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Influence of Geometric Parameters of

Conical Acrylic Portholes on Their

Stress–Strain Behaviour. Polymers

2022, 14, 1041. https://doi.org/

10.3390/polym14051041

Academic Editor: Beom Soo Kim

Received: 15 February 2022

Accepted: 3 March 2022

Published: 5 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Influence of Geometric Parameters of Conical Acrylic Portholes
on Their Stress–Strain Behaviour
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Abstract: Translucent elements in the form of truncated cones, which are made of organic glass, are
widely used in the structures of portholes, submersible vessels, space vehicles, pressure chambers,
teleboxes and other types of technical equipment. The decisive factor in designing portholes is to
ensure the strength of their translucent elements. In order to reduce the weight of portholes and,
accordingly, to increase the payload, it is necessary to optimise the geometric parameters of the
translucent elements, which include the tapering angle and the ratio of thickness to radius of the
smaller base. The paper deals with development of the applied (engineering) method for determining
the stress–strain behaviour of the conical translucent elements of portholes made of organic glass
under the action of a uniform hydrostatic pressure. Finite-element modelling of the translucent
element of the conical porthole is performed, with the calculation of its stress–strain behaviour.
External hydrostatic pressure of 10 MPa, absence of loads from the inside and continuous sliding of
the translucent element with friction along the conical supporting surface of the porthole metal body
are the boundary conditions for the computational model. Full-scale tests of translucent elements of
portholes made of organic glass were performed under the action of uniform hydrostatic pressure.
Analysis of the influence of geometric characteristics of the portholes on stress–strain behaviour
showed that the increase in the tapering angle at the constant relative thickness of the translucent
element reduced its axial displacement in all cases. Equivalent stresses acquire minimum values
when the tapering angle is in the range from 75◦ to 105◦ (when the relative thickness increases, the
optimal tapering angle becomes smaller). It is shown that the developed method for determination
of the stress–strain behaviour of the conical translucent elements of portholes made of organic glass
reflects the real picture of deformation and agrees with the results of full-scale tests. Results of
the work allow us to choose the rational parameters of the translucent element for increasing the
reliability of portholes through the creation of an effective distribution of stresses and strains in the
translucent element, and improving its optical characteristics due to a relatively small deflection
in operation.

Keywords: organic glass; polymethyl methacrylate plastic; translucent element; hydrostatic load

1. Introduction

There are various designs of portholes adopted in current technology, which can be
classified according to the shape and material of the translucent element [1,2]. Such diversity
is attributed to the differences in operating conditions of the portholes: working pressure;
temperature and aggressiveness of the environment; load pattern; image-registration
method; and so on [3,4]. The translucent element of the porthole as a part of an optical
system has a direct effect on image quality, and its strength predetermines the reliability
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of the technical equipment as a whole [5–7]. The translucent element is subject to strict
requirements on the criteria of strength, tightness, deformation of optical surfaces under
load and optical and thermophysical properties of the material [8–10].

Considering the indicators of strength, failure pattern, manufacturing and processing
technology, it is more appropriate to use the polymethyl methacrylate plastic (PMMA or
organic glass or Acrylic) as a material of translucent elements [11]. The characteristics of
strength of translucent elements made of PMMA (the value of pressure at failure) depend
primarily on the ratio of thickness h to diameter D of the porthole; and for conical and
spherical elements, on the tapering angle α of the supporting surface.

The most fundamental recommendations for the design and choice of the structural
type and geometric parameters of the acrylic portholes of different structural types are
given in [12,13]. Paper [14] summarises the information about structural types of acrylic
portholes but does not give any algorithms for selection of their optimal shape depending
on operating conditions. Considerable attention in [15] is paid to the design of the porthole
body and ways to ensure its tightness; however, no optimal engineering solutions are
proposed. The authors of [16] found that at the tapering angle of α = 90◦ and relative
thickness of h/D = 0.41 no tensile strains were observed in the porthole, but they did not
assess the effect of design parameters on the porthole stress state.

