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Abstract: In the use of the medical devices, it is essential to prevent the attachment of bacteria to the
device surface or to kill the attached bacteria. To kill bacteria, many researchers have used antibi-
otics or studied nanostructure-based antibacterial surfaces, which rely on mechanical antibacterial
methods. Several polymers are widely used for device fabrication, one of which is polycaprolac-
tone (PCL). PCL is biocompatible, biodegradable, easy to fabricate using 3D printing, relatively
inexpensive and its quality is easily controlled; therefore, there are various approaches to its use in
bio-applications. In addition, it is an FDA-approved material, so it is often used as an implantable
material in the human body. However, PCL has no inherent antibacterial function, so it is necessary to
develop antibacterial functions in scaffold or film-based PCL medical devices. In this study, process
parameters for nanopillar fabrication were established through a simple thermal imprinting method
with PCL. Finally, a PCL film with a flexible and transparent nanopillar structure was produced,
and the mechano-bactericidal potential was demonstrated using only one PCL material. PCL with
nanopillars showed bactericidal ability against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis)
bacteria cultured on its surface that resulted in membrane damage and death due to contact with
nanopillars. Additionally, bacteriostatic results were shown to inhibit bacterial growth and activity of
Staphylococcus aureus (S. aureus) on PCL nanostructured columns. The fabricated nanopillar structure
has confirmed that mechanically induced antibacterial function and can be applied to implantable
medical devices.

Keywords: antibacterial; nanostructure; polycaprolactone; flexible film

1. Introduction

Membrane-type or three-dimensional structure-type medical devices need to be made
of biocompatible materials, which can be metal, bioceramic, or polymer [1–3]. Biocompati-
ble polymers can be categorized as follows: natural polymers and synthetic biocompatible
polymers. Synthetic polymers include polylactic acid (PLA), polyglycolic acid (PGA), and
polycaprolactone (PCL), which are inexpensive and easy to manufacture [4–6]. Moreover,
they have relatively good mechanical strength [7]. In particular, PCL has relatively good
elongation at break and high flexibility, and as an FDA-approved material, it is a promising
material for clinical usage [2,8,9]. However, inserting a membrane or scaffold based on
PCL into the body may cause an inflammatory reaction or infection caused by bacteria [10].
To solve this problem, researchers have applied nanotubes [11–13], graphene [12,14–16],
silver [17–20], metallic ion [21], and peptides [22–24] to the PCL surface. However, newly
proposed biomaterials and nanomaterials require nonclinical information to be obtained,
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and commercialization is difficult due to strict FDA clinical regulation. In addition, to kill
bacteria, a surface should damage the bacterial membrane using the nanostructure [25–27].
Meanwhile, several studies have reported mechanically induced bactericidal activity on
implanted metallic devices [25,28–30]. However, there are very few studies of nanofabrica-
tion based on PCL, and the reported studies do not focus on the antibacterial effects but on
cell proliferation and differentiation [31–34].

In this study, we investigate a mechano-bactericidal method based on nanostructures
as an antibacterial method. In the case of the mechano-bactericidal method, only the
characteristics of the material are used to damage the bacteria membrane attached by
the nanostructure [35]. In addition, nanopillars have higher mechanical strength than
our previously reported nanocone shapes, and the antibacterial efficiency of nanopillars
has also been verified [36–39]. Therefore, nanopillars were fabricated through a thermal
imprinting method based on FDA-approved PCL. We found that the temperature at which
it is demolded affects the shape of the nanopillars. Through a demolding temperature
optimization experiment, we confirmed the optimum temperature at which the shape of
the nanopillar was well-fabricated over a large area. The fabricated nanopillared array is
flexible and transparent and can be applied to curved surfaces. Three types of bacteria
were cultured on the prepared surface, and antibacterial effects were confirmed on the
prepared nanopillared surface. This overcomes the problems seen in existing PCL-based
antibacterial surfaces. This PCL-based nanopillared surface can be applied as an important
element to solving the problems that occur when a device is inserted into the human body
in tissue engineering and regenerative medicine applications.

