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1. Theoretical Model

The theoretical approach employed in this work is a mean-field molecular theory
that captures the coupling that exists between different physical and chemical interactions
and explicitly includes molecular details on the system. The molecular theory is a density
functional theory whose basic idea consists of writing the free energy of the system, as a
functional of the probability distribution of the conformations of the end-tethered polymers
and the proteins in solution, along with the spatial distribution of all molecular species
in the system, including the tethered polymers, the solvent molecules, the ions and the
proteins. In the following sections we present the formulation of the theory along with
details on the numerical solutions and the molecular models used in our calculations.

1.1. Formulation of the theory

For a surface modified with a mixture of long and short polymers (which can be either
neutral, acidic or basic) in contact with a solution containing different ions and a mixture of
proteins, the Helmholtz free energy of the system has the following contributions:

F = ∑
pol

(
−TScon f ,pol + Fchem,pol

)
−TSmix + ∑

prot

(
−TSTR,prot +Eads,prot + Fchem,prot

)
+Eelect,

(1)
where T is the temperature; Scon f ,pol is the conformational entropy of the tethered

polymers chains and the index pol runs over the long and short polymers at the surface;
Smix corresponds to the mixing (translational) entropy of the small mobile species (water
molecules, anions, cations); STR,prot is the translational and rotational entropy of protein
molecules; Eads,prot correspond to the adsorption energy of the proteins; Fchem,prot and
Fchem,pol represent the free energy associated with protonation/deprotonation reactions of
the titrable amino acids in the proteins. The index prot runs over the different proteins in
solution. Lastly, Eelect is the total electrostatic energy functional.

The conformational entropy of the grafted polymers per unit area is given by

−
Scon f

kB A(R)
= ∑

pol=l,s
σpol ∑

α

Ppol(α) ln P(α). (2)

where kB is Boltzmann constant, the index pol accounts for the long (l) and short (s)
polymers in the surface mixture, σpol is the surface density of the corresponding polymer
type and Ppol(α) is the probability of finding a tethered polymer chain of type pol in
conformation α. Each polymer conformation α is given by a set of the positions of all the
monomers of the polymer chain type pol and it is an input to the theory. The probability
distribution function (or pdf) is the central quantity in our theory, since any thermodynamic
and structural properties of the polymers can be calculated from the probability distribution
function.[1]

The next term in the free energy, Fchem,pol , accounts for the contribution arising from the
acid-base equilibrium reactions of the tethered polymers (relevant when considering acidic
or basic polymers on the surface). It includes the enthalpic and entropic cost associated
with charging and uncharging of the titrable monomers:
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−
βFchem,pol

A(R)
=
∫

dr G(r)〈ρpol(r)〉
{

fpol,p(r)
[

ln fpol,p(r) + βµ

pol,p

]
+(1− fpol,p(r))

[
ln(1− fpol,p(r)) + βµ


pol,d

]}
. (3)

The variable r is the coordinate that measures the distance from the tethering surface.
We employed cartesian, cylindrical and spherical coordinates to reflect the symmetry of
the planar surface, a cylindrical and a spherical nanoparticle respectively. We assumed
the system to be laterally homogeneous and only explicitly anisotropic in the direction
perpendicular to the surface, r. The function G(r) = A(r)/A(R) describes the change
in volume as a function of the distance away from the surface.[2] For planar systems,
G(r) = 1 ∀r, while in cylindrical and spherical coordinates it equals (r/R) or (r/R)2,
respectively. [3]

The local average (number) density of the polymers at position r is given by

〈ρpol(r)〉 =
σpol

G(r) ∑
α

Ppol(α)npol(α; r). (4)

Here npol(α; r)dr is the number of segments that a polymer chain of type pol in
conformation α has within volume element [r, r + dr]. The variable npol(α; r) is input to the
molecular theory employed and depends on the molecular architecture and chemistry of
each type of polymer.

Lastly in equation 3, fpol,p(r) corresponds to the local degree of protonation while the
terms µ


pol,p and µ

pol,d correspond to the standard chemical potential of the protonated ("p")

and deprotonated ("d") state, respectively. It is important to stress that the chemical state of
the titrable monomers (either protonated of deprotonated) is not imposed but rather it is
obtained as a result form the minimization of the free energy.

The next term in equation 1 corresponds to the translational (or mixing) entropy of all
small mobile species in the system:

− Smix
kB A(R)

= ∑
k∈{w,OH− ,H+ ,

Na+ ,Cl−}

∫
dr G(r) ρk(r)

[
ln ρk(r)vk − 1 + βµ


k

]
. (5)

The variable ρk(r) is the local number density of mobile species k, vk corresponds
to its molecular (or ionic) volume (see Table S3 below), and µ


k to its standard chemical
potential. The standard chemical potential of water and ions in the system are related to
the self-ionization of water.[1]

Next in the free energy functional is the contribution from the translational and
rotational degrees of freedom of the protein molecules in solution:

−
STRprot

kB A(R)
=
∫

dr G(r)∑
θi

ρprot(θi, r)
[

ln ρprot(θi, r)Vprot,tot − 1 + βµ

prot

]
. (6)

where the subindex θi runs over the rotational conformations of protein i in solution
(i ∈ {lys, GFP}, see below). ρprot(θi, r) is the local density of protein i when it is in
conformation θi and µ


prot corresponds to its standard chemical potential.
Next in the free energy is the interaction between the proteins and the surface, which

drives the adsorption on the surface:

−
βEads,prot

A(R)
=
∫

dr G(r)∑
θi

ρprot(θi, r) βUps(r). (7)
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where Ups(r) is the bare surface-protein potential, where r is the distance of the
closest point of the protein to the surface. We considered the same potential for all the
conformations of the proteins in the system.

