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Abstract: Limited predictions of thin-film composite (TFC) membranes’ behavior and functional
life exist due to the lack of accurate data on their mechanical behavior under different operational
conditions. A comprehensive investigation of the mechanical behavior of TFC membranes addressing
deformation and failure, temperature and strain rate sensitivity, and anisotropy is presented. Tensile
tests were conducted on commercial membranes as well as on individual membrane layers prepared
in our laboratories. The results reveal the overall mechanical strength of the membrane is provided
by the polyester layer (bottom layer), while the rupture stress for the middle and top layers is at
least 10 times smaller than that of the polyester layer. High anisotropic behavior was observed
and is attributed to the nonwoven structure of the polyester layer. Rupture stress in the transverse
(90º) direction was one-third of the rupture stress in the casting direction. Limited temperature
and strain rate dependence was observed in the temperature range that exists during operation.
Scanning electron microscopy images of the fractured surfaces were also analyzed and correlated
with the mechanical behavior. The presented results provide new insights into the mechanical
behavior of thin-film composite membranes and can be used to inform novel membrane designs and
fabrication techniques.
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1. Introduction

Water demand rises in tandem with population increase, economic development, and
evolving consumption habits [1]. Over the last century, global water demand has surged by
600 percent. This equates to a 1.8 percent yearly growth rate [2]. As a recently developed
technology, desalination has become a credible, more efficient, and cost-competitive alter-
native water source in response to increasing water constraints. Utilizing semi-permeable
seawater reverse osmosis (SWRO) membranes has dominated the desalination industry
over the past ten years [3]. Water treatment membranes must be durable and mechani-
cally strong to deliver high flux and contaminant rejection competences. RO membranes
are usually operated under harsh conditions and being subjected to high pressures and
complex stresses. Thus, it is critical to evaluate the mechanical characteristics of those mem-
branes to explore the failure processes, such as surface damage, chemical and mechanical
degradation, delamination, and lack of membrane stability under different conditions. The
majority of published research was concerned with the desalination of saltwater or mem-
branes for wastewater treatment, with emphasis on surface modification [4–6], membrane
processing [7–9], and antifouling characteristics [10–12]. According to the Scopus database,
the number of papers published each year on the mechanical properties of thin-film com-
posite (TFC) membranes still only accounts for 5% of the yearly publications on water
membranes [13].

As reported in the literature, the water membrane’s functionality is greatly influenced
by the mechanical stress applied during filtration, cleaning, and different operating condi-
tions. The integrity and reliability of membranes counts on their surface physical character-
istics, which degrade when subjected to different loading conditions. Aghajani et al. [14]
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reported the correlation between permeability and deformation for ultrafiltration (UF) and
microfiltration (MF) membranes, and it was revealed that the permeability of the MF and UF
membranes drop as compressive strain rises. Idarraga-Mora et al. [15] examined the impact
of woven polyester mesh size on the mass-transfer resistance and bursting strength of TFC
membranes used for pressure-retarded osmosis (PRO) process. The results demonstrated
that TFC membranes prepared with woven backings withstand loadings similar to those
experienced by commercial SWRO membranes. It has also been found that woven mesh
polyester backings offer the overall PRO structure substantial strength; however, the porous
support layer experiences deformations that rely on the backing’s opening size. Then, in
2020, the same research group [16] studied the effect of mechanical strain on the behavior
of commercial TFC membranes; they found out that, after exposure to linear strain values,
the membranes’ transport characteristics were slightly altered. In addition, they found that
higher salt transport through membranes would ensue due to local distortion and defect.
Accordingly, it was evident from the literature that the membranes used in water treatment
and desalination are reliable and durable mainly due to their mechanical strength. Reduced
membrane stiffness and strength may result from mechanical degradation brought on by
fouling, physical harm, physical pore plugging, backflow, and chemical treatment [17]. In
addition, this mechanical degradation will significantly impact the permeability, particle
rejection, and permeate quality [18].

