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Abstract: Wood is a viable alternative to traditional steel, cement, and concrete as a structural material
for building applications, utilizing renewable resources and addressing the challenges of high energy
consumption and environmental pollution in the construction industry. However, the vast supply
of fast-growing poplar wood has bottlenecks in terms of low strength and dimensional stability,
making it difficult to use as a structural material. An environmentally friendly acrylic resin system
was designed and cured in this study to fill the poplar cell cavities, resulting in a new type of
poplar laminated veneer lumber with improved mechanical strength and dimensional stability. The
optimized acrylic resin system had a solid content of 25% and a curing agent content of 10% of the
resin solid content. The cured filled poplar veneer gained 81.36% of its weight and had a density of
0.69 g/cm3. The static flexural strength and modulus of elasticity of the further prepared laminated
veneer lumber were 123.12 MPa and 12,944.76 MPa, respectively, exceeding the highest flexural
strength required for wood structural timber for construction (modulus of elasticity 12,500 MPa and
static flexural strength 35 MPa). Its tensile strength, impact toughness, hardness, attrition value,
water absorption, water absorption thickness expansion, and water absorption width expansion
were 58.81%, 19.50%, 419.18%, 76.83%, 44.38%, 13.90%, and 37.60% higher than untreated laminated
veneer lumber, demonstrating improved mechanical strength and dimensional stability, significantly.
This method provides a novel approach to encouraging the use of low-value-added poplar wood in
high-value-added structural building material applications.

Keywords: poplar wood; laminated veneer lumber; acrylic; curing agent; filling; cell cavity; mechani-
cal properties; dimensional stability

1. Introduction

Today’s world, supported by non-renewable resources, is facing severe challenges
such as energy, environment and climate change. It has become a broad social consensus
to develop and use renewable resources efficiently to replace non-renewable resources
and solve the crisis. In the construction sector, non-renewable resources such as steel,
cement and concrete are used as the primary material, emitting considerable amounts
of CO2 during the processing, affecting the environmental climate and consuming large
amounts of energy. According to statistics, energy consumption in the building sector
reaches around 40% of the total global energy consumption [1–5]. Therefore, the extensive
use of green and renewable resources in the construction sector is a decisive step toward
promoting sustainable social development. As one of the largest biomass resources, wood
is recognized as a green and low-carbon material with the advantages of recycling, high
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specific strength, thermal insulation and beautiful textures [6–10]. If it is widely used
in the construction field, it will definitely promote energy saving and utilization and
environmental climate improvement. However, with the severe shortage of high-quality
timber resources in the world, although the fast-growing forest timber (e.g., poplar and pine)
as a substitute is rich in resources, it has the bottleneck problem of low strength [11,12]
and unstable size [13,14], which restricts its extensive and efficient use in the field of
building structures. Although some lightweight structural timbers such as oriented strand
board (OSB) [15–18], laminated veneer lumber (LVL) [19–22] and cross-laminated timber
(CLT) [23–26] have been developed through structural unit reorganization and can be used
as building materials, these raw materials are mostly limited to pine resources, and poplar
resources with relatively lower strength and dimensional stability are not yet available for
direct use as structural building materials through unit reorganization.

In general, filling the cell cavity with resin can improve both the strength and di-
mensional stability of the wood [27,28]. However, commonly used resins are aldehydes,
such as phenolic (PF) [29–32], urea-formaldehyde (UF) [33–35] and melamine (MF) [36–39]
resins. The slow release of formaldehyde, which in turn endangers the environment and
human health, restricts the popularization and application of this type of technology. There-
fore, the development of an environmentally friendly resin system for impregnating and
filling the cell lumen is a breakthrough to solve the bottleneck problem of poplar. Water-
based acrylic resins [40–47], furfuryl alcohol resins [48–51], polyester resins [52–54] and
2D resins [55–57] have been studied as environmentally friendly filler modifiers to replace
aldehyde resins [58].

Most of all, acrylic resins exhibit good bending resistance [40–45], compressive prop-
erties [41–43], surface hardness [40,41,43] and dimensional stability [42,43], due to their
relatively high molecular weight. However, two difficulties remain in these resins: (1) the
resin needs to be fitted with a suitable curing agent to fill the cell cavity firmly, and matching
the correct curing agent is a difficult task; (2) although the high molecular weight of the
resin is beneficial to wood modification, it tends to lead to the high viscosity of the resin
liquid, especially for large-size solid wood, which is difficult to penetrate and fill evenly.
Therefore, designing an acrylic resin with the proper viscosity to effectively penetrate
and fill the wood is another difficulty in achieving this type of resin reinforcement and
dimensional stabilization of wood.