2. Materials and Methods
2.1. Materials

Polycaprolactone (PCL) (Mw: 45,000), dichloromethane and trichloro(1H,1H,2H,2H-
perfluorooctyl) silane were purchased from Sigma-Aldrich (St. Louis, MO, USA). Polyurethane
acrylate (PUA) and polyethylene terephthalate (PET) were purchased from Minuta Tech
(311 RM; Minuta Tech, Osan, Republic of Korea).

2.2. Fabrication of the PCL-Based Nanopillars

A Si master with nanopillars was treated by trichloro(1H,1H,2H,2H-perfluorooctyl)
silane solution for easy demolding. The PUA was dropped onto the Si master and covered
with a PET film. To remove the bubbles, the PUA sample was degassed for 3 h in a vacuum
chamber. After the degassing process, the PUA sample was exposed to ultraviolet (UV)
light (λ = 365 nm, dose = 200 mJ/cm2) for photopolymerization, and the cured PUA film
was carefully removed from the Si master. The prepared PUA sample was treated with a
trichloro(1H,1H,2H,2H-perfluorooctyl) silane solution for fluorination.

The PCL was dissolved in dichloromethane by stirring for 3 h with a magnetic bar to
obtain an 18 wt% concentration of PCL solution [31]. To fabricate the nanopillar, the PCL
solution was spin coated onto 100 µm-thick polyethylene terephthalate (PET) at 3000 rpm
for 30 s. The treated PUA sample was placed on the PCL surface and embossed with a
pressure of 15 MPa at 80 ◦C for 1 min with a hot embossing machine (TD-HP01, TnDorf,
Bucheon, Republic of Korea). The PUA and PCL were formed to replicate the nanopillar.
Then, the PUA and PCL samples were cooled for 30 min at different temperatures (0, 10,
20, 30, 40 ◦C), and the PUA sample was peeled off from the PCL layer (Figure 1). The bare
(flat) PCL of the control group was fabricated under same conditions as the nanopillared
PCL sample using 18 wt% PCL solution. It was fabricated using a silicon wafer instead
of the PUA nanopillar mold to make the flat surface of bare PCL. The resulting fabricated
PCL film with nanopillars was flexible and transparent. For the biological experiments, the
PCL film was sterilized by 70% ethanol and UV exposure for 1 h.
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Figure 1. Schematic of the fabrication process for PCL nanopillar arrays using the thermal imprinting
technique.

2.3. Scanning Electron Microscopy (SEM)

The PCL nanopillared surface was coated using metal sputtering (G20, GSEM, Suwon,
Republic of Korea) with a 5 nm thickness of platinum (Pt) to avoid charging. Then, the
coated surface was analyzed by scanning electron microscopy (SEM: SU8200 microscope,
Hitachi, Chiyoda Ward, Japan).

2.4. FT-IR Spectroscopy Analysis

Fourier transform infrared spectroscopy (FT-IR) was performed with a 6300FV + IRT5000
(JASCO, Tokyo, Japan) using a horizontal germanium crystal attenuated total reflection
(ATR) plate.

2.5. Measurements of Water Contact Angle and Optical Transmittance

To observe the hydrophobicity of the fabricated PCL nanopillared surface, the water
contact angle (WCA) was measured by a drop angle analyzer (SMARTDROP_PLUS_HS,
FEMTOFAB, Pohang, Republic of Korea). The drop volume of distilled water was 5 µL,
which was dropped onto fabricated PCL samples at room temperature (relative humidity
45%, 25 ◦C). The average values of the water contact angle were obtained from five repeated
measurements at random positions. The optical transmittance of the PCL nanopillared
sample was measured by a UV-Vis-NIR spectrophotometer (UH4150, Hitachi, Chiyoda
Ward, Japan) in the 300–900 nm wavelength range.