Calculation of the stress–strain behaviour of a translucent element using classical
methods of elasticity theory is very time-consuming in terms of implementation, since in
the process of finding a solution, the mixed boundary conditions on three surfaces (two
end surfaces and a supporting conical surface) should be fulfilled [17]. Furthermore, it
is necessary to consider the influence of design parameters, as well as the coefficient of
friction f on the support [18].

Regarding use of the bending theory of thin plates in the calculations of stress–strain
behaviour of the portholes, there are always significant errors in the determination of
displacements with slightly fewer errors than stress determination. This is because typical
dimensions of the porthole translucent element (thickness h and minimum diameter 2R0)
are comparable, and the theory of thin plates can be applied at h/(R0 ≤ 1/5) [19,20].

Currently, the stress–strain behaviour of translucent elements is often determined
using numerical methods [21]. The finite-element method is the most accurate and univer-
sal algorithm for calculating the stress–strain behaviour of the class of structures under
study [22,23]. The methods for calculation of conical portholes based on the finite-element
method are considered in [24–26]. It is shown that the translucent element under the action
of hydrostatic pressure slides with the friction of the conical supporting surface of the
porthole body. At the same time, the elastic-plastic state of the porthole made of acrylic
glass is considered in [24], but the creeping at cyclic loads is not analysed. The authors
of [25] performed calculations for the portholes with h/D = 1, α = 90◦ and coefficient of
friction on the supporting surface f = 0−0.2 under the action of pressure P = 70 MPa,
which agreed well with the results of experiments [12]. However, there is no data on the
applicability of this calculation method to the portholes with h/D ≤ 1.

Paper [27] shows that the most loaded elements of conical portholes are the edges
of the low-pressure surface. For confirmation of the results, an experimental study was
conducted. A few portholes were manufactured and tested under a hydrostatic pressure
of 60 MPa. Paper [28] deals with the development of a “design by analysis” method and
analysis of the stress state of the portholes considering the criteria of failure of PMMA to
determine the pressure and area of failure. The detailed finite-element model of the conical
portholes made of PMMA is developed in [29]. Based on this model, the stress–strain
behaviour of the porthole is analysed, and the causes of its failure are investigated. The
results show that local failure tends to occur at the corner of the porthole cone where the
equivalent stresses according to the Huber–von Mises strain energy theory are maximal.

The experimental study of [30] shows the ability of PMMA to “adapt” to the shape of
the porthole body. It was found that due to the plastic behaviour of PMMA, the highest
mechanical stresses at dangerous points of the porthole are reduced by 64–71%. It confirmed
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the feasibility of use of PMMA in the optical systems’ technology, but the method to
determine its reliability factor is not specified in this paper.

The experiments and numerical calculations of the stress–strain behaviour of PMMA
portholes at different levels of hydrostatic pressure to develop a method of optimal design-
ing regarding operating conditions are described in [31]. Experimental dependences of
displacements of portholes made of PMMA at long-term and cyclic impacts of hydrostatic
pressure are obtained.

Numerical methods are known for their versatility, but they are rather cumbersome
and difficult to apply in practice [32,33]. At the same time, explicit solutions for the
conical translucent elements of the portholes made of PMMA under the action of uniform
hydrostatic pressure are limited by the necessity to fulfil the mixed boundary conditions and
take into consideration the influence of structural parameters of a translucent element and
coefficient of friction with the porthole body. These difficulties, together with the limited
choice of fundamental functions from the full range of solutions for the axisymmetric
problem of the elasticity theory, do not allow the boundary conditions of the translucent
element to be fully met, while the most stress points are always on the surface of the
deformable body. However, based on these methods it is possible to obtain relatively
simple but fairly accurate applied solutions to the problems [31,34].

Based on the analysis, the current task is to develop an applied (engineering) method
for the determination of the stress–strain behaviour of conical translucent elements of the
portholes made of PMMA under the action of uniform pressure.