In this study, a resin system with suitable viscosity for curing and filling in the cell
cavity was constructed by regulating the solid content of the resin and the amount of curing
agent and matching the alkaline environment. The laminated composite material was
based on modified poplar veneer as a structural unit, impregnating it with resin and then
laminating it in the same direction as each other to reconstitute it for use as a structural
material in buildings. Thus, breaking the bottleneck faced by acrylic resin in effectively
filling large-sized wood. The resin-filled laminated timber had a resin weight percent gain
(WPG) of 81.36% and a density of 0.705 g/cm3 at a thickness of 1.5 cm, which was 80.31%
higher than the untreated sample. The static bending strength and elastic modulus reached
123.13 MPa and 12,944.76 MPa, respectively, which reached the highest grade of structural
timber for buildings. The thickness swelling rate and width swelling rate was 2.95% and
3.51%, an improvement of 13.90% and 37.60% compared to untreated material. This resin
system formulation design and modification unit reorganization strategy provide new
ideas for the use of poplar wood in high-value-added structural building materials areas.

2. Materials and Methods
2.1. Materials

Poplar rotary cut veneer (thickness 3 mm, average density 0.35 g/cm3) was purchased
from Tai’an Wood Market (Tai’an, China). Acrylic resin particle (molecular formula C3H4O2,
molecular weight 1700, model Joncryl 682) was obtained from Germany BASF SE Group
(Shanghai, China). Triethylamine (molecular formula N(C2H5)3, analytically pure) was
purchased from Tianjin Kaitong Chemical Reagent Co., Ltd. (Tianjin, China). Propidium
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curing agent (model sac-100, analytically pure) was purchased from Shanghai Youen
Chemical Co., Ltd. (Shanghai, China). Structural adhesive (model RF-C05) was purchased
from Harbin Chengfeng Adhesive Co., Ltd. (Harbin, China). Wood samples [50 mm
(longitudinal) × 50 mm (tangential) × 3 mm (radial)] were used to determine resin weight
percent gain (WPG) and density. The sample sizes and standards in mechanical property
testing are detailed in Table 1.

Table 1. Sample sizes and standards in mechanical property testing.

Mechanical Property Dimension l × t × r (mm) Standard

MOR 200 × 50 × 10 GB-T 20241-2006
MOE 200 × 50 × 10 GB-T 20241-2006

CS 23 × 15 × 15 GB-T 17657-2013
HS 50 × 50 × 15 GB-T 17657-2013
IBS 300 × 20 × 20 GB-T 1938-2009
TS 408 × 25 × 25 GB-T 1938-2009

Attrition value 100 × 100 × 15 GB-T 17657-2013

2.2. Method
2.2.1. Modification of the Wood

Firstly, 100 g of acrylic resin solids was mixed with 400 mL of deionized water, and
50 mL of triethylamine was added to dissolve them in a water bath, at 63 ◦C. The wood
samples were dried in an oven, at 103 ◦C, for 24 h, and then their dry weight (W1) was deter-
mined. Secondly, the samples were kept under vacuum of 0.1 MPa for 40 min, following at
a pressure of 0.5 MPa for 60 min, and impregnation cycle of 4 rounds. Thirdly, the resultant
samples were dried via air-seasoning (moisture content 10–12%), at room temperature, and
cured at 120 ◦C for 2 h to make resin-impregnated veneer with curing agent (Wsac). Finally,
the dried samples were weighed (W2), and their WPGs were calculated. For comparison,
untreated samples (WCTRL) were prepared, and each group includes 5 parallel samples. In
addition, in order to verify whether acrylic resin-impregnated laminated veneer lumber can
be used as structural material for outdoor building and other industries, this experiment
adopts structural adhesive to resin-impregnated veneer adhesive to obtain unmodified
laminated veneer lumbers (LCTRL) and cured resin-laminated veneer lumbers (Lsac).