2.6. Antibacterial Tests

The mechano-bactericidal method relies on penetration and stretching mechanisms,
and the bacteria membrane is damaged by both mechanisms. Herein, the nonactivation
of bacteria is attributed to a peptidoglycan layer in the bacteria [40,41]. According to
the hypothesis, the bacteria membrane can be damaged by both mechanisms. Because
of the abovementioned mechanisms, the thickness of bacteria membrane is one of the
important properties for assessing the results of mechano-bactericidal experiments. In
general, bacteria can be categorized into Gram-negative and Gram-positive types. One
of distinguishable characteristics is the thickness of the bacteria membrane, which is
dependent on the thickness of the peptidoglycan layer. The motility of bacteria is an
additional important parameter in assessing results of mechano-bactericidal experiments
because the movement of bacteria can affect the damage of the bacteria membrane on the
nanostructured surface. Consequently, in general, most researchers in this field select three
types of bacteria for testing in mechano-bactericidal experiments: Escherichia coli (ATCC
25404), a Gram-negative and motile type; Bacillus subtilis (ATCC 21332), a Gram-positive
and motile type; and Staphylococcus aureus (ATCC 25923), a gram-positive and nonmotile.
The bacteria were grown in Luria broth (LB Broth Miller, BD Difco, Franklin Lakes, NJ,
USA) within a shaking incubator at 37 ◦C and 170 rpm until an optical density of 0.3 at
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600 nm (OD600) was reached. The bacterial suspension was diluted to an OD600 of 0.1
(E. coli, 1 × 106 CFU/mL; B. subtilis, 2 × 106 CFU/mL; and S. aureus, 2 × 107 CFU/mL)
and incubated on the sterilized PCL samples at 37 ◦C for 18 h. To observe the live/dead
viability of bacteria, the attached bacteria on the samples were stained with Live/Dead
BacLight bacterial viability kit (BacLight™, L7012; Molecular Probes, Invitrogen, Carlsbad,
CA, USA) for 15 min in the dark, and the stained PCL samples were then rinsed with
phosphate-buffered saline (PBS). Bacteria live/dead staining was performed according
to the BacLight bacterial viability kit protocol. The stained bacteria on the PCL samples
were analyzed using a fluorescence microscope (LSM 980; Carl Zeiss, Jena, Germany).
Additionally, the prepared PCL samples were incubated in a bacterial suspension of 2 mL
(OD600 = 0.1) for 18 h at 37 ◦C for a colony forming unit (CFU) assay and carefully washed
with PBS. The rinsed samples were transferred into a conical tube with 1 mL PBS and
cleaned using ultrasonic cleaner (40 Khz, NXP-1002, kodo, Hwaseong, Republic of Korea)
for 2 min to detach the bacteria from the samples. After serial dilution, the bacterial solution
was spread on LB agar plates and incubated for 18 h at 37 ◦C. Lastly, the grown bacterial
colonies on the agar plates were counted (the antibacterial test was performed using three
specimens for each condition). To evaluate the antibacterial ability, the antibacterial rate
was calculated via Equation (1):

Antibacterial rate (%) =
CFUcontrol − CFU experimental

CFUcontrol
× 100 (1)

where CFUcontrol is the average number of CFU on the bare PCL, and CFUexperimental is the
CFU of bacteria on the nanopillared PCL.

After the antibacterial test, the bacteria attached to the PCL sample surface were
observed through SEM. After incubation, the PCL samples were gently washed using
PBS and fixed using 4% paraformaldehyde in PBS (GeneAll, Seoul, Republic of Korea) for
15 min at room temperature. The fixed samples were washed five times. The samples were
then transferred to a new plate and dehydrated through a series of ethanol solutions of 20,
40, 60, 80, and 100 vol% for 15 min, respectively. Before observation, samples with attached
bacteria were completely dried and then coated with platinum (5 nm) using a sputtering
coater (E-1045, Hitachi, Chiyoda Ward, Japan).

To quantify the biofilm biomass, we used the crystal violet (CV, Sigma-Aldrich,
St. Louis, MO, USA) assay [42]. Before the CV staining, cultured PCL samples (1 × 1 cm2)
for 18 h were gently washed using PBS. The biofilms were then stained with 0.1% CV
solution for 20 min. Each sample was washed twice with D.I. water, and the bound CV
was released with 95% ethanol. To estimate the total biofilm biomass, the OD of the result-
ing solution was measured at 600 nm. The biofilm biomass assay was performed using
five specimens.

