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Abstract: Artificial neural networks have great prospects in solving the problems of predicting the
properties of polymers. The purpose of this work was to study the possibility of using artificial neural
networks to determine the rheological parameters of polymers from stress relaxation curves. The
nonlinear Maxwell–Gurevich equation was used as the deformation law. The problem was solved
in the MATLAB environment. The substantiation for the choice of the neural network input and
output parameters was made. An algorithm for obtaining the data for neural network training was
also proposed. Neural networks were trained on theoretical stress relaxation curves constructed
with the Euler method. The value of the mean square error (MSE) was used as a criterion for the
performance of the training. The constructed model of the artificial neural network was tested on
the experimental relaxation curves of recycled polyvinyl chloride. The quality of the experimental
curve approximation was quite good and was comparable with the standard methods for processing
stress relaxation curves. Unlike the standard methods, when using artificial neural networks, no
preliminary data smoothing was required. It is possible to use the proposed technique for processing
not only relaxation curves, but also creep curves as well as processing creep tests not only in central
tension, but also in bending, torsion and shear.

Keywords: creep; relaxation; artificial neural networks; rheological parameters; polyvinyl chloride

1. Introduction

Pronounced creep is characteristic for many polymers and composites based on them
in addition to the elastic properties. For use in products for various purposes, it is important
to be able to determine the rheological properties of polymer materials. In most existing
techniques, the rheological parameters of polymers are determined from tests for creep
under central tension [1–4]. The phenomenon of stress relaxation in polymers is interrelated
with the phenomenon of creep and can be described by the same laws [5]; therefore, the
rheological parameters of polymeric materials can also be determined from stress relaxation
experiments [6–9].

One of the simplest rheological models, which is applied not only to polymers, but
also to other materials such as concrete and wood, is the Maxwell–Thompson linear model.
The creep strain ε∗ growth rate in this model under a uniaxial stress state is determined by
the following expression [10]:

∂ε∗

∂t
=

1
nE

[(
1− H

E

)
σ− Hε∗

]
(1)

where σ is the stress, t is the time, E is the instant modulus of elasticity, H is the long
modulus of elasticity and n is the relaxation time.

The product n · E is also called the relaxation viscosity η∗. In Equation (1), the vis-
cosity is constant and does not depend on stress, which does not fully reflect the existing
experimental data.
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For many polymers, including polypropylene, polyvinyl chloride, high and low
density polyethylene and polyurethane, a better agreement with the experimental data is
provided by the nonlinear Maxwell–Gurevich equation, in which viscosity depends on
stress [11–15]:

∂ε∗

∂t
=

f ∗

η∗
(2)

f ∗ = σ− E∞ε∗ (3)

1
η∗

=
1

η∗0
exp

(
| f ∗|
m∗

)
(4)

Here, f ∗ is the stress function, E∞ is the high elasticity modulus, η∗0 is the initial
relaxation viscosity and m∗ is the velocity modulus.

A more complex structure of the creep equation complicates the processing of the
experimental data. The existing traditional methods for processing creep and relaxation
curves based on the Maxwell–Gurevich equation [16,17] use numerical differentiation and
require a sufficiently high quality of experimental curves.

Machine learning methods have great prospects in solving inverse problems, including
the determination of the mechanical properties of materials. An artificial neural network
(ANN) is one of the artificial intelligence methods that provides solutions for classification
and regression problems. It is known as one of the best methods for data mining tasks.
ANNs learn to predict output data using a set of attributes. The purpose of an ANN is to
find solutions to problems in the same way that the human brain does [18].

Works [19–21] are examples of determining the properties of pavement materials
with the help of an ANN. Papers [22,23] propose a method for determining the chemical,
physical and mechanical properties of polymers based on their molecular structure using
machine learning methods. In [24], artificial neural networks are used to predict the
glass transition temperature of polymers based on their structure. Paper [25] proposes
an optimized artificial intelligence model to predict the kerf quality characteristics in the
laser cutting of basalt fibers reinforced with polymer composites. In [26], a new hybrid
artificial intelligence approach is proposed to model the ultrasonic welding of a polymeric
material blend. In [27], an ANN is used as one of the methods for predicting the properties
of bistable morphing composites.