2. Materials and Methods

The conical translucent elements of portholes made of PMMA are studied under the
action of uniform pressure. Classical methods of elasticity theory (axisymmetric problem)
and the bending theory of thick plates are used to develop the applied (engineering) method
for the determination of the stress–strain behaviour of the conical translucent elements. We
accepted the following hypotheses: In deformation under uniform pressure the translucent
element bends and slides in the porthole body; the element moves on the conical supporting
surface with friction and without separation from the surface; the support reaction on the
conical supporting surface decomposes at each point into normal and tangent components.
To find an analytical solution, we used Love’s function from polynomials of degrees 3, 4 and
6, which were obtained using Legendre polynomials. Fulfilment of the kinematic and force
boundary conditions is achieved by minimising the standard deviations of these conditions
along the generating conical supporting surface. Numerical studies were conducted in the
software package of the finite-element analysis ANSYS Mechanical 2019 R1. In view of
the axial symmetry of the translucent-element shape and external load, a narrow sector
was used as a computational model. The regular grid size was taken equal to 5 mm. For
the conical supporting surface, a half-sized grid was used, which allowed us to more
accurately model the translucent element’s interaction with the metal (titanium) body of
the porthole. For the finite element of the porthole body, size of grid in the central zone
was taken equal to 10 mm; on the supporting surface, where a sharp change in stress could
be expected, 5 mm grid was used. The constructed finite-element model contained more
than 10,000 Tetra10 elements (tetrahedron with 10 nodes). Size of the grid was chosen
according to dimensions of the real porthole. Study of the convergence of the numerical
solution showed that with this number of finite elements in the models the normal and
shear stresses varied slightly (by 5% at most). Analysis of the quality of the constructed
finite-element models did not reveal any critical errors. The problem of determination of
the porthole stress–strain behaviour was solved in the linear setting. Full-scale tests were
performed using the specialised experimental complex for hydrostatic loads of translucent
elements of the portholes. Tests of portholes under the action of the hydrostatic pressure
were performed in the high-pressure chamber (chamber volume was 0.06 m3, maximum
pressure was 150 MPa). Axial displacements were measured by the mechanical dial gauge
ICh-10 (Microtech, Kyiv, Ukraine) and electric-contact manometer EKM-2U (UAM, Kyiv,
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Ukraine) was used for pressure measurement. Pressure in the chamber was created by the
pumping station UNGR–2500R (UAM, Kyiv, Ukraine). Specimens of translucent elements
were made of SO-120 PMMA (Admiral Makarov National University of Shipbuilding,
Mykolaiv, Ukraine) plates of 50 mm thickness by turning with subsequent polishing of the
optical surfaces.

3. Theoretical Background

Material of the translucent element in the working position is under static pressure P
from the end surface of high pressure, as well as contact (normal and tangential)-distributed
loads from the conical supporting surface (Figure 1).
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Figure 1. Porthole computational model: P—hydrostatic pressure; f —sliding with friction; 1—
translucent element; 2—porthole body.

There are no external loads on the end surface of low pressure. Therefore, both the
geometric shape of the translucent element and external surface loads are symmetric around
the central axis of the porthole, so the stress–strain behaviour of the translucent element is
determined by solving the axisymmetric problem of the elasticity theory.

In case of the axisymmetric problem, nonzero components of the stress–strain be-
haviour in the cylindrical coordinates can be expressed in terms of a biharmonic Love’s
function [35–37] F(r,z):

u = − 1
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∂z2 is Laplace operator in the cylindrical coordinates; u,w are
radial and axial displacements, respectively; σr, σθ , σz, τrz are radial, tangential, axial and
shear stresses; b0 is free constant corresponding to the axial displacement of the body.