The sixth term in the free energy, Fchem,prot, describes the free energy contribution
arising from the acid-base equilibrium reactions for the titrable amino acids in the proteins:

−
βFchem,prot

A(R)
=
∫

dr G(r)∑
aat
〈naat(r)〉

{
faat,p(r)

[
ln faat,p(r) + βµ


aat,p

]
+(1− faat,p(r))

[
ln(1− faat,p(r)) + βµ


aat,d

]}
. (8)

where the index aat runs over the titrable amino acids of the proteins (see Table
S2 below), faat,p(r) is the local fraction of protonated amino acid of type aat, and µ


aat,p
and µ


aat,d are the standard chemical potentials of type aa amino acid residues that are
protonated ("p") or deprotonated ("d"), respectively. Here again it is important to stress that
the chemical state of the titrable amino acids is obtained as a result form the minimization
of the free energy and it is not imposed as an input to the theory.

The ensemble average of the local density of residues is given by

〈naa(r)〉 =
∫

dr′
G(r′)
G(r) ∑

θi

ρ(θi, r′) maa(θi, r, r′). (9)

where the subindex aa corresponds to any type of amino acid (titrable or neutral) of
protein i, while maa(θi, r, r′) refers to the number density of residues type aa that are found
at r′ when the center of mass of protein i in conformation θi is at position r. For each protein,
the set maa(θi, r, r′) is an input.

The last term in the free energy functional describes the electrostatic contribution and
is given by:

βFelect
A(R)

= β
∫

dr G(r)
[
〈ρq(r)〉ψ(r)−

1
2

ε0εw(∇rψ(r))2
]

. (10)

Here ψ(r) is the electrostatic potential, 〈ρq(r)〉 corresponds to the total charge density,
while ε0 and εw refer to the dielectric permittivity of vacuum and the relative dielectric
constant of the aqueous solution respectively, which is taken to be equal to that of water,
εw = 78.5. The total charge density 〈ρq(r)〉 is the sum of the charge number density of all
charged species in the system:

〈ρq(r)〉 = ∑
k∈{Na+ ,Cl− ,

H+ ,OH−}

e zk ρk(r) + ∑
pol
〈ρpol(r) 〉qpol(r) e zpol + ∑

aati

〈naati (r) 〉qaati (r) e zaati .

(11)
Here, e is the unit of charge. The first term accounts for the charges of all mobile ions in

solutions, with zk corresponding to their valency. The next two terms considers the charges
arising from the protonation/deprotonation reactions of the titrable groups of the tethered
polymers and the titrable amino acids in the proteins (either deprotonated or protonated
for acidic or basic species, respectively). The parameters zpol and zaati correspond to the
electric charge of the titrable species (monomers or amino acids). For the titrable amino
acids in protein i, the degree of charge qaati (r) corresponds to the fraction of residues of
type aat that are ionized at position r, and it is related to the degree of protonation faat,p(r)
by:

qaati (r) =

{
1− faat,p(r) for acidic residues
faat,p(r) for basic residues

(12)



Version February 17, 2022 submitted to Polymers S4 of S19

Similarly, for the titrable monomomers in the polymer of type pol, we can write:

qpol(r) =

{
1− fpol,p(r) for acidic groups
fpol,p(r) for basic groups

(13)

The repulsive interactions in the theory are modeled as excluded volume interactions.
The intra chain interactions are considered exactly during generation of the polymer
conformations (see below), while the intermolecular excluded volume interactions are
accounted for by assuming that the system is incompressible at each position r:

∑
pol
〈φpol(r)〉+ ∑

prot
〈φprot(r)〉+ ∑

k∈{w,OH− ,H+ ,
Na+ ,Cl−}

φk(r) = 1. (14)

For each position r, these volume constraints are enforced through the introduction
of the Lagrange multipliers π(r), which represent the osmotic pressures induced in the
system due to the inhomogeneous composition of polymers, protein, solvent and ions.

The variable 〈φp(r)〉 corresponds to polymer type pol volume fraction and it is ex-
pressed as the polymer density times the sum over the different monomer states (protonated
or deprotonated, in case they are titrable) weighted with the volume of those states:

〈φpol(r)〉 = 〈ρpol(r)〉
(

fpol,p(r)vpol,p + fpol,d(r)vpol,d

)
. (15)

Here vpol,p and vpol,d correspond to the volume of the protonated and deprotonated
monomer respectively, which were taken to be equal to the monomer volume vp (see Table
S1). The polymer local density 〈ρpol(r)〉 is given by equation 4.