The possibilities of artificial neural networks are far from being exhausted.
The aim of this work was to study the possibility of using artificial neural networks

to determine the rheological parameters of polymers based on the nonlinear Maxwell–
Gurevich equation. The stress relaxation experiment was taken as a basis, but the approach
could also be applied to the processing of the results of experiments on creep under central
tension and other simple types of deformation such as bending, torsion and shear. The
novelty of the proposed approach lay primarily in the choice of input parameters for the
neural network as well as in the method of obtaining the data on which the neural network
was then trained.

2. Materials and Methods

Figure 1 shows a typical relaxation curve constructed with the Maxwell–Gurevich
equation. Let us single out the characteristic points on this curve that were used as the
input variables in the neural network: σ0 is the stress at the initial moment of time; σ∞ is
the stress at the end of the relaxation process (at t→∞); and tn is the time during which the
stress drop ∆σ is:

∆σ = σ(tn)− σ0 = (σ0 − σ∞)

(
1− 1

e

)
(5)
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Figure 1. Typical stress relaxation curve.

Thus, t95 was the time during which the stress drop was 95% of the maximum
(σ(t95)− σ0 = 0.95 · (σ∞ − σ0)).

The values tn, t95 and σ∞ can be determined from the experimental relaxation curve if
it is of a sufficient quality. By the quality of the experimental curve, we mean here that in the
experiment, one has waited for the stress relaxation curve to reach the horizontal asymptote.
The tangent slope angle of the relaxation curve at the end point of the measurement should
be close to zero (Figure 2).
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Figure 2. Good-quality (a) and bad-quality (b) stress relaxation curves.

The parameter tn was chosen as a characteristic value because, when using the
Maxwell–Thompson linear creep law, it coincided with the relaxation time n.

Another input parameter of the neural network was the deformation ε at which the
stress relaxation experiment was performed. If the value of the deformation is known, then
the values of σ0 and σ∞ can be used to easily determine the elastic modulus and the high
elasticity modulus of the polymer, respectively. The modulus of elasticity was calculated
by the formula:

E =
σ0

ε
(6)
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It is shown in [28] that, in the case of using the Maxwell–Gurevich equation, the
relationship between stresses and strains at t→∞ has the form:

σ∞ = Hε (7)

where H = E · E∞/(E + E∞) is the long modulus of elasticity.
Thus, if the values of ε and σ∞ are known, then it is not difficult to find the long

modulus H. From the known values of E and H, one can then find E∞ using the formula:

E∞ =
E · H

E− H
(8)

Determining the values m∗ and η∗0 is associated with further difficulties and an artificial
neural network may be used for this. The input parameters of the network were the values
ε, σ0, σ∞, tn and t95. At the output, the network should produce the parameters m∗ and η∗.

Network training was performed on the theoretical relaxation curves. For this, the pos-
sible ranges of change were selected in the modulus of elasticity E ∈ [E1; E2], high elasticity
modulus E∞ ∈ [E∞1; E∞2], velocity modulus m∗ ∈

[
m∗1 ; m∗2

]
, initial relaxation viscosity

η∗0 ∈
[
η∗01; η∗02

]
and deformation ε ∈ [ε1; ε2]. For each parameter in the specified ranges, the

m values were generated and evenly spaced on the numerical axis. For E, E∞, m∗ and η∗0 ,
we took 20 values; for ε, we took 3 standard values (1, 2 and 3%). Thus, the total number of
options was 204 × 3 = 480,000. For each option, a theoretical stress relaxation curve was
constructed with the Euler method. The algorithm used for constructing the theoretical
curve was as follows:

1. The long modulus of elasticity was calculated H = E · E∞/(E + E∞);
2. The stress σ∞ was calculated by Formula (7);
3. The maximum creep strain at t→∞ was determined by the formula:

ε∗max =
σ∞

E∞
(9)

4. The number of steps for the creep deformation nε was set (we took it as equal to 200)
and the step size was calculated:

∆ε∗ =
ε∗max
nε

(10)

5. The creep strain growth rate at t = 0 was determined:

∂ε∗

∂t
=

σ0

η∗0
· exp

( σ0

m∗
)

(11)

6. The time step was calculated:

∆t =
∆ε∗

∂ε∗
∂t

(12)

7. The creep strain at time t + ∆t was then determined by the formula:

ε∗t+∆t = ε∗t +
∂ε∗

∂t
∆t (13)

8. The stresses at time t + ∆t were determined by the formula:

σ = E(ε− ε∗) (14)

9. The strain growth rate was then calculated from the stresses using Formula (2).
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Points (7)–(9) were then repeated until the creep strain reached the value ε∗max. For
each constructed curve, it was possible to determine the values tn and t95. Two data arrays
were then formed—input 5 × 480,000 in size and target 2 × 480,000 in size—on which the
neural network was trained. The input array columns contained the values ε, σ0, σ∞, tn
and t95 for each calculated option. The target array columns contained the corresponding
m∗ and η∗0 values.