3. Results and Discussion
3.1. Surface Characterization of the PCL Nanopillar Arrays by Demolding Temperature

The negative-type PUA nanopillar surface was formed by a UV molding process
and has a precise nanopillar (Figure 2(ai)). The individual nanopillars in the PUA mold
had a depth of 500 nm, spacing of 500 nm, and a diameter of 500 nm. The fabricated
PCL nanopillar shapes were affected by the demolding temperature. As seen in the SEM
images from Figure 2(aii) to Figure 2(avi), the PCL nanopillar stretched as the demolding
temperature increased. When removed from the PUA mold at 0 ◦C (Figure 2(aii)), the PCL
nanopillars show good morphology. The fabricated shape was realized with a diameter
of 500 nm, spacing of 500 nm, and a height of approximately 490 nm, similar to the
size of the PUA mold. The PCL nanopillars detached at 10 ◦C (Figure 2(aiii)) and 20 ◦C
(Figure 2(aiv)) showed slight deformation. In particular, Figure 2(av) and Figure 2(avi) show
damaged nanopillars at 30 ◦C and 40 ◦C, respectively. They were stretched and slightly
bent. Therefore, it can be concluded that the best results are obtained at 0 ◦C. The height
of the nanopillars was measured according to the demolding temperature, and Figure 2b
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shows that the pillar height increases as the removal temperature increases. Additionally,
as the demolding temperature increased, the difference between the depth of the PUA mold
nanopillar and the height of the fabricated PCL nanopillars increased (Figure 2c). When
the demolding temperature was lower, the releasing force and the stretching tension at the
interface between the mold and the replica seem to be reduced [43], and the deformation of
the nanopillars was negligible at a low temperature. However, as the release temperature
increased, the mechanical properties, yield strength or stiffness could decrease because
the melting temperature of PCL was approximately 60 ◦C [44,45]. Therefore, the PCL
nanopillars were more elongated as the temperature increased. In addition, it was found
that the orientation of the nanopillars was also determined by the release direction.
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Figure 2. (a) SEM images: (i) negative-type PUA nanopillar mold surface; PCL nanopillars detached
from the mold at (ii) 0 ◦C, (iii) 10 ◦C, (iv) 20 ◦C, (v) 30 ◦C, and (vi) 40 ◦C; (b) height of the nanopillar
with respect to the demolding temperature; and (c) height difference between the mold and fabricated
nanopillar with respect to the demolding temperature.

When the demolding temperature was 0 ◦C, the shape of the nanopillar was uniformly
formed in a large area. The final product is a transparent and flexible film with well-formed
nanopillars, which can be applied to various curved surfaces (Figure 3a). As shown in
Figure 3b, the individual nanopillars have a diameter of 500 nm, a height of approximately
500 nm, and a spacing of 500 nm. The diameter of the fabricated PCL nanopillars, the
height of the nanopillars, and the spacing between the columns were transferred from the
PUA mold within acceptable yields.

From FT-IR spectrum of the bare PCL and nanopillared PCL (Figure 3c), we observed
the following bands. The band at 2904 cm−1 is assigned to C-H hydroxyl group asymmetric
stretching. The band at 2860 cm−1 is assigned to C-H hydroxyl group symmetric stretching.
The band at 1722 cm−1 is assigned to -C=O stretching vibrations of the estercarbonyl group.
The band at 1160 cm−1 is assigned to -C-O-C symmetric stretching [46]. The FT-IR spectra
of bare PCL and nanopillared PCL had a concordance rate of more than 90%.
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Figure 3. (a) Photograph of the flexible PCL film with nanopillar arrays. (b) SEM images of the
PCL nanopillar arrays at 0 ◦C demolding temperature. (c) FT-IR spectrum of the bare PCL and
nanopillared PCL.