2.2.2. Performance Characterization

Acrylic resins with different solid contents of 10%, 15%, 20%, 25%, 30% were prepared.
The viscosity was measured via a digital rotational viscometer (NDJ-5S Shanghai Lichen
Bangxi Instrument Technology Co., Ltd., Shanghai, China). Six kinds of curing agent
additions of 3%, 5%, 7%, 10%, 15% and 20% (accounting for the solid content of the resin)
were set. After heat curing, alkali solution dissolution and vacuum filtration, the percentage
of the remaining solid resin in their respective original weight was calculated, that is, the
resin conversion rate. Poplar veneer was impregnated with selected resin under vacuum
impregnation condition, and laminated veneer lumber was synthesized. The modulus of
rupture (MOR), modulus of elasticity (MOE), compression strength (CS), hardness (HS)
and tensile strength (TS) were measured with a universal mechanical testing machine
(CMT4104 Meters). The impact bending strength (IBS) were measured with an impact
toughness tester (WQ-BCSYI Wanqi). The wear test was measured with a paint film wear
tester (BGD-523 BIUGED) at wear resistance rate of 50 r/min and wear ring number of
500 r. For the water absorption rate (WAR), water absorption thickness expansion rate
(TSR) and water absorption width expansion rate (WSR), samples were cooked, at 63 ◦C,
for 24 h, and the weight of the cooked plates was counted.

The morphology and structure of fracture surface were observed by SEM (JSM-6610LV,
JEOL, Tokyo, Japan). The SEM was operated in vacuum mode with a working distance of
6 mm, and its detector was gaseous secondary electrons. Differential scanning calorimetry
analysis was measured on sample particles (10 mg) with a compensated differential scan-
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ning calorimeter (DSC 8000 PerkinElmer). Samples were heated from 35 ◦C to 700 ◦C at
a gas flow rate of 100 mL/min under nitrogen atmosphere. Each treatment was repeated
3 times, and the heat flow curve was recorded.

3. Results and Discussion
3.1. Optimization of Acrylic Resin System
3.1.1. Optimization of Solid Content of Acrylic Resin Liquid

The values of viscosity corresponding to five different resin solid contents (10%, 15%,
20%, 25%, 30%) are presented in Figure 1. With the increase in resin solid content, the
viscosity of resin increased exponentially, and the viscosity increased from 4.11 mPa·s to
9.25 mPa·s at resin solid content below 25% and increased slowly. However, when the
solid content exceeded 25%, the resin viscosity increased steeply, reaching the viscosity
of over 60 mPa·s at 30% solid content. Resin viscosity reflected the movement of resin
molecular chains in solution. The higher the viscosity of the resin, the greater the interaction
between molecular chains and the more difficult the molecular movement. In the case
of fixed molecular weight of resin, as the solid content increases, the interaction between
molecular chains becomes greater and the apparent viscosity increases. When the solid
content exceeded a certain value, the molecular chains produce significantly increased
resistance to movement due to mutual entanglement and the liquid showed a steep increase
in viscosity. Generally, resin solutions with viscosities in the range of 10 to 60 mPa·s are most
suitable for wood impregnation [59]. Since the higher the solid content, the higher the resin
filling under the same impregnation conditions. Taking into account the suitable viscosity
conditions, the solid content of the acrylic resin-impregnating solution was determined to
be 25% in this study.
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Figure 1. Viscosities of acrylic resin solution at different solid contents.

3.1.2. Optimization of Curing Agent Addition

Figure 2 presents the conversion values of the resin curing reaction to produce resin
for different curing agent additions at 25% of the solution of acrylic resin. Overall, as the
amount of hardener increased, the resin conversion rate increased. When the curing agent
content was below 10%, the resin conversion rate was less than 50%. Moreover, the resin
conversion rate raised steeply to 81.95% with the curing agent content reaching 10%. After
that, the increase in curing agent content did not bring significant change of conversion
rate. Therefore, considering the resin conversion efficiency, 10% was determined as the
optimal amount of curing agent to be added.
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3.1.3. DSC Characterization of Acrylic Resin

The exothermic situation of the resin with increasing temperature with and without the
addition of hardener is presented in Figure 3. Compared with the exothermic situation of the
resin without curing agent, the curing window temperature range of the resin became wider
(83.6~369 ◦C) with the addition of curing agent, and the exothermic enthalpy ∆H increased
from 14.56 J·g−1 to 22.553 J·g−1, which is the result of the exothermal of the curing agent
cross-linking the acrylic resin molecular chains. It can be seen that the optimized amount
of curing agent will promote the cross-linking reaction of resin molecular chains, which
in turn will lead to the formation of molecular cross-linked structures inside the resin and
improve the macro-mechanical properties and water resistance, thus laying the foundation
for the resin to fill the wood cell cavities and further improve the wood properties.
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3.2. Performance Improvement of Poplar Veneer by Resin−Filled Cell Cavities under
Optimized System
3.2.1. Microstructure and Density of Resin-Filled Modified Veneer