The volume fraction of each protein in the system, 〈φprot(r)〉, is given by:

〈φprot(r)〉 = ∑
aa
〈naa(r)〉vaa. (16)

Here, the sum runs over all the amino acids type in each protein in the system, vaa
corresponds to the volume of the amino acid (see protein model below) and the average
local density of each type of residue 〈naa(r)〉 is given by equation 9.

Finally, the volume fraction of the small mobile species is given by φk(r) = ρk(r)vk,
where vk is the volume of species k.

1.2. Minimization of the free energy

The free energy of the system is minimized with respect to Ppol(α) for each type of
polymer, ρk(r) with k ∈ {w, OH−, H+, Na+, Cl−}, ρprot(θi, r) for each protein i in solution,
faat,p(r) for each titrable amino acid in the proteins (see Table S2 below), fpol,p(r) for the
titrable monomers (see Table S1 below), and varied with respect to the electrostatic potential,
ψ(r). These minimizations are done under the constraint of incompressibility and the fact
that the system is in contact with an aqueous solution of proteins, cations, anions, protons,
and hydroxyl ions. Therefore, the proper thermodynamic potential is the semi-grand
potential [2,4–6], given by:
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βW
A(R)

=
βF

A(R)
− ∑

k∈{w,NaCl,Cl− ,OH−}
βµbulk

k

∫
dr G(r)ρk(r) (17)

− ∑
prot

∫
dr G(r)∑

θ

ρprot(θ, r)βµbulk
prot

−βµH+

∫
dr G(r)

(
ρH+(r) + ∑

aat
〈naat(r)〉 faat,p(r) + ∑

pol
〈ρpol(r)〉 fpol,p(r)

)

+
∫

dr G(r) βπ(r)

∑
pol
〈φpol(r)〉+ ∑

prot
〈φprot(r)〉+ ∑

k∈{w,OH− ,H+ ,
Na+ ,Cl−}

φk(r)− 1

.

where the first extra term corresponds to the chemical potential of ions in the bulk
solution, the second one to the bulk chemical potential of the proteins, the third to the
chemical potential of the protons in the system (taking into account the free protons in
solution and those that are in the protonated states of the titrable species, amino acids
and monomers), and the last one to the incompressibility constraint, enforced through the
introduction of the Lagrange multipliers π(r), which physical meaning was mentioned
above.

The complete potential to minimize is given by:

βW
A(R)

= ∑
pol=l,s

σpol ∑
α

Ppol(α) ln Ppol(α) (18)

+
∫

dr G(r)∑
pol
〈ρpol(r)〉

{
fpol,p(r)

[
ln fpol,p(r) + βµ


pol,p

]}
+
∫

dr G(r)∑
pol
〈ρpol(r)〉

{
(1− fpol,p(r))

[
ln(1− fpol,p(r)) + βµ


pol,d

]}
+
∫

dr G(r)∑
θi

ρprot(θi, r)
[

ln ρprot(θi, r)Vprot,tot − 1 + βµ

prot + βUps(r)− βµbulk

prot

]
+
∫

dr G(r)∑
aat
〈naat(r)〉

{
faat,p(r)

[
ln faat,p(r) + βµ


aat,p

]}
+
∫

dr G(r)∑
aat
〈naat(r)〉

{
(1− faat,p(r))

[
ln(1− faat,p(r)) + βµ


aat,d

]}
+ ∑

k∈{w,OH− ,H+ ,
Na+ ,Cl−}

∫
dr G(r) ρk(r)

[
ln ρk(r)vk − 1 + βµ


k − βµbulk
k

]

+
∫

dr G(r)
[
〈ρq(r)〉 βψ(r)− 1

2
ε0εw(∇rψ(r))2

]

+
∫

dr G(r) βπ(r)

∑
pol
〈φpol(r)〉+ ∑

prot
〈φprot(r)〉+ ∑

k∈{w,OH− ,H+ ,
Na+ ,Cl−}

φk(r)− 1


−
∫

dr G(r) βµH+

(
ρH+(r) + ∑

aat
〈naat(r)〉 faat,p(r) + ∑

pol
〈ρpol(r)〉 fpol,p(r)

)

Minimization of the thermodynamic potential in 18 leads to the following expression
for the local volume fraction of the solvent:
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φw(r) = ρw(r)vw = exp(−βπ(r)vw), (19)

while for the local density of the ions we obtain:

ρk(r) =
1
vk

exp
(

βµbulk
k − βµ


k − βπ(r)vk − βψ(r)zke
)

. (20)

It is important to point out that the chemical potential of water does not need to
be specified explicitly, because the incompressibility constraint reduces the number of
thermodynamic independent variables. In this way, the chemical potentials, µk, actually
correspond to exchange chemical potentials, which we define as the difference between
the chemical potential of the species k and that of water.[2] The values of the exchange
chemical potential of the remaining species can be expressed by relating them to their bulk
concentrations: ρbulk

k vk = exp(−βµ

k + βµbulk

k − βπbulkvk − βψbulkzk), with ψbulk = 0, see
below at Eq. 21.