Biharmonic nature of Love’s function ensures the exact fulfilment of the equilibrium
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Therefore, solution to the problem of the axisymmetric stress–strain behaviour state of
the body of rotation is reduced to determination of Love’s stress function. Unfortunately, at
present there is no analytical representation of Love’s function satisfying any predetermined
boundary conditions [35,36]. The explicit solution to biharmonic equation

∇2∇2F = 0 (4)

is possible in the cylindrical coordinates in infinite series on the Bessel functions [35,36].
However, this solution is inconvenient for practical use because of slow convergence of
the series (of the order 1/

√
n, n–serial number of terms of the series), particularly under

difficult boundary conditions and for noncylindrical bodies [38,39]. In addition, they are
inconsistent at the origin of coordinates at r = 0.

The solution to Equation (4) in the spherical coordinates in series using Legendre
polynomials with the further transformation of the function F into cylindrical coordinates
is relatively simple; however, it is always necessary to limit the number of terms of series
in the expansion of the function F and satisfactory solutions are obtained for the simple
boundary conditions only.

Obtaining dependences of the translucent-element stress–strain behaviour, which can
be applied in practice, involves a certain compromise between accuracy and simplicity of
the solution. When constructing an analytical solution, it was necessary to consider the
requirements below:

• class of functions describing the stress–strain behaviour of a translucent element
should satisfy the biharmonic Equation (4);

• solution should take into account the interaction of the translucent element with real
support, i.e., ensure compliance with the boundary conditions thereon;

• dependences for the components of the translucent-element stress–strain behaviour
should be relatively simple.

Stress–strain behaviour of the translucent element depends on its geometric charac-
teristics, which include the tapering angle α and the ratio of the smaller base diameter to
thickness Rmin/c (Figure 2).
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When we choose the origin of coordinates in the centre of the median surface of the
translucent element, boundary conditions at ends are as follows:

σz

(
r;− c

2

)
= −p; σz

(
r;

c
2

)
= τrz

(
r;

c
2

)
= 0. (5)
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In order to fully determine the stress–strain behaviour of the translucent element,
we add the conditions on the conical supporting surface ad (Figure 2) to the boundary
conditions (5)

Pτ = f Pn, (6)

where f is coefficient of friction.
The following hypotheses are introduced:

• in deformation under the uniform pressure P the translucent element bends and slides
in the porthole body along the axis OZ;

• the translucent element moves on the conical supporting surface ad (i.e., at r =

R0 − tg
α

2
) with friction and without separation from the surface;

• support reaction Pv on the conical supporting surface ad decomposes in each point
into normal Pn and tangential Pτ components.

Using the latter condition, it is possible to determine the relationship between the
radial Pvr and axial Pvz reactions of the supporting surface. Necessary operations for this
construction are shown in Figure 3.
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The translucent-element supporting conditions may be different, but they are ulti-
mately reduced to the force boundary conditions on the conical supporting surface (i.e., the
equilibrium equation of an elementary tetrahedron) and are written as:

σrcos
α

2
+ τrzsin

α

2
+ pvr = 0;

σzsin
α

2
+ τrzcos

α

2
+ pvz = 0;

(9)

hence, we obtain the following relationship:

pvz

Pvr
=

σztg α
2 + τrz

σr + τrztg α
2

. (10)
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After Equations (8) and (10), the boundary condition on the conical surface of the
translucent element is

σr + τrzβ− 1− f β

β + f
(τrz + σzβ) = 0, (11)

where β = tg
α

2
.

Equation (11) is a condition of friction of the translucent element on the conical
supporting surface. The condition of continuous sliding of the translucent element is
written as

u + βw = 0. (12)

Conditions (5), (11) and (12) fully determine the surface loads and displacements of
the translucent element.

Papers [35,36,38] show that for exact correspondence to the boundary conditions (5)
on the end surfaces of thick plates, the degree of polynomials entering the function in F
should not be higher than 6. To find an analytical solution, it is convenient to form Love’s
function of polynomials of degrees 3, 4 and 6, obtained with the use of the corresponding
Legendre polynomials [35,36]:

F = F3 + F4 + F6;

F3 = a3
(
2z3 − 3r2z

)
+ b3

(
r2z + z3);

F4 = a4
(
8z4 − 24r2z2 + 3r4)+ b4

(
2z4 + r2z2 − r4);

F6 =
1
3

a6
(
16z6 − 120z4r2 + 90z2r4 − 5r6)+ (b68z6 − 16z4r2 − 21z2r4 + 3r6);

(13)

where a3, a4, a6, b3, b4 and b6 are arbitrary constants determined during fulfilment of
boundary conditions.