The optimized resin system reacted in the cell cavity, resulting in a veneer weight gain
rate of 81.36%, and at the same time, the veneer density was increased from 0.391 g/cm3 to
0.69 g/cm3 (Figure 4a), indicating that the resin solution penetrated into the cell cavity and
changed from liquid to solid state through the curing cross-linking reaction, thus increasing
the veneer weight. SEM images clearly showed that there was no filler inside the cell
cavities of poplar veneer (Figure 4b), while in the modified veneer, a large amount of resin
filled the wood cell cavities in solid state (Figure 4c,d), which is consistent with the wood
density change results.
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3.2.2. Mechanical Properties of Resin-Filled Modified Veneer

The modulus of elasticity and the static bending strength of the resin-filled modified
veneer in the optimized system were 11,563.2 MPa and 101.2 MPa which were higher
than those of untreated veneer by 57.00% and 48.39% (Figure 5a). The tensile strength
reached 103.2 MPa and tensile strength of 35.79% (Figure 5b), the impact toughness reached
35.78 KJ/m2 (Figure 5b), and the impact toughness reached 30.11% (Figure 5c). It can be
seen that the optimized resin system significantly improved the static bending strength,
elastic modulus, tensile strength and impact toughness of poplar veneer, which originated
from the cross-linking and curing of acrylic resin in the cell cavity of wood, forming a cured
resin with a certain net-like interactive structure as a reinforcing matrix, played the role
of reinforcing the cell wall and then improving the stiffness and tensile resistance of the
veneer. In addition, the longer molecular chains of acrylic resin are intertwined, and the
chains still have a degree of flexibility. So, as a reinforcing matrix, it also presented a certain
degree of toughness, which in turn improved the impact strength of the veneer.
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3.2.3. Dimensional Stability of Resin-Filled Modified Veneer

The results of the water resistance test, at 63 ◦C, for 24 h on treated and untreated
veneer showed that the water absorption of the resin-modified veneer was 103.59%, which
was 10.96% less than that of the untreated veneer (116.3%). The water absorption thickness
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swelling was 3.87%, which was 31.50% less than that of the unmodified poplar veneer
(5.65%). The water absorption width swelling was 3.87%, which was 25.72% less than that
of the unmodified poplar (5.21%) (Figure 6c). This indicates that the resin filled the cell
cavities and to some extent hindered the channels for water penetration into the wood,
which in turn enhanced the water barrier capacity of the wood, macroscopically manifested
as improved dimensional stability. The acrylic resin system curing filled the cell cavities and
significantly improved the mechanical strength, wear resistance and dimensional stability
of poplar veneer.
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3.3. Performance of Laminated Composite Materials Based on Resin-Filled Modified Veneer
3.3.1. Mechanical Properties of Modified Laminated Veneer Lumber

As shown in Figure 7a, the laminated veneer lumber and flexural modulus of elasticity
of the laminated timber at acrylic-filled wood reached 123.13 MPa and 12,944.76 MPa,
respectively, compared with the corresponding untreated veneer laminate, which increased
by 88.56% and 104.79%. This is consistent with the pattern of the veneer results. The
flexural strength of the modified veneer laminate is further increased compared with the
corresponding static flexural strength and modulus of elasticity of the modified veneer,
which is attributed to the more stable structure due to the gluing between the veneer layers,
which in turn improves the structural stiffness of the overall material. Both properties
exceeded the flexural strength index values (modulus of elasticity 12,500 MPa and static
flexural strength 35 MPa) of structural lumber specified in the highest strength class (TCT40)
of Chinese Standard GB 50005-2017, indicating that the flexural strength of the modified
laminated veneer lumber in this study met the requirements for wood structural lumber
applications.

Similarly, the tensile strength of the laminate reached 116.25 MPa with acrylic-filled
wood, 58.81% higher than the corresponding untreated veneer laminate (Figure 7b). The
impact toughness of the modified veneer laminate reached 34.13 KJ/m2, which is an
increase of 19.50% (Figure 7c). Similarly to the principle of resin-reinforced veneer, resin-
filled modified veneer in turn effectively improved the rigidity, toughness and tensile
properties of the corresponding laminate.

In addition, the attrition value of resin-filled modified veneer was only 24.1 mg/100 r
(Figure 7d), which is an improvement over untreated veneer 76.83%. This is mainly
attributed to the reinforcing effect of the resin on the cell wall by cross-linking and curing
in the cell cavity, contributing to the increased cohesion between the wood components. As
a result, the wear resistance of the modified veneer was significantly improved.