Functional variation of the free energy with respect to the electrostatic potential yields
the Poisson equation and its boundary conditions:

− ε0εw∇2
r ψ(r) = 〈ρq(r)〉; −ε0εw

dψ(r)
dr

∣∣∣∣
r=R

= σq; lim
r→∞

ψ(r) = 0. (21)

in order to ensure the global charge-neutrality constraint of the system in equilibrium
conditions: ∫

dr G(r) 〈ρq(r)〉 = 0. (22)

Minimization with respect to Ppol(α) yields the probability distribution function (pdf)
for each type of polymer:

Ppol(α) =
1

Zpol
exp

{
−
∫

dr npol(α; r) [ βπ(r)vpol (23)

+βψ(r)zpole + ln qpol(r) + βµ

pol,d]

}
where the normalization constant

Zpol = ∑
α

exp
{
−
∫

dr npol(α; r) [ βπ(r)vpol (24)

+βψ(r)zpole + ln fpol,d(r) + βµ

pol,d]

}
ensures that for each type of polymer, ∑α Ppol(α) = 1. For further details on is referred

to the supporting material of Refs. [1,2] .
Minimization with respect to the polymer protonation fraction, fpol,p(r), results in the

following expression:

1− fpol,p(r)
fpol,p(r)

= K

a,pol

ρH+(r)
ρw(r)

(25)

The variable K

a,pol = exp(−β∆G


pol) corresponds to the thermodynamic acid-base
equilibrium constant and ∆G


pol is the standard free energy change given by ∆G

pol =

µ

pol,d + µ


H+ − µ

porl,p. The chemical equilibrium constant K


pol is related to the experimental
equilibrium constant Ka,pol = C exp(−β∆G


pol) of a single acidic monomer in infinitely
dilute solution. The constant C is required for consistency of units and equal to C =
1/NAvw, where NA is Avogadro’s number.
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Following 13, the degree of charge of the titrable monomers is related to expression 25:

qpol(r)
1− qpol(r)

=
(

K

a,pol

ρH+(r)
ρw(r)

)±1
(26)

where the positive and negative signs correspond to acidic or basic monomers, respec-
tively.

Minimization with respect to ρprot(θi, r) yields the following expression for the local
density of protein i in conformation θi:

ρprot(θi, r)Vprot = exp
(

βµbulk
prot − βµ


prot

)
(27)

× exp
(

βUps(r)
)

× exp
{
−
∫

dr′ ∑
aa

maa(θi, r, r′) βπ(r′)vaa

}
× exp

{
−
∫

dr′ ∑
aat

maat(θi, r, r′)
[

ln qaat(r′) + βψ(r′)zaat
]}

× exp
{
− ∑

aat,a
cnaat βµ


aat,d − ∑
aat,b

cnaat [βµ

aat,p − βµH+

}
The first term in 27 can be determined from the composition of the bulk solution in

contact with the surface (see next section). The sub index aa runs over all the amino acids
in protein i, while aat only counts the titrable ones. In the last line, cnaat corresponds to
the total count of acidic or basic titrable amino acids, the first term running over the acidic
residues (aat, a), while to the second one does so over basic amino acids (aat, b).

Lastly, minimization of the thermodynamic potential with respect to the degree of
protonation of each titrable amino acids in the proteins, faat,p(r), yields identical expressions
to equation 25, leading to the analogue expressions for qaat(r) as in 26.

Note that in Eq. (19) through Eq. (27) the unknowns are the Lagrange multipliers or
lateral pressures, π(r), and the electrostatic potential, ψ(r). All the other quantities can be
expressed as a function of ψ(r) and π(r). The solutions of those variables can be obtained
numerically, by replacing the expressions of the volume fractions and charge density of all
components into the incompressibility constraint (Eq. 14) and the Poisson equation (Eq.
21). This results in a set of non-linear integro differential equations whose solution will
determine ψ(r) and π(r). Resorting to a discretization scheme, the differential equations
are converted into a set of coupled non-linear algebraic equations that can be solved by
standard numerical techniques. [7] Further below we present details on the discretization
procedure and numerical methods.

The inputs required to solve the non-linear equations are a set of polymer and protein
conformations, the bulk solution conditions (pH, salt and proteins concentrations), the
volume of all species in the system, the surface density of the polymers end-tethered to the
nanoparticle, the morphology and curvature of the nanoparticle, and the various acid-base
equilibrium constants pKa. In the "Molecular Models" section we present details on the
chain and protein models used to generate a set of macromolecular conformations, along
with the relevant properties of other species in solution.