Figure 4a shows the measured total transmittance spectra of glass, bare PCL and nano
PCL. The bare PCL has a transmittance of approximately 85% in the visible region (visible
region: 400–700 nm). The nanopillar PCL has a transmittance of approximately 75% at
400 nm wavelength and approximately 80% at 700 nm (Figure 4a). Figure 4b shows the
water contact angle values of the bare PCL and nanopillared PCL surfaces. The water
contact angle is influenced by a combination of the micro- and nanometer-scale roughness
and the surface energy of the material [47]. The bare PCL sample had a contact angle
of approximately 73.8◦ and the sample with the nanopillared surface had an enhanced
contact angle of 98.5◦ due to the surface roughness. Bacterial adhesion should consider
surface energy, roughness, wettability, and zeta potential. Moderate hydrophilicity and
hydrophobicity may increase bacterial adhesion [48–50]. At the CA of 54–130◦, there was a
higher adsorption of bacterial peptidoglycan [51]. In addition, superhydrophobic surfaces
(CA; >150 degree) have been reported to reduce bacterial adhesion because of air pockets
that become entrapped between roughening features when a liquid is in contact with the
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solid surface. However, if entrapped air is intruded by bacterial media, the roughness
then provides a larger surface area to adhere more bacteria, eventually promoting bacterial
growth [48]. Therefore, it was thought that the small change in wettability shown in
Figure 4b did not significantly affect bacterial adhesion. Ultimately, the bacterial adhesion
of the sample requires observation between the test strain and the target surface.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 4. (a) Optical transmittance of the bare and nanopillared PCL film in the wavelength range 
of 300–900 nm. (b) Water contact angle values of the bare and nanopillared PCL surface (Nano PCL: 
nanopillared PCL). 

3.2. Antibacterial Evaluation of the PCL Nanopillared Surface 
To evaluate the antibacterial performance of the PCL nanopillared surface, Gram-

negative E. coli and Gram-positive B. subtilis and S. aureus bacteria were cultured on the 
prepared bare and nanopillared PCL surfaces at 37 °C for 18 h. Figure 5a shows confocal 
images of E. coli on the bare and nanopillared surfaces. After incubation for 18 h, live E. 
coli were adhered to the bare PCL surface, as indicated by the green fluorescence (Figure 
5(ai)). However, dead E. coli were observed on the nanopillared PCL surface, as indicated 
by the red fluorescence (Figure 5(aii)). To quantitatively evaluate the bactericidal behavior 
of the nanopillared PCL arrays, a CFU test was performed. The antibacterial rate of E. coli 
was increased by 91.54% for the nanostructured PCL ((6.8 ± 1.3) × 105 CFU/mL) com-
pared with the bare PCL ((80.4 ± 19.7) × 105 CFU/mL). This result shows that the nano-
pillared PCL surface has strong bactericidal effects that result from modifying the mor-
phology of PCL to an appropriate nanopillar. The antibacterial rate of B. subtilis was in-
creased by 63.24% for nanostructured PCL ((48.4 ± 16.9) × 104 CFU/mL) compared with 
bare PCL ((131.8 ± 21.8) × 104 CFU/mL), which also indicated antibacterial performance 
through modification of the nanopillar. The membrane damage of B. subtilis by nanopil-
lars seems to have a decreased antibacterial rate compared with E. coli because of the thick 
peptidoglycan layer. In the case of S. aureus, the antibacterial rate was increased by 74.86% 
for nanopillared PCL ((14.8 ± 3.3) × 106 CFU/mL) compared with bare PCL ((58.9 ± 14.9) × 106 CFU/mL). Interestingly, unlike the previous two types of bacteria, S. aureus was 
alive on both bare PCL and nanopillared PCL surfaces, and the bacteria were not killed 
by the nanopillar. The reason for the activity of S. aureus on the nanopillared PCL is at-
tributed to its relatively small size, sphere shape, nonmotile properties, and thick pepti-
doglycan layer. Therefore, the membrane of S. aureus was not damaged by the nanopillars, 
unlike other bacteria. However, on the nanopillared surface, S. aureus was stuck between 
nanopillars, and proliferation or activity was inhibited. 

Figure 4. (a) Optical transmittance of the bare and nanopillared PCL film in the wavelength range of
300–900 nm. (b) Water contact angle values of the bare and nanopillared PCL surface (Nano PCL:
nanopillared PCL).

