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Abstract: This paper presents the formulation, characterization, and in vitro studies of polymer com-
posite material impregnated with naturally derived hydroxyapatite (HA) particulates for biomedical
implant applications. Laevistrombus canarium (LC) seashells (SS) were collected, washed and cleaned,
sun-dried for 24 h, and ground into powder particulates. The SS particulates of different weight
percentages (0, 10, 20, 30, 40, 50 wt%)-loaded high-density polyethylene (HDPE) composites were
fabricated by compression molding for comparative in vitro assessment. A temperature-controlled
compression molding technique was used with the operating pressure of 2 to 3 bars for particu-
late retention in the HDPE matrix during molding. The HDPE/LC composite was fabricated and
characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),
energy-dispersive X-ray (EDX), differential scanning calorimetry (DSC), and TGA. Mechanical prop-
erties such as tensile, compression, flexural, hardness, and also surface roughness were tested as per
ASTM standards. Mass degradation and thermal stability of the HDPE/LC composite were evaluated
at different temperatures ranging from 10 to 700 ◦C using thermogravimetric analysis (TGA). The
maximum tensile strength was found to be 27 ± 0.5 MPa for 30 wt% HDPE/LC composite. The
thermal energy absorbed during endothermic processes was recorded as 71.24 J/g and the peak
melting temperature (Tm) was found to be 128.4 ◦C for the same 30 wt% of HDPE/LC composite
specimen. Excellent cell viability was observed during the in vitro biocompatibility study for EtO-
sterilized 30 wt% of HDPE/LC composite specimen, except for a report of mild cytotoxicity in the
case of higher concentration (50 µL) of the MG-63 cell line. The results demonstrate the potential of
the fabricated composite as a suitable biomaterial for medical implant applications.

Keywords: seashell particulates; Laevistrombus canarium; DSC; TGA; FESEM; cytotoxicity

1. Introduction

Particulate-filled composites are used in many fast-growing industries such as automo-
biles, aircraft, marine, and biomedical applications due to their low density, higher specific
strength, low wear rate, good corrosion resistance, biocompatibility, and biodegradability.
Due to good mechanical properties, high specific strength, non-abrasive and eco-friendly
properties, and cost effectiveness, they are utilized as a substitute for conventional fiber
for reinforcement in composites. In recent reported studies, HAP has been widely used
as a bone graft material considered for medical application due to their similar chemical
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composition of bone. Synthesis of HAP through a wet chemical method from waste snail
shells was reported by Santosh et al. The morphology of HAP revealed the rod-shaped
structure and crystallite size was about 101 nm. The XRD analysis revealed the peaks
corresponding to pure HAP at the prominent planes (002), (211), (112), (202), (222), (213),
and (304) [1]. The development of HAP was reported by Gergely et al. from naturally
abundant eggshells. The eggshells were calcinated at 900 ◦C and milled for 5 h at 4000 rpm
through ball milling. The functional groups were identified through the Fourier Transform
Infrared (FTIR) spectrum such as carbonate, OH, and PO4 [2]. Kupiec et al. reported
the development of HAP from porcine bones by the hydrolysis method via lactic acid,
pre-calcination (600 ◦C), and main calcination (750–950 ◦C). The FTIR spectrum revealed
the presence of PO4

3−, OH, and CO3
2− groups in HAP derived from porcine bone [3].

HAP was also reportedly prepared by Oscar et al. from red tilapia (Oreochromis sp.)
scales via calcination (973 ◦C) and acid-base treatment. The FTIR spectrum revealed the
presence of OH, NH, CH, CO3