1.3. Bulk solution

The composition of the bulk solution in equilibrium with the end-tethered polymer
surface determines the chemical potential of mobile species in solution (ions, solvent,
proteins), as reflected in Eq. 17. In this section we derive the bulk expressions of densities
and charge fractions by taking the limit of r → ∞ in the expression of the ions local densities
(Eq. 20), the charged fraction of titrable amino acids in the proteins (Eq. 26) and the local
density of proteins (Eq. 27).
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The bulk density of ions in solution has the following expression:

ρbulk
k vk = φbulk

k = exp(βµ

k − βµk − βπbulkvk − βψbulkzk) (28)

with ψbulk = 0 (see Eq. 21) and k ∈ {H+, OH−, Na+, Cl−}.
For the density of proteins we get:

ρbulk
prot(θi)Vprot = exp

(
βµbulk

prot − βµ

prot

)
(29)

× exp
{
−∑

aa
cnaa βπbulkvaa

}
× exp

{
−∑

aat
cnaat

[
ln qbulk

aat + βψbulkzaat
]}

(30)

where cn corresponds to the count of amino acids of type aa, that runs over all amino
acids in the protein i, or just the titrable ones aat.

For the titrable amino acids in the proteins (see Table S2 below), their bulk degree of
charge is given by:

qbulk
aat

1− qbulk
aat

=
(

K

a,aat

ρbulk
H+

ρbulk
w

)±1
(31)

where the positive and negative signs correspond to acidic or basic monomers, respec-
tively.

The electrostatic potential in the bulk solution, ψbulk has a constant value that is an
input to the theory and it is set ψbulk = 0.

The system in the bulk solution is also assumed to be incompressible, leading to:

∑
prot
〈φbulk

prot 〉+ ∑
k∈{w,OH− ,H+ ,

Na+ ,Cl−}

φbulk
k = 1. (32)

The only unknown to the determine the bulk densities and charged fractions of amino
acids is the osmotic pressure πbulk, which is computed by replacing expressions 28, 29 and
29 in the bulk incompressibility constraint above (32) and solving numerically the equation
for each given value of bulk pH, salt and protein concentrations (which are input for our
calculations). Once πbulk is computed, the terms containing bulk and reference chemical
potentials in equations 28 and 29 can be replaced in equations 20 and 27 above.

1.4. Discretization and Numerical methodology

Numerical solutions for the lateral pressure, π(r) and the electrostatic potential, ψ(r)
are obtained by discretizing the packing constraint (Eq. 14) and the generalized Poisson
equation (Eq. 21). This is done by dividing the r-coordinate into Mr cartesian, cylindrical or
spherical shells of thickness δ (for a planar, cylindrical or spherical surface respectively). We
used a discretization length δ = 0.5 nm. All the position dependent functions derived above
are assumed to be constant within a given layer, such that integrations can be replaced
by summations. In this way, the integral of a general position dependent function f (r)
becomes: ∫

dr G(r) f (r) = ∑
i

∫ iδ+R

(i−1)δ+R
dr G(r) f (r) ≈ δ ∑

i
f (i)∆G(i), (33)

with

∆G(i) =
1
δ

∫ iδ+R

(i−1)δ+R
dr G(r). (34)



Version February 17, 2022 submitted to Polymers S9 of S19

where f (i) corresponds to the value which the function f (r) attains within the layer
located between (i− 1)δ + R ≤ r < iδ + R (for spherical and cylindrical nanoparticles, R
corresponds to the radius, while for planar surfaces R = 0). As mentioned at the beginning
of this section, G(r) = A(r)/A(R) describes the change in volume as a function of the
distance away from the surface and it depends on its geometry.[3]

The discretized densities of water (19) and ions (20) in solution read:

φw(i) = ρw(i)vw = exp(−βπ(i)vw), (35)

φk(i) = φbulk
k exp

[
− β(π(i)− πbulk)vk − zkβψ(i)

]
. (36)

where φk(i) is given by equation 28 and is input to the theory for each species k.
The discretized form of the pdf of the polymers (23) and the polymer density (4) are:

Ppol(α) =
1

Zpol

Mr

∏
i=1

exp
[
−npol(α; i)

(
βπ(i)vpol + eβψ(i) + ln(qpol(i)

)]
(37)

〈ρpol(i)〉 =
σ

δ∆G(i) ∑
α

Ppol(α)npol(α; i) (38)

npol(α; i) ≡
∫ iδ+R

(i−1)δ+R
dr npol(α; r). (39)

For the proteins in the system, the discretized forms of the volume fractions (16), local
density (27) and average local density of each type of residue (9):

〈φprot(i)〉 = ∑
aa
〈naa(i)〉vaa (40)

〈naa(i)〉 =
Mr

∑
j=1

∑
θprot

∆G(j) ρprot(θ, j)maa(θ, i, j)
G(r)

(41)

ρprot(θ, j) = ρbulk
prot(θ)× exp

(
βπbulkVprot

)
× exp

(
∑
aat

cnaat ln qbulk
aat
)

(42)

× exp
(

βUps(j)
)

× exp
{
−

Mr

∑
h=1

βπ(h) ∑
aa

maa(θ, j, h) vaa

}
× exp

{
−

Mr

∑
h=1

∑
aat

maat(θ, j, h)
[

ln qaat(h) + βψ(h)zaat
]}

.