Our previous publication [19] observed anisotropic behavior when the cruciform
specimens were tested under biaxial tensile loading. The transverse direction was shown to
have significantly greater strength than the longitudinal direction since TFC membranes are
asymmetric (anisotropic) membranes composed of different layered materials determined
by the species to be separated and their nature, where the thin separating layer is where
most of the flow resistance is generated [20]. The intermediate porous layer does not influ-
ence the transport resistance of the permeate along the membrane; typically, the mechanical
strength needed, as well as other elements such as chemical resistance and durability, are
taken into consideration when choosing the material for the support layer. The complexity
of TFC membrane behavior under varied loading circumstances was underlined in our
previous study. The perceived anisotropic behavior revealed the membrane’s non-uniform
properties, demonstrating that TFC membranes are chemically and structurally hetero-
geneous. To this end, it is critical to understand the mechanical characteristics of water
treatment membranes and the deformation mechanisms to enhance the membrane structure
design and accurately predict membrane failures. As an extension to our previous work,
this work presents a new insight and foundational understanding of the mechanical prop-
erties of commercial TFC-RO membranes, first by investigating their strain rate sensitivity
under different conditions and temperatures, where uniaxial tensile experiments have been
conducted at dry and wet conditions at two different temperatures (22 ◦C and 40 ◦C) and
different strain rates (0.01 s−1, 0.003 s−1, and 0.0001 s−1). Second, RO membrane, polyester,
polysulfone (PSF), and polysulfone + polyamide (PSF-PA) membrane layers prepared in
our laboratories were tested at different orientations with respect to the casting direction
(i.e., 0◦, 45◦, and 90◦) to identify the layer that is dominating the anisotropic behavior and
to detect the anisotropy effect on the stress–strain behavior. The tests were conducted using
uniaxial testing equipment with a custom-designed temperature-controlled bath. Engi-
neering stress–strain curves of the different tested samples were presented, compared, and
discussed. Failure modes and fracture morphologies were observed by scanning electron
microscopy (SEM).

It is worth highlighting the importance of understanding the membranes’ behavior
under these different conditions. In addition to the fact that these results and information
do not exist in the open literature, they are closely related to the real operational conditions:

• Temperature: The major performance indicators for a reverse osmosis unit are the
flow rate of the produced fresh water and salt rejection. The feed water temperature
has a significant impact on them [21]. The maximum allowable temperature range,
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according to the RO membrane manufacturers, is usually between 35 and 45 ◦C. It is
for this reason that the membranes in this study were tested at 22 ◦C and 40 ◦C.

• Strain rate: The membrane may be subjected to non-uniform mechanical loading
during casting, installation, handling, and operation. In addition, as membranes foul,
the module will exhibit pressure variation resulting in a non-uniform loading rate.
Not to mention the chemical cleaning that is performed at different flow rates and
directions than the feed water. Therefore, it is critical to understand the behavior of
the membranes under different loading rates.

• Anisotropy: TFC membranes are asymmetric (anisotropic) membranes made of sev-
eral layered materials, where the majority of the flow resistance is obtained in the
top thin separating layer. They have a complex behavior when subjected to varied
loading conditions, in addition to the non-uniform properties, demonstrating that
TFC membranes are chemically and structurally heterogeneous. Therefore, in order to
improve the design of membrane structures and accurately predict membrane failures,
comprehensive failure analysis in different directions is needed. It is also important
to understand the layer-by-layer mechanical properties of RO membranes and their
deformation mechanisms.

• Wet/Dry conditions: Thin-film membranes are manufactured in dry conditions and
subjected to mechanical loading during installation and handling while still in their dry
condition. However, in order to simulate the real operating conditions, the membranes
should be tested while immersed in water (wet condition).

The novelty of the present study is that, for the first time, it comprehensively addresses
the mechanical behavior of TFC membranes, including deformation and failure, strain
rate sensitivity, anisotropy, and temperature dependence. The presented data can serve
as guidelines for the future design of novel water treatment membranes for pressurized
osmotic processes.