3.2. Antibacterial Evaluation of the PCL Nanopillared Surface

To evaluate the antibacterial performance of the PCL nanopillared surface, Gram-
negative E. coli and Gram-positive B. subtilis and S. aureus bacteria were cultured on the
prepared bare and nanopillared PCL surfaces at 37 ◦C for 18 h. Figure 5a shows confocal
images of E. coli on the bare and nanopillared surfaces. After incubation for 18 h, live E. coli
were adhered to the bare PCL surface, as indicated by the green fluorescence (Figure 5(ai)).
However, dead E. coli were observed on the nanopillared PCL surface, as indicated by the
red fluorescence (Figure 5(aii)). To quantitatively evaluate the bactericidal behavior of the
nanopillared PCL arrays, a CFU test was performed. The antibacterial rate of E. coli was
increased by 91.54% for the nanostructured PCL ((6.8 ± 1.3) × 105 CFU/mL) compared
with the bare PCL ((80.4 ± 19.7) × 105 CFU/mL). This result shows that the nanopillared
PCL surface has strong bactericidal effects that result from modifying the morphology of
PCL to an appropriate nanopillar. The antibacterial rate of B. subtilis was increased by
63.24% for nanostructured PCL ((48.4 ± 16.9) × 104 CFU/mL) compared with bare PCL
((131.8 ± 21.8) × 104 CFU/mL), which also indicated antibacterial performance through
modification of the nanopillar. The membrane damage of B. subtilis by nanopillars seems to
have a decreased antibacterial rate compared with E. coli because of the thick peptidoglycan
layer. In the case of S. aureus, the antibacterial rate was increased by 74.86% for nanopillared
PCL ((14.8 ± 3.3) × 106 CFU/mL) compared with bare PCL ((58.9 ± 14.9) × 106 CFU/mL).
Interestingly, unlike the previous two types of bacteria, S. aureus was alive on both bare
PCL and nanopillared PCL surfaces, and the bacteria were not killed by the nanopillar. The
reason for the activity of S. aureus on the nanopillared PCL is attributed to its relatively small
size, sphere shape, nonmotile properties, and thick peptidoglycan layer. Therefore, the
membrane of S. aureus was not damaged by the nanopillars, unlike other bacteria. However,
on the nanopillared surface, S. aureus was stuck between nanopillars, and proliferation or
activity was inhibited.
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Figure 5. Confocal images of (a) E. coli, (b) B. subtilis and (c) S. aureus cultured on bare and nanopil-
lared PCL samples (green: live cells, red: dead cells). (d) CFU of (i) E. coli, (ii) B. subtilis, and (iii) S.
aureus cultured on the bare and nanopillared PCL samples for 18 h.

Figure 6a shows electron microscopic images of live E. coli, B. subtilis and S. aureus
on the bare PCL surface. On the bare PCL surface, it seems that the membranes are not
damaged at all, and the bacteria in their complete form are well maintained. In the case
of the nanopillared PCL surface, it seems that E. coli and B. subtilis sank down due to the
membrane damage by the nanopillars (Figure 6(bi,bii)). This shows that the nanopillar array
has a strong bactericidal effect, and the nanopillar PCL surface has sufficient mechanical
stiffness to damage the attached bacterial membrane. B. subtilis and E. coli were attached
between the nanopillars, and the bacterial membrane was attached and stretched from the
top of the nanopillars to the bottom (Figure 6(bi,bii)). The damaged bacteria membrane
between the nanopillars was confirmed for nonactivity through live/dead staining. As
shown in the live/dead staining results of Figure 5(aii,bii), the dead bacteria have vertical
(90◦), diagonal (45◦), and horizontal (0◦) orientation. These angles are related to the nearest
nanopillar direction. According to our experimental results, the mechano-bactericidal
“nanopillars”are thought to damage to the bacteria membrane only by the stretching
mechanism. S. aureus formed close-packed colonies in grape-like clusters over a large
area of the surface on the bare PCL (Figure 6(aiii)). In contrast, S. aureus was imprisoned
by a narrow space constructed by the periodic nanopillar array on the nanopillared PCL
(Figure 6(biii)). It is thought that one main reason for the antibacterial activity of the
periodic nanopillar array is a spatial confinement size effect which imprisons S. aureus
between nanopillars, limits the attachment area for bacteria, and impedes the bacteria cell–
cell interactions [52]. For this reason, S. aureus imprisoned between the nanopillars appears
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to be constrained in elongation and binary fission by the surrounding nanopillars. As a
result, E. coli and B. subtilis were killed because the bacteria membrane was damaged by
nanopillars. However, the relatively smaller S. aureus was attached between the nanopillars,
and the proliferation was hindered. In addition, the attached S. aureus was all activated.
Therefore, it is confirmed that S. aureus has a bacteriostatic effect on the nanopillar surface.
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Figure 6. SEM images of (i) E. coli, (ii) B. subtilis and (iii) S. aureus cultured on the (a) bare PCL and
(b) nanopillared PCL surfaces for 18 h.