Substitution of (13) in (1) gives the expressions for stresses as shown below:

σz = −12a3 + 2(7− 5µ)b3 − 192a4z + 8(8− 7µ)b4z + 320a6
(
−2z3 + 3r2z

)
+

b6
(
64(7− 11µ)z3 − 96(18− 11µ)r2z

)
;

τrz = 96a4r− 4(8− 7µ)b4z + 240a6
(
4rz2 − r3)+

b6
(
−96(7− 11µ)rz2+24(18− 11µ)r3).

(14)

Fulfilment of boundary conditions of type (5) at the ends at z = ±c allows us to
determine the arbitrary constants a3, a4, a6 and b6:

a3 =
4(7− 5µ)b3 + p

24
; a4 =

32(8− 7µ)hb4 − 3p
768c

;

a6 =
18− 11µ

40·704h3 p; b6 =
p

4·704h3

(15)

After substitution of (15) in (13) we obtain Love’s function as

F =
20(2− µ)b3 + p

12
z3 − 20(1− µ)b3 + p

8
zr2 +

224(2− µ)hb4 − 3p
96h

z4 +
224(1− µ)hb4 − 3p

32h
z2r2−

224µhb4 + 3p
96h

r4 +
p

256h3

(
8(3− µ)

15
z6 − 4(2− µ)z4r2 + 3(1− µ)z2r4 +

µ

6
r6
) (16)

The corresponding functions (1) for the components of stress–strain behaviour of the
translucent element are written as follows:
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2Gu =
p
4

r + 5(1− µ)b3r +
(

28(1− µ)b4 −
3p
8h

)
zr +

p
32h3

(
4(2− µ)z3r− 3(1− µ)zr3);

2Gw = b0 − 10b3µz− p
2

z +
3p
8h

z2 − 14b4
(
2µz2 + (1− µ)r2)− 3p

16h
r2 +

p
128h3

(
−8(1 + µ)z4 + 24µz2r2 + 3(1− µ)r4);

σz = −
p
2
+

pz
4h

(
3− z2

h2

)
;

τrz =
3pr
8h

(
z2

h2 − 1
)

;

σr =
p
4
+ 5b3(1 + µ) + 28(1 + µ)b4z− 3p

8h
z +

pz
32h3

(
4(2 + µ)z2 − 3(3 + µ)r2);

σθ =
p
4
+ 5b3(1 + µ) + 28(1 + µ)b4z− 3p

8h
z +

pz
32h3

(
4(2 + µ)z2 − 3(1 + 3µ)r2).

(17)

Expressions (17) show that the coefficient b3 determines the uniform radial compres-
sion, while b4 is a pure axisymmetric bending of the round plate. Coefficient b0 corresponds
to the movement of the translucent element as a solid object in the porthole body along the
central axis z.

It is not possible to accurately implement the force (11) and kinematic (12) boundary
conditions. Therefore, we define arbitrary constants b0, b3 and b4 by minimisation of the
standard deviations of these conditions along the generating conical supporting surface.
The generatrix equation in the accepted coordinate system (see Figure 1) is given by:

r = R0 − zβ. (18)

Considering the mixed (force and kinematic) boundary conditions (11) and (12), we
can conveniently proceed to dimensionless expressions for displacements and stresses (17).
To achieve this we introduce new dimensionless variables ζ and ρ:

ζ =
z
h

; ρ =
r

R0
; (19)

and adopt the notation
R0

h
= γ. (20)

Considering (19) and (20), the generatrix equation (18) is written as

ρ = 1− βζ

γ
. (21)