2. Materials and Methods
2.1. Materials

A commercial RO membrane (BW30-LE, FilmTecTM) supplied by DuPont, Wilm-
ington, Delaware, USA, was used as a model polyamide-TFC (PA-TFC) membrane for
mechanical testing. TFC membranes are made up of three layers: a reinforcement layer
(nonwoven polyester) to offer structural support for high-pressure operations, a porous
support layer (PSF), and a thin polyamide (PA) layer for separation control (Figure 1).
1-Methyl-2-pyrrolidinone (NMP, 99.5%) was obtained from Honeywell Chemicals, Muskegon,
Michigan USA. Polysulfone (PSF, average Mw ~35,000), m-Phenylenediamine (MPD),
and Polyvinylpyrrolidone powder (PVP, average Mw ~29,000) were obtained from Sigma
Aldrich, Missouri, USA. 1,3,5-Benzenetricarbonyl Trichloride (TMC, >98%) was purchased
from TCI America, Portland, Oregon, USA. N-hexane (99%) was purchased from SD Fine
Chem Limited, Gujarat, India. Deionized water (DIW) was produced using the PURELAB
Flex system Elga, Illinois, USA. All chemicals were used as purchased without further
purification.

2.1.1. Polysulfone (PSF) Membrane Preparation

A free-standing PSF membrane (backing-free) was fabricated to eliminate the effect
of polyester fabric on the mechanical properties of TFC membranes. The PSF substrate
was fabricated via the non-solvent-induced phase separation (NIPS) approach (commonly
known as phase inversion), described elsewhere in the literature [22]. Briefly, a solution
consisting of 17 wt.% PSF, 3 wt.% PVP and 80 wt.% NMP was used as the main dope
solution. PSF was used as the main polymer matrix, while PVP was used as a pore-
forming agent. The dope solution was stirred vigorously at 500 rpm at 60 ◦C for 3 h,
followed by slower stirring at 130 rpm at room temperature overnight to form a transparent
homogenous solution. The dope solution was then coated on a clean glass plate at a uniform
speed and thickness. The casting speed was controlled using an automated coating machine
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(LR-G011 Automatic bar coater, Changsha Lonroy Technology Co. Ltd., Changsha, China).
Two PSF membranes at two different thicknesses (20 and 30 µ) were cast using a film
applicator (Elcometer 3580, Elcometer®, Manchester, UK). The casted membranes were
then immersed in a coagulant bath (DIW), where the phase separation occurred. To ensure
an ideal phase separation, the membranes underwent several washings and were kept
in DIW overnight. The resulting membrane thickness is usually higher than the casting
thickness as the membrane tends to swell and form a sponge-like structure throughout
the phase inversion process. The final membrane thickness was estimated using scanning
electron microscopy (SEM).
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Figure 1. Schematic for the structure of the TFC membranes.

2.1.2. Preparation of Backing-Free TFC Membranes

The nonwoven backing-free TFC membranes were prepared using the interfacial
polymerization technique. Interfacial polymerization is one of the renowned approaches
for fabricating PA-TFC membranes [23]. This approach depends on the polymerization
reaction of two monomers dispersed into two immiscible solvents (organic/aqueous),
where the PA layer is formed at the interface of the organic/aqueous phases [24]. In brief,
the prepared PSF substrates were fixed and clamped between two acrylic frames. Then, 2%
MPD in water and 0.1% TMC in hexane were used as the aqueous and organic solutions.
The MPD aqueous solution was poured and allowed to contact the membrane surface for
2 min. The excess solution was poured off, and the membrane dried at room temperature.
The TMC organic solution was poured and contacted the membrane surface for 1 min.
The coated membranes were then rinsed with hexane to remove the unreacted species,
dried at room temperature, and finally stored in DIW overnight. Figure 2 illustrates the
fabrication process of the backing-free PSF and TFC membranes investigated in this study.
The description of the fabricated membrane layers, in addition to their SEM cross-sectional
images, are shown in Table 1, while Table 2 presents schematic illustrations of the different
tested membranes.

2.2. Tensile Samples Preparation and Testing

The tensile test specimen was conformed to the dimensions shown in Figure 3a
according to the D638-14 ASTM standard. A coherent METABEAM 400 laser cutting
machine was used to cut the samples at a power of 100 watts and a cutting speed of
845 mm/s. The BW30, Polyester, PSF, and backing-free TFC membrane specimens were
cut at three different orientations (0◦ (along with rolling direction), 45◦, and 90◦) as shown
in Figure 3b. To avoid any unintentional scratches or contamination, the membrane
samples were carefully rinsed with deionized water and allowed to dry overnight at room
temperature in a clean area.
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Table 1. PSF and TFC prepared membrane layers used in this work.