Bacterial biofilm biomass was quantified by CV staining (Figure 7). The OD value of
CV in the PCL sample without bacteria was about 0.06 released. After 18 h of culture, the
biofilm biomass of E. coli, B. subtilis, and S. aureus was decreased on nanopillared PCL. The
biofilm biomass reduction of E. coli, B. subtilis, and S. aureus on the PCL nanopillars was
54%, 43%, and 39%, respectively. On nanopillared PCL, the biofilm formation of E. coli and
S. aureus was significantly reduced compared with bare PCL. On the other hand, that of B.
subtilis was slightly reduced. B. subtilis showed low biofilm formation on bare PCL, and the
formation of biofilm was more repressed by nanopillars. The results of biofilm biomass
showed a similar trend to the antibacterial results of the nanopillars (Figures 5 and 7).
Nanopillars can kill by damaging the membranes of the attached bacteria. In addition,
bacterial growth was limited by reducing the growth area of the attached bacteria. As a
result, nanopillars can inhibit the formation of biofilms on the surface.
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Previously, nanopillared antibacterial surfaces were reported only in relation to mem-
brane damage. In this study, the antibacterial ability to damage the membrane and kill
the bacteria and the bacteriostatic ability to inhibit the formation of biofilms were both
demonstrated. This means that the nanopillared PCL surface can use both strategies at the
same time, and is not limited to one.

4. Conclusions

PCL is an FDA-approved material and has biocompatibility and biodegradability, so it
is widely used in implantable medical devices. To use the device, it is necessary to minimize
the attachment of bacteria to the surface or to kill the attached bacteria. However, devices
fabricated with PCL do not have a unique antibacterial function. Therefore, firstly, we tested
the mechano-bactericidal functionalization with the aid of nanopillars on the PCL surface.
In this study, the process parameters for the fabrication of nanopillars were established
through a thermal nanoimprinting process using PCL. Regarding the thermal nanoim-
printing process, it was confirmed that a low melting point of PCL should be considered
during demolding, and a demolding temperature was proposed to obtain an acceptable
topology of nanopillars. We successfully fabricated nanopillars with a characteristic length
of 500 nm using PCL. In addition, the PCL nanopillars were fabricated effectively over a
large area (approximately 100 cm2) and the process was highly reproducible. The PCL-
based nanopillars proposed in this study contacted the membranes of E. coli and B. subtilis,
causing the bacterial membranes to stretch and damage the membranes with the strong
mechanical strength of the nanopillars. A bacteriostatic effect on S. aureus was also demon-
strated, with the bacteria being trapped between the nanopillars and its growth or activity
being suppressed. The nanopillar surface showed high antibacterial performance not only
against Gram-negative bacteria but also against Gram-positive bacteria, confirming that
antibacterial activity is possible with PCL polymer alone. Based on the nanopillar PCL
proposed in this study, it is believed that a film with high biocompatibility and mechanical
strength can be used for medical devices that require an antibacterial surface.

Author Contributions: Conceptualization, H.-K.K., Y.-S.C. and H.-H.P.; methodology, H.-K.K. and
S.-J.J.; software, H.-K.K.; writing—original draft preparation, H.-K.K. and S.-J.J.; writing—review and
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the manuscript.
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