2−, PO, PO4
3−, and PO4

2– groups [4]. Anjaneyulu et al.
reportedly synthesized nano HAP from the snail shell via the sol-gel method. The in vitro
examinations of NIH-3T3 fibroblast cells that interacted with the HAP revealed a good cell
interaction, cell attachment, growth of cells, and non-toxicity. The in vitro studies proved
that HAP from snail shells possesses good biocompatibility (cell viability more than 90%)
with no cytotoxicity [5]. Development of HAP from fish-bone (Japanese sea bream) has
been reported by Ozawa et al. through heat treatment, ≤1300 ◦C, maintaining a porous
structure, with sintered wall and a major crystalline phase. This derived HAP would be
useful as inexpensive biocompatible material [6]. The development of high-purity nHAP
from the eggshell was also reported by Wu et al. The shells were cleaned and crushed into
powder. Then, autoclave and hydrothermal transformations were carried out at 150 ◦C
for different reaction times. After the autoclave process, the powders were collected and
dried at 60 ◦C for 24 h [7]. The synthesis of monetite powders from Mediterranean mussel
(Mytilus galloprovincialis) shells is also been reportedly done by Macha et al. The powders
were dried in an oven at 100 ◦C for 24 h and then calcinated at 800 ◦C for 3 h [8].

The synthesis of HAP from bovine bones (shaft portion of the bovine femurs) via the
calcination method is also reported. Bovine-bone derived HAP produced with the calci-
nation method could be an economic biomaterial when compared to other commercially
accessible biomaterials [9]. The development of HAP from chicken eggshell (Gallus domesti-
cus) via a hydrothermal process was reported by Oladele et al. Chicken eggshell derived
HAP-filled HDPE with different percentages (10%, 20%, 30%, and 40%) were fabricated
through the compression molding process. The composite with 40 wt% HAP-filled HDPE
exhibited the highest flexural strength and yield strength [10]. Dhanaraj et al. reportedly
extracted HAP from seashells (SS, Anadara granosa). The HAP powder was heated in the
furnace and maintained at 900 ◦C for 3 h then the powder was naturally cooled. The HAP
powder against pathogen bacterial strains Escherichia coli and Bacillus cereus showed excel-
lent antibacterial activity. Hence, HAP could be more efficient and biologically important
in the field of medical applications; e.g., dentine, etc. [11].

The growth of MG 63 osteoblast cells of the nHAP extracted via the enzymatic hy-
drolysis process from an FS tilapia (Oreochromis sp.) was also investigated by Huang et al.
Incorporation of the FS tilapia nHAP in the matrix enhanced the mechanical properties.
nHAP particles also enhanced the osteogenic differentiation and mineralization of MG-63
cells, which was confirmed by alkaline phosphate assay and Von Kossa staining. HAP was
used as a biomaterial for artificial bone fabrication [12]. The extraction of HAP from tilapia
scales via acid-base treatment and calcination was reportedly done by Swetha et al. The
inclusion of HAP into the biopolymer matrix improves the mechanical properties. HAP
is the major inorganic component of natural bone and has been used as an orthopedic,
dental, and bone repair material, due to its excellent biocompatibility, osteoconductive,
non-toxic, non-inflammatory, and non-immunogenic properties [13]. HAP and tricalcium
phosphate (TCP) are more widely used additives, because of their close matching to natural
bone units and higher mechanical properties. Nanoparticles (NPs) have increased the
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mechanical properties (stability, hardness, and wear-resistance) [14] and biological prop-
erties (cell proliferation, cell adhesion, and biocompatibility) of composites [15,16]. The
biocompatibility of HAP derived from the P. Jullieni scale was studied by Pon on et al. The
characterizations were revealed that the FSHAs have a large surface area, porous structure,
and higher roughness which lead to increased proliferation and cell adhesion. The SBF
analysis confirmed that the FSHA has a superior ability to form the apatite [17]. HAP
exhibits superior biocompatibility with various kinds of cells and tissues, making it an
ideal candidate for orthopedic, dental applications, and tissue engineering [18].

Many of the researchers extracted fillers from fishbone, oyster shells [19], eggshells [3,7],
snail shells, bovine bones [9], and crab shells [18] have been converted into useful biomate-
rials. Similarly, HDPE, UHMWPE, polytetrafluoroethylene, PMMA, PLA, and PEEK are
extensively used in biomedical applications, because of their excellent biocompatibility
with better moldability [20–22]. The biocompatible composite-based feedstock filament
(PLA-HAp-CS) was created using a twin-screw extruder for an open-source FDM 3D
printer. The study found that 190 ◦C barrel temperature, 140 r/min screw speed, and 12 kg
deadweight are the optimal input parameters for TSE. The optimal FDM parameters are
0.2 mm layer thickness, 30/45◦ deposition angle, and 100% infill density.