Membrane Description Membrane Thickness
(µm) * Cross-Sectional SEM

M1
PSF membranes

casted at thickness
of 20 µm

129.7 ± 6.7
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In this investigation, a ZwickRoell customized uniaxial testing equipment was used to
conduct the tensile testing, which is specifically intended to be employed in testing thin
films. The electromechanical actuators provide a maximum displacement of 200 mm for
each axis and a maximum speed of 10 mm/s. One-sided closing screw grips with 300 N
Fmax are included with each actuator, in addition to a 2 kN load cell designed to measure
static and dynamic tensile and compression forces. A laserXtens/VideoXtens compact
device from Messphysik is mounted on the top, with one uEye camera and an f = 75 mm
objective lens, with an attached adjustable LED incident light for the illumination of the
specimen. The videoXtens mode was used in this research, where the system measured
the displacement of two marks (targets) on the specimen, either dry or through the liquid.
The extensometer system provides a signal for each testControl unit corresponding to
the axial displacement controlled by this axis, allowing strain control. A Digital/Analog
converter and sensors feed these signals into the testControl unit electronics. The measuring
electronics for the force measurement complies with ISO 7500-1, ASTM E4.

In order to investigate the stress–strain behavior of the commercial thin-film com-
posite (TFC) membranes under different conditions and temperatures, uniaxial tensile
experiments were conducted in dry and wet (immersed in a water path during testing)
conditions at two different temperatures (22 ◦C and 40 ◦C), and different strain rates
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(0.01 s−1, 0.003 s−1, and 0.0001 s−1). Additionally, the specimens that were extracted from
different orientations (0◦, 45◦, and 90◦) were tested to detect the anisotropy effect on the
stress–strain behavior. A plexiglass conditioning vessel thermoregulation bath was used to
test the samples in a wet environment and under elevated temperatures (Figure 4). The
thermoregulation bath was centrally mounted on the baseplate, where the connector is
screwed onto the testing system’s base crosshead and can be adjusted to the required height
by turning the knurled nut. Additionally, to control the temperature of the liquid in the
bath, it was connected to a bath heater with a temperature range of 20 to 80 ◦C (Figure 4).
Fracture morphologies after tensile tests were imaged utilizing SEM.

Table 2. Schematic illustration of the types of the tested membranes.

Sample Schematic Illustration

BW30–commercial RO membrane
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3. Results and Discussion
3.1. Effect of Membrane Orientation on Tensile Behavior

Figure 5 presents the engineering stress–strain curves of samples cut at 0◦, 45◦, and
90◦ with respect to the casting direction for BW30, Polyester, M1, M2, TFC1, and TFC2
membrane samples. The uniaxial tensile testing for all conditions was carried out for three
identical specimens, and the difference in the stress level among repeated tests for identical
specimens was not exceeding 5%. The 0◦ specimens exhibited the highest peak stress in
all types of specimens (BW30, polyester, and polysulfone (PSF) membranes). The rupture
stress for the 0◦ direction in BW30 and polyester samples was approximately three times
higher than in the other directions. This can be attributed to the higher number of polyester
fibers oriented in the casting direction (0◦ direction), resulting in a higher tensile strength.
This can be further confirmed by the SEM images presented in Figure 6 of the loaded and
unloaded polyester samples. Hence, this direction produces higher interfiber frictional
forces, which prevents breakage. At the same time, the 90◦ specimens displayed the lowest
peak stress in all the cases. The differences in the stress levels of the different PSF and
backing free-TFC membranes at different orientations are minimal and can be neglected
when compared to the differences in the case of polyester and polyester-supported samples;
thus, it could be concluded that the polyester layer dominated the anisotropic behavior
of the entire RO membrane, due to the fact that it has a nonwoven structure (Figure 6).
These findings match the results presented by Chauhan et al. [25], Pramanick et al. [26],
and Ray et al. [27]. They assessed the nature of anisotropy in terms of tensile properties for
nonwoven fabrics. It was found that the tensile strength in the machine direction (casting
direction) is generally more than that in the cross direction. It can also be noticed that the
backing-free PSF and TFC membranes exhibit the same stress–strain behavior. This can
be attributed to the extremely low thickness and fragility of the PA layer that led to an
unnoticeable influence on the mechanical properties.