Following equation 26, the discretized expressions for the charged fractions of titrable
species in the system are:

qγ(i) =
1

1 +
(

K

a,γ

ρH+ (i)
ρw(i)

)±1 (43)

where γ corresponds to the titrable monomers in the polymers and the titrable amino
acids in the proteins. Their acidity equilibrium constants are detailed in Tables S2 and S1.
The positive and negative signs in the denominator correspond to acidic or basic residues,
respectively.

The discrete local density of charges (11) has the following form:
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〈ρq(i)〉 = ∑
k∈{Na+ ,Cl− ,

H+ ,OH−}

e zk ρk(i) +∑
pol
〈ρpol(i) 〉qpol(i) e zpol + ∑

aati

〈naati (i) 〉qaati (i) e zaati . (44)

For grid cell i = 1...Mr, the packing constraint (14) in discrete form reads:

∑
pol
〈φpol(i)〉+ ∑

prot
〈φprot(i)〉+ ∑

k∈{w,OH− ,H+ ,
Na+ ,Cl−}

φk(i) = 1. (45)

Finally, the discretized Poisson equation (21) takes different forms, depending on the
system’s geometry.

In cartesian coordinates (planar surface) we have:

ψ(i + 1)− 2ψ(i) + ψ(i− 1) = −εwε0 δ2 〈ρq(i)〉, (46)

For cylindrical coordinates:(
1 +

δ

ri

)
ψ(i + 1)− 2ψ(i) +

(
1− δ

ri

)
ψ(i− 1) = −εwε0 δ2 〈ρq(i)〉, (47)

where ri = [(i − 1/2)δ + R] denotes the middle of the cylindrical layer (i) in the radial
direction r.

For spherical coordinates:(
1 +

δ

2ri

)
ψ(i + 1)− 2ψ(i) +

(
1− δ

2ri

)
ψ(i− 1) = −εwε0 δ2 〈ρq(i)〉, (48)

where ri = [(i − 1/2)δ + R] denotes the middle of the spherical layer (i) in the radial
direction r.

The discretized electrostatic boundary conditions are:

ψ(1)− ψsur f = 0 (49)

ψbulk = ψ(Mr) = 0. (50)

where ψsur f is the electrostatic potential at the surface: ψsur f = ψ(R) for spherical or
cylindrical nanoparticles of radius R, whereas for planar surfaces we have ψsur f = ψ(0) .
Far away from the surface, the electrostatic potential, ψbulk, vanishes.

For a given set of bulk solution details (pH, salt and proteins concentration) and
surface conditions (surface morphology and curvature, surface density of each polymer,
and chemical details of the polymers), the only unknowns in the previous equations are
the discretized lateral pressures (π(i)) and electrostatic potential (ψ(i)). Their values can
be obtained by solving the set of coupled nonlinear equations given by equations 45 and
the appropriate version of the discretized Poisson equation (46, 47, 48), using standard
numerical methods. [7]

2. Molecular models
2.1. Grafted Polymers

The surface in contact with the proteins solution was modified with a mixture of short
(s) and long polymer (l). In order to solve the equations derived above, we need to generate
a large and representative set of conformations for each type of polymer. To do so, we use
the three-state rotational isomeric state (RIS) model. [8] The conformations are generated
by a Monte Carlo sampling procedure that takes into account the self-avoidance of the
polymer chain. Then, through appropriate translational and rotational adjustments, the
non-intersecting generated chain conformations are end-tethered the surface of the NP of
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given geometry and radius. Internal self-avoidance of the chain and the chain with the
NP core are enforced. The used parameters of monomer volume and segment length are
presented in Table S1. The set of chain conformations for each type of polymer (long and
short) is generated once for each sequence and is used for all the calculations reported in
this paper. The number of conformations is 1 · 106 for each type of polymer.

The surface mixture is characterized by two input parameters, σpol and xl , that corre-
spond to the total polymer surface density (σpol = σl + σs) and the fraction of long polymers
on the surface respectively (xl = σl/σtot, xl ∈ [0, 1]).

The monomers in the short polymers were considered neutral, while the for the long
one three possible types were considered: neutral, acidic or basic. Long polymers have 45
monomers, while short ones have 10. The choice of polymer size follows the commonly
commercialized PEG products with molecular weights of 2000 and 500, respectively. The
monomer volume was considered the same in all types of polymers and equal to that
of PEG, as done in previous calculations.[9] The characteristics of each type of monomer
(titrable or neutral) are listed in Table S1.

Table S1. Volume, pKa and charge of the deprotonated or protonated state for acidic or basic
monomers, respectively.