The implementation of the neural network was made in the MATLAB environment.
A feed-forward backpropagation network with one layer of hidden neurons was chosen
as the network type. The number of hidden neurons varied from 10 to 14. The network
architecture is shown in Figure 3. The input layer had 5 neurons, according to the number
of input parameters. Each of the neurons of the input layer was connected to the neurons of
the hidden layer by synapses with weights wi. The neurons in the hidden layer transformed
the signals coming from the input layer using an activation function. We used TANSIG
(the hyperbolic tangent sigmoid transfer function) as an activation function in MATLAB.
From the neurons of the hidden layer, the converted signal went to the neurons of the
output layer. The neural network training process was the adjustment of the weights of the
synapses [18].
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The Levenberg–Marquardt method was used to adjust the weights of the network.
There were four main functions for the evaluation of the training performance in MATLAB:

1. MSE (mean square error):

MSE =
1
ns

ns

∑
i=1

(di − yi)
2 (15)

where yi is the current value of the variable at the output of the network, di is the
target value and ns is the total number of output values for the considered sample.

2. MSEREG (mean squared error with regularization performance function). It measured
the network performance as the weight sum of two factors: the mean squared error
and the mean squared weight and bias values.

3. SSE (sum squared error):

SSE =
ns

∑
i=1

(di − yi)
2 (16)
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4. MAE (mean absolute error):

MAE =
1
ns

ns

∑
i=1
|di − yi| (17)

We chose the value of the MSE as the criterion for the training performance.

3. Results

An approbation of the technique for relaxation curve processing was carried out on the
relaxation curves of the recycled polyvinyl chloride presented in [29]. In this work, the tests
were carried out at a level of deformation of ε = 3%. The temperature in the experiment T
changed from 20 to 70 ◦C with a step of 10 ◦C. The dependence of stresses on the time at
different temperatures is shown in Table 1.

When training the neural network, the range of change in the elastic modulus E was
taken from 400 to 4000 MPa; in the high elasticity modulus E∞, the range was from 0.05·E
to 4·E, the velocity modulus m∗ varied from 1 to 15 MPa and the initial relaxation viscosity
varied from 106 to 108 MPa·s. The generated data were randomly divided into three parts:
training; validation; and testing in proportions of 70%, 15% and 15%.

The optimal number of neurons in the hidden layer turned out to be 12. The neural net
training performance graph is shown in Figure 4. When using the network with 12 neurons
in the hidden layer, the best validation performance was 47.71 after 1000 iterations. Due to
the large amount of data generated for training, the mean square errors for the samples
“Train”, “Validation” and “Test” were almost the same. A further increase in the number
of neurons led to the overtraining of the model. The regression charts of the model
with 12 neurons are shown in Figure 5. For several input parameter values, there was a
rather large deviation between the output predicted and the target values, which could be
explained by the large sample size and wide range of input parameters. The correlation
coefficients R between the output and the target values averaged 0.977. A value of the
correlation coefficient close to 1 was one of the indicators of the possibility of using the
model in the forecasting process.
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Table 1. Time dependence of stresses at different temperatures.

Time, Minutes 0 3 6 15 30 45 60 90 120 180

σ, MPa

T, ◦C
20 44.4 40.8 39.8 38.8 38.0 37.7 37.3 36.9 36.4 35.6
30 43.4 36.7 35.7 34.3 33.0 32.2 31.9 30.8 30.3 29.2
40 39.3 32.9 31.4 29.0 27.0 25.9 24.9 23.8 22.7 21.3
50 36.4 20.5 18.8 16.5 14.7 13.9 13.0 12.5 11.9 11.1
60 33.4 15.4 13.4 10.6 8.61 7.63 6.95 6.02 5.42 5.05
70 23.4 5.06 4.05 2.84 2.48 2.16 2.00 1.85 1.58 1.31
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Table 2 presents the values of the elastic and rheological parameters of the recycled
polyvinyl chloride obtained using the proposed methodology at various temperatures.
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Table 2. Elastic and rheological parameters of recycled polyvinyl chloride at different temperatures.