In situ hydroxyapatite (HAp) surface layer construction on composite ceramics
(-TCP/CaSiO3) was achieved using a simple and new approach employing ultrapure
water as the unique reagent for hydrothermal treatment. The surface layer is also enhanced
for improved cell adhesion, and reduced cytotoxicity. An in vivo study was revealed that
the manufactured biomimetic hierarchical structure scaffold would be an excellent option
for bone regeneration by increasing capillary creation, bone augmentation, and new bone
matrix synthesis [23].

A polyamide (PA) matrix was combined with surface-modified ZrO2 or Al2O3 ceramic
fillers to create the composite (CFs). The powders were used to make filaments for 3D
FDM printing [24–26]. A 3D printed PEEK composite comprising PEEK and CHAp has
several biomedical uses, and its biological macromolecular behavior contributes to health
sustainability because of its amazing strength and biological behavior scientific community
and the medical business would benefit greatly from this comprehensive paper on 3D
printing approaches for PEEK and CHAp.

The microstructure and thermal characteristics of ceramic powders formed in a ZrO2-
CeO2-Y2O3-Al2O3 system are affected by the chemical composition and volume of the
parent solvent. Regardless of the amount of the second oxide precursor, different mor-
phologies of the produced powders were detected based on how much CeO2 precursor
solution was used. As the volume of the precursor of CeO2 increases, the agglomerates
shrink in size.

PEEK was mixed with calcium hydroxyapatite (cHAp) and reduced graphene oxide
(rGO), and various lattice porous patterns were created to increase interface biocompati-
bility and imitate bone. The composite with the greatest rGO content of 5% has the best
biocompatibility and mechanical strength. The Young’s modulus and bulk modulus of
PEEK rise exponentially with the addition of rGO/cHAP from 3.85 Gpa to 54.965% with
5 wt% addition of rGO. While PEEK/rGO/cHAP composite had a greater cell aggregation
and biological activity than PEEK, in vivo testing demonstrated that the NAS-DMEM
composite had stronger cell growth and bioactivity [27]. HAP has been widely used
in bone-tissue engineering, void fillers for orthopedics, orthopedic, and dental implant
coating [28,29].

In this present research, the fillers were extracted from L. canarium (Laevistrombus ca-
narium) seashells (SS) that are similar to the chemical composition of bones, have biodegrad-
able properties, low density, and are plentiful in nature at a cheap cost. Seashells were
chosen as fillers for the research work because they are naturally occurring, abundant
in quality and free of cost. The matrix as an HDPE and fillers extracted from scale and
L. canarium seashells were used for carrying out the present research work. This attempt
to use a matrix with this combination is a novel approach and the necessary tests; i.e., the
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structural, mechanical characterization, thermal stability, and in vitro studies have been
carried out for the development of the composite material.

2. Materials and Methodology
2.1. Materials

The filler was made from L. canarium, a kind of white, golden-colored seashell debris,
and the SS particle density was 1.1 g/cm3. The HDPE employed in this study had a melting
point of 125 ◦C, a melt flow index (MFI) of 6.0 g/10 min at 190 ◦C, tensile strength of
16 MPa, and 2.16 kg, and density of 0.91 g/cm3. The HDPE was bought from Varsha Poly
Products (Coimbatore, Tamil Nadu, India).

2.2. Cell Line

In vitro investigations were performed using the human cell line MG-63, which was
received from the National Centre for Cell Science (NCCS) in Pune, India. Cells were
cultured in the institutional biotechnology laboratory using the MG-63 cell line.

2.3. Methodology

To develop a new composite, a systemic approach was carried out as presented in
Figure 1. The HDPE and incorporation of SS fillers with different weight percentages (0, 10,
20, 30, 40, and 50 wt.%) were used.
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Figure 1. The methodology adopted to synthesize and fabricate the high-density polyethy-
lene/seashells (HDPE/LC) dog bone-shaped composite. (a) Pure HDPE, 30 wt% of (b) SS particulate-
filled HDPE composite.