Monomer vp pKa q
type [nm3] [e]

Neutral 0.065 - 0
Acidic 0.065 5.0 -1
Basic 0.065 9.0 +1

2.2. Protein model

We considered the modified surfaces in contact with a solution containing a protein
mixture composed of lysozyme and Green Fluorescent Protein (GFP). Following a coarse
graining scheme similar to Refs. [5,6], proteins were modeled in a coarse grain scale in
which each amino acid in the proteins is represented by a single solid bead centered at
the position of the corresponding α-carbon, as depicted in the left panel of Figure S1. The
position and sequence of all atoms in the proteins are taken from the crystallographic
structure PDB files (193L[10] and 1EMA[11] for lyzozyme and GFP respectively). The
relative position of all beads remains frozen to the initial structure of the PDB structure,
irrespective of solution conditions. This means that we did not include changes in their
configurations neither in bulk solution nor when they are in contact with the surface. In
this way, the proteins are modeled as rigid bodies, while retaining full translational and
rotational degrees of freedom. Lysozyme is known undergo negligible conformational
changes upon adsorption,[12,13] while the β-barrel of GFP is known to be stable and
rigid.[14] Hence in our model, we do not take into account conformational changes upon
protein adsorption on the NP surface.

The volume of each coarse grain bead is taken as the molecular volume of the amino
acid, which was computed using the package VOIDOO[15]. Amino acids are considered
hydrophilic and are classified either as neutral or titrable. Among the latter, aspartic
acid (ASP), glutamic acid (GLU), and tyrosine (TYR) are considered acidic groups, while
arginine (ARG), histidine (HIS), and lysine (LYS) are basic. These properties of the amino
acids are summarized in Figure S1, right panel. Each titrable bead is characterized by an
intrinsic acidic constant, while all other amino acids are considered charge neutral. The
pKa values for the titrable amino acids correspond to experimental values averaged over
different proteins and are summarized in Table S2.[16]

2.3. Other species in solution

Regarding the small species in solution (ions and water molecules), we used the
volumes and charges listed in Table S3.
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Lysozyme

(129 aa)

GFP

(238 aa)

Amino acid molecular volumes computed with Voidoo
Acidic
Basic
Neutral

Figure S1. (left panel) Schematic representation of the coarse grain protein model: each amino acid is
represented by a single solid bead centered at the position of the corresponding α-carbon provided in
the crystallographic structure PDB file. (right panel) Amino acids molecular volumes computed with
VOIDOO.

Table S2. Acid-base reaction constants (pKa) and count (cn) of each residue type in lysozyme and
GFP for titrable amino acids.

ASP GLU TYR ARG HIS LYS

pKa [16] 3.5 4.2 10.3 12.0 6.6 10.5
cnlys 7 2 3 11 1 6
cnGFP 17 15 9 7 9 19

Table S3. Volume and charge of small mobile species

v [nm3] q(e)

w 0.03 0
H+ 0.03 +1

OH− 0.03 -1
Na+ 0.0044 +1
Cl− 0.011 -1
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3. Additional Results
3.1. Single protein adsorption onto NPs
3.1.1. Effect of surface morphology for lysozyme adsorption

Figure S2. Adsorption isotherms of lysozyme onto NPs of different morphology and curvatures
as a function of total polymer surface density (σtot). Long polymers are neutral and the surface
composition is fixed, xsur f

l = 0.5. The bulk solution pH is 11, csalt = 1mM, clys = 10−4 M. The radii of
the spherical and cylindrical NP are indicated in the legend, as well as the limiting case for a planar
surface.

3.1.2. Effect of surface composition for lysozyme adsorption
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Figure S3. Adsorption isotherms of lysozyme onto NPs of different morphology and curvature as a
function of the composition of the surface polymer mixture (xsur f

l ), for different total polymer surface
density (σtot), as indicated in the legend. For the curved systems, R = 5nm. Long polymers are neutral.
The bulk solution pH is 11, csalt = 1mM, clys = 10−4 M.
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3.1.3. Molecular organization for lysozyme adsorption

Figure S4. Volume fraction of the end-tethered short (upper panels) and long polymers (lower panels)
as a function of the distance to the surface for planar, cylindrical and spherical NPs, as indicated in
the figure headers. For the curved systems, R = 5nm. Long polymers are neutral, and the surface
details are fixed: σtot = 0.1 nm−2 and xsur f

l = 0.5. The bulk solution pH is 11, csalt = 1mM, clys = 10−4

M. Lines correspond to different surface compositions, as indicated in the legend. In the lower panels,
the dotted lines correspond to the volume fraction of lysozyme.

3.1.4. Effect of surface composition for lysozyme adsorption

Figure S5. Lysozyme adsorption onto planar, cylindrical and spherical surfaces, as indicated in
the header of each panel, as a function of bulk pH. Polymers are neutral. Effect of total polymer
surface density for fixed surface composition (xsur f

l = 0.5, upper panels) and surface composition for
fixed surface density (σtot = 0.1 nm−2 , lower panels), as indicated in the legends. The bulk solution
conditions are csalt = 1mM, and clys = 10−4 M.
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3.1.5. Effect of surface curvature in NPs coated with weak polyelectrolytes for lysozyme
adsorption

4 6 8 10 12
bulk pH

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Γ
 [

n
m

−
2
]

Neutral

Planar

Cyl, R = 5.0nm

Sph, R = 5.0nm

4 6 8 10 12
bulk pH

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Γ
 [

n
m

−
2
]

Acidic

4 6 8 10 12
bulk pH

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Γ
 [

n
m

−
2
]

Basic

Lys, Cprot
bulk =  0.0001 M, Csalt

bulk = 0.001 M, σtot = 0.1 nm− 2, xl
surf = 0.50

Figure S6. Lysozyme adsorption onto planar, cylindrical and spherical surfaces, as indicated in the
legend, as a function of bulk pH. For the curved systems, R = 5nm. Long polymers are neutral, acidic
or basic, as indicated in the the header of each panel. Surface details are fixed, σtot = 0.1 nm−2 and
xsur f

l = 0.5. The bulk solution conditions are csalt = 1mM, and clys = 10−4 M.