Table 3 summarizes the mechanical properties of the different tested 0◦ membranes
under dry (22 ◦C) conditions. By analyzing the data in the table, it is clear that the values
for the entire membrane are close to the values of the polyester layer, demonstrating that
the overall mechanical behavior of the membrane is determined by the polyester layer. It is
also evident that there is a mismatch between the mechanical properties of the different
layers that may lead to different types of failures within the layers. Surface delamination
and cracks may develop on the top thin layers at loads way below the “expected” failure
loads of the entire membrane. The presented data provide new insight into the mechanical
performance of each layer within the thin-film composite membranes and help in develop-
ing a better understanding of their behavior and functional life during operation. It can
also inform novel membrane designs with customized properties for the individual layers
that will minimize the mismatch of mechanical properties for improved durability and
integrity of membranes. In addition, these data explain why some membranes undergo
unexpected failures during operation.

Table 3. Mechanical properties of the different tested 0◦ membranes under dry (22 ◦C) condition.

Sample
Modulus of
Elasticity (E)

in (MPa)

Flow Stress (Yield
Strength) in (MPa)

Ultimate Strength
in (MPa)

Rupture
Stress

in (MPa)

Rupture
Strain in (%)

BW30 18.786 20.323 67.25028 67.1514 13.16729
Polyester 17.433 18.736 62.51793 61.5823 10.69662

M1 1.465 1.159 2.036885 2.027712 1.338402
M2 2.242 1.475 3.14976 2.900595 2.541783

TFC1 1.361 1.305 2.146464 2.040404 1.670021
TFC2 2.152 1.401 2.796622 2.68501 1.58337
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3.2. Strain Rate Sensitivity and Effect of Temperature on Tensile Behavior

Figure 7 presents the engineering stress–strain curves for three sets of BW30-0◦ mem-
brane specimens under dry, wet-22 ◦C, and wet-40 ◦C conditions. The uniaxial tensile tests
for each set of specimens were conducted at the same temperature using three different
strain rates (0.01 s−1, 0.003 s−1, and 0.0001 s−1) determined by the speed of movement of
the tensile tester’s crosshead. It could be noticed that, when the samples were tested at a
constant strain rate, the stress increased linearly and quickly during the first few seconds,
the increases started to become non-linear, and an inflection point can be seen to have
occurred around 2% strain, where the rate of increase gradually slowed down until it
reached the point of fracture. No increase in the membranes’ strength can be highlighted
with the increasing strain rate in the cases of dry and wet-22 ◦C conditions. It can be clearly
noticed that BW30 membranes under the conditions mentioned above have limited strain
rate sensitivity. While for the wet-40 ◦C condition, at 0.0001 s−1 strain rate, the material’s
modulus (determined by the material’s initial slope of the tensile stress–strain response)
and yield strength (maximum stress that was developed in the material without causing
plastic deformation) are both at their lowest points. As a result of the increased strain
rate, the material appears to be slightly stronger and stiffer. Generally, polyester fibers
are largely dependent on intermolecular forces among its chains. As the temperature in-
creases, polyester fibers may undergo softening, which will affect the intermolecular forces.
Moreover, it is well known that strain rate sensitivity becomes more visible at elevated
temperatures.
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Figure 8 presents the effect of the temperature on the engineering stress–strain curves
of BW30 specimens at different strain rates. When comparing the results in Figure 8, the
increased temperature can be seen to result in slightly lower flow stress with no significant
change to ductility. This result is in agreement with the findings obtained by Clerc et al. [28],
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who presented an investigation of the mechanical behavior of polyester fibers over a range
of temperatures, and their results revealed that, as the temperature increased, the tensile
strength and elastic modulus gradually decreased. In addition, failure strain increased
from 14% to more than 40% with increasing temperature from 20 to 180 ◦C due to fiber
softening. In contrast, the behavior will completely change when the temperature exceeds
the melting point of the polyester. Choi et al. [29] revealed that the increase in temperature
initiates a thermal bonding between polyester fibers, and the void content in the nonwoven
fabrics would decrease, leading to a high thermal shrinkage and a sharp increase in tensile
strength and modulus of the nonwoven fabrics when treated at a higher temperature
than the melting temperature, as a result of fabric hardening and increase in density of
nonwoven fabrics. Table 4 summarizes the mechanical properties of the different tested
BW30-0◦ membranes under wet (22 ◦C and 40 ◦C) conditions and different strain rates.
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3.3. Surface Characterization and Failure Modes

