropriate feature for the
angled impacts because the probability of wrong predictions is nearly 50%. Therefore, to
improve the accuracy of predictions, the other two features mentioned in Section 4.2.2,
namely the signal frequency at maximum amplitude and the time interval of the largest
peak, are respectively combined with the transferred energy to train and test the model.

5.2.2. Multiple Features

In this section, the transferred energy combined with two other features are used
to develop and test the BNN only, as the multi-ANNs have demonstrated not to have
higher performance in detecting angled impacts. Transferred energy combined with the
frequency is firstly used as input to the BNN. Figure 19 shows the results of the BNN
based on mixed data with multiple input features including the transferred energy and the
frequency components corresponding to the maximum amplitude. Compared to Figure 17a,
the predictions for perpendicular impacts in Figure 19a become more accurate and reliable
as the probability of correct identification, P, for the first half of the test samples is mainly
around 1.0. However, for the second half of the tests, Figure 19a shows worse results
and the model cannot predict the angled impacts correctly as the scatter is very high.
Therefore, the choice of frequency content as an additional input feature is not suitable for
angled impacts.
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Figure 19. The results of BNN with transferred energy and frequency. (a) Probability of correct
predictions. (b) Their distribution.

Considering multiple features of transferred energy and the time interval, Figure 20
shows the results of the BNN based on mixed data with mixed features. Similarly, compared
to Figure 17a, the predictions of perpendicular impacts in Figure 20a are more accurate and
reliable. For the part of angled impacts (i.e., the second half of the test samples), it is clear
that the mixed features increase the probability of correct predictions, and the number of
“False” predictions decreased. It demonstrates that the additional feature, time interval,
helps to identify the angled impacts although the accuracy is still not as good as expected.

Figure 20. The results of BNN with transferred energy and time interval. (a) Probability of correct
predictions. (b) Their distribution.

To conclude, as an additional feature, the frequency at maximum amplitude is not an
appropriate feature for classifying the angled impacts as the predictions are completely
random. In comparison, the time interval of the largest peak helps to identify both the
perpendicular and angled impacts. With the number of “reliable” predictions remaining the
same, it reduces the number of “False” predictions. These results emphasize the importance
of including variability of the impact scenarios in the development and testing stage.
Meanwhile, both multi-ANN and BNN show the potential to output the confidence and
probability of predictions for data that have never been seen before. However, considering
the efficiency, BNN significantly reduces the time and CPU usage, which makes it possible
to apply BNN in real-life for safety-critical structures.

In conclusion, the results of both networks are compared in Table 3 for different
training sets and different input features. Please bear in mind that the probability of classi-
fication is presented for the full testing dataset (case A+B). However, as is demonstrated in
Figures 17–20, most of the errors are for the second half of the test samples which corre-
sponds to Case B and, for the final conclusion, the probability of classification for classes A
and B should be considered separately to comment on the regularization capability of each
meta-model, which is the important factor for upscaling of the proposed method to real
structures. This point is emphasized in the conclusion section.
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6. Conclusions

In this paper, a novel machine learning method for classifying impact energy levels and
quantifying the uncertainty based on passive sensing in a flat composite plate is proposed,
implemented and evaluated. The proposed method, BNN, is compared with multi-ANN
to critically assess the capabilities of both neural networks’ performance, including the
accuracy of predictions, the time efficiency and computational resources. The focus of the
performance analysis has been on upscaling of such developed machine learning techniques
to real structures, where there will be a large variability in the data from the trained ones.
For example, what will be the reliability of a meta-model that was developed and tested at
a small scale with perpendicular impacts only, in correctly categorizing inclined impacts.
The findings of the research study are mainly listed below:

• Both the BNN and single ANN can classify energy levels of perpendicular impacts
with high accuracy using the feature of transferred energy, although the accuracy of
the single ANN is higher than that of the BNN.

• Both the BNN and multi-ANN can quantify the uncertainty in the mode and calculate
the confidence of predicted outcomes. For perpendicular impacts, the confidence of
predicted outcomes in the multi-ANN is higher than that in the BNN, while the time
and computational resource cost of the multi-ANN are significantly larger than those
of the BNN.

• The time and computational resource cost of the multi-ANN increase linearly as the
number of ANN used increases, while the cost of the BNN remains stable as the
number of Monte Carlo sampling increases. For 100 ANN and 100 times Monte Carlo
sampling, the cost of the multi-ANN is significantly larger than that of the BNN.

• For angled impacts, both the BNN and multi-ANN can only reach the accuracy of
nearly 50% with the feature of transferred energy, while the multi-ANN tends to make
more “False” predictions.

• The dynamics response that the perpendicular and inclined impacts generate in the
plate are very different, even if they are of the same mass and height; therefore, if
a metamodel is developed for perfect impact scenarios in the laboratory condition
(i.e., perpendicular impacts), it cannot predict inclined impacts with high accuracy. It
is observed that including other features that can directly relate to the characteristic
response that each impact scenario generates in the structure, can improve the results,
but this needs to be further investigated, including more variability in the impact
scenarios. This conclusion also follows the findings in [22] where two step classification
is proposed. Therefore, future work will investigate the variability not only of impact
angle but also impactor material, mass and size to represent a more realistic variability.

• The mixed features of transferred energy and frequency at maximum amplitude
cannot be used to predict energy levels of angled impacts as the results are totally
random. The mixed features of transferred energy and time interval of the largest peak
show a potential to help to identify both the angled and perpendicular impacts as the
number of “False” predictions for angled impacts and “Unreliable” predictions for
perpendicular impacts decreases meanwhile.

In summary, both the BNN and multi-ANN can classify the energy levels and quantify
the uncertainty for the impact scenarios that they were trained with, i.e., perpendicular
impacts, with reasonable accuracy. For angled impacts, the accuracy of classification is not
satisfying and some new features which represent the dynamic response of the plate to
inclined impacts should be included and researched in future studies. However, due to
the ability to quantify the uncertainty, the BNN and multi-ANN can provide additional
information that can be further utilized for decision making, in the application of SHM to
real structures. Considering the huge gap in the temporal and the computational efficiency
between these two methods, the BNN is proved to outperform the multi-ANN and has
very broad application prospects in the field of SHM, especially for those safety-critical
components and structures.
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The results presented in this paper are a first step in critically assessing the proposed
BNN with limited test scenarios. It should be further tested on larger and more complex
structures such as stiffened panels and should also include more variability in the impact
scenario, to have a more realistic representation of in service loads and impact events.
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