Substituting (18) into (17) and proceeding to dimensionless coordinates according to
(19)−(21), we obtain the expressions for dimensionless displacements u,w and stresses σz,
σr, σθ and τrz on the conical supporting surface at µ = 1/3 as below:

u =
2Gu
ph

=
1
4
(γ− βζ) +

10
3
(γ− βζ)b3 + 56(γ− βζ)ζb4 −

3
8
(γ− βζ)ζ +

5(γ− βζ)ζ3

24
− ζ(γ− βζ)3

16
;

w =
2Gw

ph
= b0 −

10
3

b3ζ − 1
2

ζ − 28
3

b4ζ2 +
3
8

ζ2 − 28
3
(γ− βζ)2b4 −

3
16

(γ− βζ)2 − 1
12

ζ4 +
1

16
(γ− βζ)2ζ2 +

1
64

(γ− βζ)4;

σz =
σz

p
= −1

2
+

3
4

ζ − 1
4

ζ2;

τrz =
τrz

p
=

3
8
(γ− βζ)

(
ζ2 − 1

)
;

σr =
σr

p
=

1
4
+

20
3

b3 +
112

3
b4 −

3
8

ζ +
7
24

ζ3 − 5
16

(γ− βζ)2ζ;

σθ =
σr

p
=

1
4
+

20
3

b3 +
112
3

b4ζ − 3
8

ζ +
7

24
ζ3 − 3

16
(γ− βζ)2ζ;

(22)

where b0 = b0
pc ; b3 = b3

p ; b4 = hb4
p .

Arbitrary constant b3 is determined from the condition of static equilibrium of the
translucent element along the axis oz. The main vector of hydrostatic-pressure forces, P,
acting on the translucent element, is balanced by the axial components Pvz of the conical
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supporting-surface reactions, which in turn are correlated by relationship (8) with the reac-
tions of radial compression Pvr. Considering the equilibrium of one half of the translucent
element and establishing the dependence of the normal stresses σr(p), being average on
diametric cross section, and considering (22), we obtain

b3 = − 3
80

(
(γ + β)2

λ

)
1− f β

β + f
+ 1. (23)

The remaining arbitrary constants a0 and b4 are determined from the condition of
continuous sliding of the translucent element on the conical supporting surface (12), and
are written as: ∫ 1

−1
(u + βw)2∂ζ → min. (24)

We determine the coefficients b0, b3 and b4 from the condition of satisfaction of the
boundary conditions of sliding with friction on the conical supporting surface at the
minimum dispersion D. With the use of the least-squares method in the integral form, the
equation will be as follows:

D =
∫ 1

−1

(
(u− βw)2 +

(
σr + βτrz −

1− f β

f + β
(τrz + βσz)

)2
)

∂ζ → min. (25)

Thus, the unknown coefficients are determined from the system of equations:

∂D
∂b0

= 0;
∂D
∂b3

= 0;
∂D
∂b4

= 0. (26)

4. Numerical Implementation

In view of the axial symmetry of the translucent-element shape and external load, a
narrow sector was used as a computational model (Figure 4a). It allowed us to reduce
the number of finite elements in the computational model of the translucent element,
i.e., to reduce the time and to increase the accuracy of calculations with the same size of
the finite-element grid as in the model as a whole. Since the error of the finite-element
method in determination of components of the stress–strain behaviour of structures is of
order 1/n2 [40,41] (n–order of division into elements on one coordinate), with a full-size
translucent-element thickness of 48 mm, the grid size was taken equal to 5 mm. For the
conical supporting surface, a half-sized grid was used; it allowed us to more accurately
model the translucent element’s interaction with the metal (titanium) body of the porthole.
For the finite element of the porthole body, the size of grid in the central zone was taken
equal to 10 mm; on the supporting surface, where a sharp change in stress could be expected,
a 5 mm grid was used. The size of the grid was chosen according to dimensions of the
real porthole. The study of the convergence of the numerical solution showed that with
this number of finite elements in the models, the normal and shear stresses varied slightly
(by 5% at most). Analysis of the quality of the constructed finite-element models did not
reveal any critical errors. The problem of determination of the stress–strain behaviour of
the porthole was solved in the linear setting.