To evaluate and understand the failure modes of each layer of the tested membranes,
scanning electron microscopy (SEM) images were obtained at areas near the fracture
region of each membrane. The SEM analysis was performed using the Apero-S device
manufactured by Thermo Fisher Scientific. All membrane samples were washed multiple
times with distilled water to eliminate contamination or inadvertent scratches and left to
dry in a sterile environment. The samples were coated with platinum to improve their
conductivity before SEM examination. Figure 9 shows the SEM images of the commercial
BW30 membrane tested under dry and wet conditions near the fracture region. The
results show some cracks and deformations in the top layers (PSF-PA) when tested under
dry conditions, as depicted by the high magnification images in Figure 9(a3,a4). The
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yellow arrows indicate different regions of these deformations, and the damage extends
to the middle layer (PSF), as shown in Figure 9(a4). Wet membranes exhibited different
behavior where no obvious cracks were observed, even in areas near the fracture region.
Additionally, the morphological change in wet conditions was in the form of stretches and
wrinkles, as shown in Figure 9(b1–b4). High magnification images of the wet membranes
(Figure 9(b3,b4)) suggest that the top layers remain coherent even in areas near the fracture
region. This can be explained by the fact that PSF is brittle in dry conditions and has
higher ductility in wet conditions [17]. These findings are supported by the SEM images
of the backing-free membranes tested under the dry conditions shown in Figure 10. The
widespread cracks observed on M2 and TFC2 surfaces indicate a brittle failure of these
membranes in dry conditions. The findings of Figures 9 and 10 imply that the top layers
are more susceptible to deformation at much lower loading levels than the stress-fracture
levels in dry conditions. Contrastingly, in wet conditions, these layers have higher ductility
than the backing polyester layer, which results in some stretches and wrinkles in the top
layers while remaining cohesive.

Table 4. Mechanical properties of BW30 membranes under wet (22 ◦C and 40 ◦C) conditions and
different strain rates.

Sample
Modulus of
Elasticity (E)

in (MPa)

Flow Stress
(Yield

Strength) in
(MPa)

Ultimate
Strength in

(MPa)

Rupture
Stress in

(MPa)

Rupture
Strain in (%)

BW30-22 ◦C
(0.0001 s−1) 18.656 16.812 57.647 52.992 12.463

BW30-40 ◦C
(0.0001 s−1) 17.692 11.856 49.859 49.229 13.978

BW30-22 ◦C
(0.003 s−1) 19.718 17.175 62.217 62.005 12.264

BW30-40 ◦C
(0.003 s−1) 20.365 15.817 52.382 49.314 13.259

BW30-22 ◦C
(0.01 s−1) 18.670 13.663 53.802 53.018 12.330

BW30-40 ◦C
(0.01 s−1) 18.418 13.613 51.012 50.867 12.275
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4. Conclusions

We presented comprehensive mechanical testing, supported by scanning electron
microscopy, of a thin-film composite (TFC) RO membrane and its individual layers under
various conditions. It was shown that the overall mechanical behavior of the TFC mem-
brane is dominated by the polyester backing layer, which also causes the high anisotropic
behavior. The layer-by-layer analysis revealed a significant mismatch between the mechan-
ical properties of the middle and top layers compared to the polyester backing layer, which
may lead to surface delamination and cracks at lower-than-expected loads. Another im-
portant result was observed for samples tested under wet conditions. The middle and top
layers exhibited more ductile behavior compared to dry conditions, as was demonstrated
by the wrinkles and lack of cracks. This can be attributed to the stability of the top layer
under wet conditions. For the temperature range studied in this work, the membranes
exhibited a limited strain and temperature dependence. A slight softening effect on the
stress level was observed at 40 ◦C.

Although this study presented new data on the mechanical and failure behavior of
TFC RO membranes that can help in the design and fabrication of novel membranes, it also
identified areas that need further investigation. Comprehensive biaxial testing under static
and fatigue loading is needed to understand how these membranes behave under real
conditions. Additionally, attention should be placed to the interfacial properties between
the various layers. It is hoped that this study will encourage more mechanical investigations
of TFC RO membranes, as the available data are very limited.
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