3.1.6. Effect of surface composition in NPs coated with weak polyelectrolytes for lysozyme
adsorption
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Figure S7. Effect of surface details on lysozyme adsorption onto cylindrical NPs, R = 5nm. Long
polymers are neutral, acidic or basic, as indicated in the the header of each panel. The total polymer
surface density is fixed, σtot = 0.1 nm−2, while the composition of the surface mixture is varied, as
indicated in the legend. The bulk solution conditions are csalt = 1mM, and clys = 10−4 M. The dotted
black lines correspond to the isoelectric point of lysozyme in dilute solution (pI=10.99), while the
line-dot lines in the central and right panels correspond to the pKa values of the acidic and basic
monomer (pKaacid = 5.0, pKabasic = 9.0).
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3.1.7. Effect of surface details on GFP adsorption

Figure S8. Effect of surface details on GFP adsorption onto cylindrical NPs, R = 5nm. Long polymers
are neutral, acidic or basic, as indicated in the the header of each panel. (upper panels) The total
polymer surface density is fixed, σtot = 0.1 nm−2, while the composition of the surface mixture is
varied, as indicated in the legend. (lower panels) The composition of the surface polymer mixture
is fixed, xsur f

l = 0.5, while the total polymer surface density is varied, as indicated in the legend.
For all panels, the bulk solution conditions are csalt = 1mM, and cGFP = 10−4 M. The dotted black
lines correspond to the isoelectric point of lysozyme in dilute solution, while the line-dot lines in the
central and right panels correspond to the pKa of the acidic and basic monomer respectively (pKaacid

= 5.0, pKabasic = 9.0).

3.1.8. Local pH for GFP adsorption
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Figure S9. Local pH as a function of the distance to the surface for the adsorption of GFP onto
cylindrical NPs, R=5nm. Long polymers are neutral, acidic or basic, as indicated in the the header of
each panel. Surface details are fixed, σtot = 0.1 nm−2 and xsur f

l = 0.5. The bulk solution conditions
are csalt = 1mM, and cGFP = 10−4 M, while the pH is changed , as indicated in the legends. Dotted
lines correspond to the bulk pH value, while dot-dash lines correspond to the local pH without any
protein in solution.
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3.1.9. Acid-base eq. of titrable amino acids for GFP adsorption
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Figure S10. Average of the fraction of deprotonated (acidic, upper panels) or protonated (basic, lower
panels) amino acids of adsorbed GFP onto cylindrical NPs (R=5nm) as a function of bulk pH. The
amino acid name, type and pKa are indicated in the header of each panel. Surface details are fixed,
σtot = 0.1 nm−2 and xsur f

l = 0.5. The bulk solution conditions are csalt = 1mM, and cGFP = 10−4 M.
Blue, red, and green full lines correspond to NPs grafted with neutral, acidic and basic polymers, as
indicated in the legend. Magenta lines correspond to the amino acid in bulk solution. Vertical lines
correspond to the pI of GFP and the pKa of the acidic and basic monomers.

3.2. Adsorption from lysozyme + GFP binary mixtures
3.2.1. Polymer charge regulation
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Figure S11. Average of the fraction of charged monomers as a function of bulk pH, for acidic and
basic units as indicated in the header of each panel. Surface details are fixed, σtot = 0.1 nm−2 and xsur f

l
= 0.5. csalt = 1mM. Dotted lines correspond to the ideal titration curve of the monomer in solution.
Full lines correspond to the polymer layer in contact with a solution containing no proteins, lysozyme
only, GFP only, or a binary mixture of lysozyme and GFP, as indicated in the legend.
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3.2.2. Local net charge of adsorbing proteins
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Figure S12. Local net charge of lysozyme (left panel) and GFP (right panel) adsorbed form binary
mixtures in solution onto cylindrical NPs, R=5nm, as a function of the distance to the surface. Long
polymers are neutral, acidic or basic, as indicated in the legend. Surface details are fixed, σtot = 0.1
nm−2 and xsur f

l = 0.5. The bulk solution conditions are clys = cGFP = 10−4 M, csalt = 1nM. The bulk
pH values are indicated in the header of each panel. Full lines correspond to binary protein solutions,
while dashed lines correspond to one protein solutions. The dotted vertical lines correspond to the
net charge of the protein in bulk solution.
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The following abbreviations are used in this section:

NP Nanoparticle
PEG Poly(ethylene glycol)
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