As a result, we obtained the following breakdown of the porthole structure into finite
elements (Figure 4b).

Boundary conditions (5), (11) and (12) remained the same, but since a model of the
narrow sector of the translucent element was used for the calculations by the finite-element
method, boundary conditions of the Frictionless Support type were set on free-symmetry
planes. This condition allowed us to fix the computational model on the radial sections
formed by separation of a sector from the full-sized translucent element without friction
(i.e., at f = 0) and with no normal displacements of these surfaces. The Frictionless Support
condition is used on the conical supporting surface as well, at the coefficients of friction
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of PMMA on steel f = 0.2 and in absence of normal displacements of the surface. The
distributed load of 10 MPa is applied to the outer-end surface; the surface of low pressure
(inner-end surface) is free from external loads.
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Initial data for the calculations were also elastic constants of PMMA: Normal modulus
of elasticity E = 3000 MPa and Poisson’s ratio µ = 0.33.

The results of calculations of the stress–strain behaviour of the translucent element
were plotted on spectral diagrams of strains and stresses (Figure 5), where each colour
corresponds to a certain numerical value of the displayed indicator.
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5. Experimental Research and Discussion of Results

The tests were performed on the portholes with a working immersion depth of 500 m
(relative thickness h/(D = 0.41), tapering angle α = 90◦) with the use of a specialised experi-
mental complex for the hydrostatic loading of porthole translucent elements (Figure 6).
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pressure chamber, 4—electric-contact manometer, 5—electric displacement sensors.

The elements of the experimental complex for porthole testing are listed below: a
high-pressure chamber; a pumping station with hydrostatic pressure of up to 200 Mpa; a
control unit; a stabilised electric power module; electric displacement sensors based on
slide rheostats SPZ-37A; mechanical indicators of displacement of dial gauge type ICh-10;
an electric-contact manometer EKM-2U; a strain amplifier “Topaz-3-01”; digital voltmeters
SCH-300. The principle of operation of the experimental complex is described below. The
translucent element was installed in the standard position in the lid of the high-pressure
chamber. With the use of the pumping station, the working fluid (oil, water) was supplied
into the high-pressure chamber and translucent elements were loaded. Pressure in the
chamber was recorded by the electric-contact manometer connected to the control unit of
the experimental complex.

The control unit allowed the mode of loading of translucent elements set by the
operator (constant, long-term or cyclic impact of the hydrostatic pressure) to be maintained.
Stress–strain behaviour of the translucent element during the test was monitored using
strain gages and electric displacement sensors. A strain amplifier and digital voltmeters
were used to record the results of experiments. For the automation of the process of tests
and calculation of components of the stress–strain behaviour, we used the facilities of
CAMAC (Computer-Automated Measurement and Control) of the standard interface. The
rate of pressure rise in the working chamber was 0.6 MPa/s. During the tests, the values of
pressure P (MPa) in the working chamber and the axial displacements of the translucent
element w (mm) in the centre of the unloaded side were monitored.

Specimens of translucent elements were made of SO-120 PMMA plates of 50 mm
thickness by turning and subsequent polishing of optical surfaces. The appearance of the
translucent element is shown in Figure 7.
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The obtained experimental dependence of axial displacements w of the translucent
element under short-term hydrostatic pressure P loading is shown in Figure 8.
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Under hydrostatic loading, compressive stresses mainly occur on the surface of high
pressure in the translucent element with the above geometric characteristics (Figure 8). As
shown by the sharp increase in axial displacements in Figure 8, a pressure of 110 MPa can
be taken as the maximum load. Dependence w(P) is linear to the level of approximately
60 MPa, which corresponds to the translucent-element axial displacement of 2.7 mm.

Table 1 shows the deflection of the translucent element under pressure of 10 MPa.

Table 1. Deflection of the translucent element under pressure of 10 MPa.