Similarly, the hardness and compressive strength of the modified veneer laminates
reached 2440.16 N and 2.47 MPa, respectively, representing an increase of 419.18% and
20.26% over the corresponding untreated laminated veneer lumber (Figure 7e,f). This also
stems from the fact that the resin filling the cell cavities reinforced the wood cell walls to
some extent, which in turn increased the hardness and compressive strength of the material.
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(a) MOR and MOE comparison of modified laminated veneer lumbers and untreated laminated
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tensile strength TS comparison; (c) Comparison of IBS of modified laminated veneer lumbers and
untreated laminated veneer lumbers; (d) Comparison of attrition value of modified laminated veneer
lumbers and untreated laminated veneer lumbers; (e) Comparison of HS of modified laminated
veneer lumbers and untreated laminated veneer lumbers; (f) Comparison of CS of modified laminated
veneer lumbers and untreated laminated veneer lumbers.

3.3.2. Dimensional Stability of Modified Laminated Veneer Lumber

As shown in Figure 8a, the water absorption of the modified veneer laminate was
only 60.72%, which was 44.38% better than the corresponding unmodified veneer laminate
and significantly better than the water absorption of the modified veneer itself. Similarly,
the absorbent thickness swelling and absorbent width swelling of the modified veneer
laminate were 2.95% and 3.51%, respectively, which were 13.90% and 37.60% better than
those of the corresponding untreated veneer laminate (Figure 8b,c), and also slightly better
than the two properties of the corresponding modified veneer. This indicated that inter
laminar gluing aided the dimensional stability of the laminated material.
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modified laminated veneer lumbers and untreated laminated veneer lumbers; (b) Water absorption
thickness swelling of modified laminated veneer lumbers and untreated laminated veneer lumbers;
(c) Water absorption width swelling of modified laminated veneer lumbers and untreated laminated
veneer lumbers.
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On the one hand, the resin system was introduced into the cell cavity of wood, which
hindered the penetration channel of water into the pores of wood, and then effectively
improved the dimensional stability of laminated wood. On the other hand, the laminated
glue of the veneer caused the structural adhesive to hinder the penetration of water from
the surface to the internal channel of veneer, and also limited the expansion and deforma-
tion of veneer. So, the modified laminated veneer wood improved dimensional stability
significantly.

This research focuses on the various properties and microscopic characterization of
resin-modified laminated veneer lumber under the type and amount of the curing agent.
Compared with other curing agent cross-linked acrylic resin-impregnated boards, the
mechanical properties of the acrylic modified laminated veneer lumber cross-linked with
pyridine curing agents were significantly improved.. Compared with polycarboxylic acids
curing agent system [40], MOR in propidium curing agent system increased by 48.91%,
MOE increased by 42.41%, and HS increased by 370.34%. Compared with the polycarbodi-
imide curing agent system [41], HS in this system increased by 294.85%. Compared with N,
N-dimethylethanolamine (DMEA) and p-toluene sulfonic acid (PTSA) mixed system [44],
the MOR, MOE, CS, IBS and WAR of this system increased by 3.21%, 28.98%, 154.11%,
5.31% and 47.23%, respectively. The poplar laminated veneer lumber in this study exhibits
good mechanical strength and dimensional stability and is expected to be used as structural
timber for building applications.

4. Conclusions

Although there have been some initial explorations of aldehyde-free resin-impregnated
reinforced wood and achieved beneficial results, the research of acrylic resin system still
needs to be further studied. To this end, we focused on the various properties and micro-
scopic characterization of modified laminated veneer lumber under different curing agent
additions, and the results are as follows:

(1) Acrylic resin-optimized system with a 25% solid content and a 10% curing agent
dosage, when the resin liquid viscosity is 19.89 mPa·s, and the resin conversion rate is
81.95%.

(2) With a weight gain of 81.36% and a density of 0.69 g/cm3, the optimized resin system
can effectively filled the poplar veneer cell lumen, which significantly improves the
mechanical strength and dimensional stability of the poplar veneer.

(3) The modified laminated veneer timber’s static flexural strength and modulus of elas-
ticity are 123.13 MPa and 12,944.76 MPa, respectively, which exceeded the flexural
strength index values (modulus of elasticity 12,500 MPa and static flexural strength
35 MPa) for structural timber specified in the highest strength class (TCT40) of Chinese
Standard GB 50005-2017. In addition, in terms of mechanical properties, compared
with untreated laminated veneer, the tensile strength, impact toughness, hardness
and wear resistance were 58.81%, 19.50%, 419.18%, 76.83%, respectively. In terms
of dimensional stability, compared with untreated laminated veneer, the water ab-
sorption rate, water absorption thickness expansion rate and water absorption width
expansion rate increased by 44.38%, 13.90% and 37.60%, respectively. It has signifi-
cantly improved mechanical strength and dimensional stability, and can be used as a
structural building material.
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