T, ◦C 20 30 40 50 60 70

E, MPa 1480 1450 1310 1210 1113 780
E∞, MPa 5990 2970 1550 532 198 46.3
m∗, MPa 12.8 12.8 13.9 6.11 6.68 6.42

η∗0 , MPa ·minute 9.3 × 105 4.54 × 105 2.39 × 105 1.82 × 105 1.08 × 105 3.94 × 104

Figures 6–11 show the theoretical stress relaxation curves plotted according to the data
in Table 2. The experimental points are marked with round markers. For all temperatures
except for 70 ◦C, there was a good agreement between the theoretical curves and the
experimental data. At high temperatures, there was a strong decrease in the elastic and
rheological characteristics of the polyvinyl chloride, which explained the not entirely good
agreement of the results at 70 ◦C.
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4. Discussion

In papers [16,17], the relaxation curves of the recycled polyvinyl chloride considered in
this paper were processed earlier using a standard algorithm; in [30], nonlinear optimization
methods were used to solve the same problem.

The values of the modulus of elasticity and the modulus of high elasticity obtained
by us coincided with those given in [17] as machine learning methods were not used
to determine them. A comparison of the values of the velocity modulus and the initial
relaxation viscosity—obtained by the standard method using the methods of nonlinear
optimization as well as using artificial neural networks—is shown in Figures 12 and 13. For
temperatures of 20, 30 and 40 ◦C, the values of the velocity modulus and initial relaxation
viscosity obtained using a neural network were close to the results based on the classical
algorithm. At temperatures of 50 and 60 ◦C, the solution based on the neural network was
closer to the solution using nonlinear optimization methods. At 70 ◦C, the value of the
velocity modulus obtained based on the artificial neural network was approximately in the
middle between the results based on the other two methods and the relaxation viscosity
was closer to the solution using nonlinear optimization methods.

Table 3 presents a comparison of the coefficients of determination R2 showing the
quality of the approximation using three methods for six considered curves.

Table 3. Comparison of R2 determination coefficients using three methods for determining the
rheological parameters.

T, ◦C 20 30 40 50 60 70

R2
Neural network 0.9772 0.9668 0.9693 0.9985 0.9899 0.7604

Classical algorithm 0.9798 0.9712 0.9811 0.9421 0.9450 0.7796
Nonlinear optimization 0.9918 0.9905 0.9909 0.9992 0.9994 0.9988
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Table 3 shows that the efficiency of the neural networks and the classical algorithm
was approximately the same. However, the classical algorithm used the numerical differen-
tiation of the function σ(t), which required a large number of points and the smoothing of
the experimental curve. When using artificial neural networks, four characteristic points
were sufficient and the smoothing of the experimental curve was not required. Nonlinear
optimization methods are characterized by a higher quality of approximation; however,
when using them, it is necessary to specify the initial approximation. If the real values
of m∗ and η∗0 are far from the initial approximation, then the solution may not be found.
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Nonlinear optimization methods can be used to refine a solution obtained by the classical
algorithm or with the help of artificial neural networks.

Note that the proposed technique based on machine learning methods, with a small
adjustment, could be used not only for processing the stress relaxation curves of polymers,
but also for processing creep curves. It is also possible to obtain the rheological parameters
of materials from tests not only for tension, but also for other simple types of deformations
such as shear, bending and torsion.

5. Conclusions

The possibility of applying machine learning methods to solve the problem of de-
termining the rheological parameters of polymers from stress relaxation curves has been
shown. An artificial neural network model was built to determine the rheological param-
eters of recycled PVC at various temperatures. The optimal number of neurons in the
hidden layer of the network was determined. The approbation of the model showed a
good quality of approximation of the experimental curves at temperatures from 20 to 60 ◦C.
The efficiency of the artificial neural networks in determining the rheological parameters of
the polymers was comparable with the efficiency of traditional algorithms. However, in
comparison with traditional algorithms, the smoothing of the experimental curves was not
required. The proposed technique made it possible to determine the rheological parameters
of the polymers not only from stress relaxation experiments, but also from experiments on
creep as well as experiments on types of deformation such as torsion, shear and bending.

Our further research will be aimed at testing the creep of polymer samples in bending
and building neural networks to process these experiments. Further research could also
be devoted to the choice of the optimal neural network architecture and the most effective
algorithms for training.
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