Method of
Determination Experiment Finite-Element

Method Analytic

computation 0.455 0.455 0.463

According to data of calculations using the analytical approach and finite-element
method, the axial displacements of the translucent element in the centre of the low-pressure
surface are equal to 0.463 and 0.455 mm, respectively. Full-scale tests show the value
of deflection of the translucent element of 0.455 mm, which indicates a good agreement
between the computational models and full-scale tests.

The values of movements of the translucent element at all points at the boundary of
contact with the porthole body are approximately the same, i.e., the translucent element
really slides along the conical supporting surface as a solid object. This phenomenon
was also observed during full-scale tests of the porthole. These results confirmed the
conclusions of [12,25,31].

Analysis of the stress–strain behaviour shows that the central zone of the translucent
element (with the radius up to Rmin) is in a condition close to the deflection of the round,
rigidly fixed plate. In the peripheral zone (with the radius of more than Rmin) total dis-
placements are almost homogeneous, and the stress–strain behaviour is determined by
the action of external pressure, support reactions and bending of the translucent element
as a plate. The most dangerous point of the translucent element (Figure 9) is the edge of
the low-pressure surface, where the equivalent stresses according to the Huber–von Mises
strain-energy theory reach 32.5 MPa. According to the diagrams in Figure 6, the compres-
sion stresses are prevalent here, and they do not represent a dangerous type of stress–strain
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behaviour for PMMA with an ultimate tensile strength of up to 120–130 MPa [42]. After
hydrostatic loading, we also observed plastic wrinkling of the material with the formation
of “silver” cracks in the area of the edge of the low-pressure surface (Figure 9) of full-sized
translucent elements.
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Figure 10 shows the results of calculations of the stress–strain behaviour of the translu-
cent element at the values of the tapering angle varying from 60◦ to 150◦, thickness from
40 to 70 mm and constant diameter of the low-pressure surface (115 mm). Results of
calculations are presented by spatial graphs of dependences of value of the maximum
equivalent stress σe (Figure 10a), axial stresses σz (Figure 10b) at the dangerous point and
displacements w in the centre of the low-pressure surface (Figure 10c) on the geometric
parameters α and H.
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Figure 10. Results of calculations of stress–strain behaviour of the translucent element at the values
of tapering angle varying from 60◦ to 150◦, thickness from 40 to 70 mm, and constant diameter of the
low-pressure surface (115 mm). (a) maximum equivalent stress; (b) axial stresses; (c) low-pressure
surface.

Analysis of the influence of porthole geometric characteristics on the stress–strain
behaviour showed that increase in the tapering angle at the constant relative thickness
of the translucent element reduced its axial displacement in all cases. Equivalent stresses
acquire minimum values when the tapering angle is in the range of 75–105◦ (when the
relative thickness increases, the optimal tapering angle becomes smaller). These results
confirmed the conclusions of [27,31], obtained with the use of a series of finite-element
calculations.

Thus, the results indicate the adequacy of the proposed computational models and
feasibility of their use to determine the stress–strain behaviour of translucent elements with
the other values of geometric parameters.
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6. Conclusions and Further Research

The paper deals with development of the new applied (engineering) method for
determining the stress–strain behaviour of the conical translucent elements of portholes
made of PMMA under the action of uniform hydrostatic pressure.

Finite-element modelling of the translucent element of the conical porthole was per-
formed, with the calculation of its stress–strain behaviour.

Full-scale tests of translucent elements of portholes made of PMMA were performed
under the action of uniform hydrostatic pressure.

It was shown that the developed method for determination of the stress–strain be-
haviour of the conical translucent elements of portholes made of PMMA reflects, in general,
the real picture of deformation and agrees with the results of full-scale tests.

Results of the work allow us to choose the rational parameters of the translucent ele-
ment for increasing the reliability of portholes through creation of an effective distribution
of stresses and strains in the translucent element, and improving its optical characteristics
due to the relatively small deflection in operation.
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