2.3.1. Preparation of Seashell (SS) Particulates

The SS was collected from the seashore in the local area of Tirunelveli, Tamil Nādu
(India). An amount of 1.5 kg irregularly sized SS was collected and washed with hot water
to remove dust, and flushed. Cleaned SS were preheated under the sun for 1 week and then
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ground separately for 5 h at a speed of 1200 rpm to obtain fine SS particulates for further
processing and analyses.

2.3.2. Fabrication of Molded Composite Specimen

The pure HDPE, different wt% (0, 10, 20, 30, 40, and 50) of dry SS particulate-filled
HDPE composites were fabricated through compression molding process by varying
quantities of matrices and fillers. The thickness, width, length, and weight of the composites
were fixed for all different wt% composites. The mass combination (in grams) of matrix
(HDPE) and SS fillers for each combination of different wt% (0, 10, 20, 30, 40, and 50) of
fillers in the molded composites are given in Table 1. The weight of each composite sample
was fixed at 75 gms.

Table 1. Composition of compression-molded composites (3.2 × 150 × 150 mm).

Sl. No Different wt% of Fillers
Dry Amount of Matrix and Filler (gm)

HDPE SS

1 10 67.5 7.5

2 20 60 15

3 30 52.5 22.5

4 40 45 30

5 50 37.5 37.5

Different weight percentages of dry SS particulates were mixed separately with HDPE
pellets and mixed manually for 5 min then kept under the compression molding machine
using appropriate die. The temperature and pressure were maintained at 130 ◦C and 45 bar,
respectively for the first 30 min, and temperature and pressure were increased to 150 ◦C
and 100 bar, respectively, for another 30 min. In sequence, the pressure was maintained
constant and the samples were allowed to attain room temperature. After reaching room
temperature, the flat molded composites were removed from the dies, and further studies
were carried out.

The molded flat plate composite was further prepared for a flat dog-bone-shaped
specimen for carrying out the tensile strength as per ASTM D638 standards as shown in
Figure 2a. The flexural strength specimen was prepared as per ASTM D790 as depicted in
Figure 2b. The compressive strength specimen was prepared as per ASTM D695 as depicted
in Figure 2c. The compression molding die size of 12.5 × 100 × 100 mm (thickness, width,
and length) was used and is shown in Figure 2d. The specimens for hardness test (length
30 mm, and width 10) were prepared using a plastic cutter.

2.4. Characterization Studies

A particle size analyzer (PSA), XRD, energy-dispersive X-ray (EDX) spectroscopy, and
field-emission scanning electron microscopy (FESEM) analyses of the particulates were out
carried (PSGiTech, Coimbatore, India) and the results were discussed. Fourier transform
infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning
calorimetry (DSC), FESEM, and EDX analyses were carried out (PSGiTech, Coimbatore,
India) for the 30 wt% SS particulate-filled HDPE composites and the results were discussed.
Mechanical characterization was carried out using a universal tensile tester (2 mm/min) and
found the tensile strength in compliance with the ASTM D638 (thickness 3 mm, and width
7 mm, span length 90 mm, and gauge length 40 mm,), compressive strength as per ASTM
D695 (diameter 12.5 mm, length 25 mm), and flexural strength (thickness 3 mm, width
13 mm, and span length 80 mm) as per ASTM D790 standards. The same compositions
of six HB/HDPE composite specimens were tested and the average values were reported.
The Shore D hardness testing was also performed under ambient conditions on a Shore
‘D’ machine.
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2.5. Biocompatibility Studies (Evaluation of Cytotoxicity and Cell Viability of
HDPE/LC Composites)

Tests were conducted to determine the in vitro cytotoxicity of EtO-sterilized 30% of
SS particulate-filled HDPE specimens using MG-63 cells. They were then allowed to
interact with the MG 63 cell line in five different concentrations (10, 20, 30, 40, and 50 µL).
Measurements were taken to determine the cytotoxicity and cell viability percentages.
Incubating in 1× phosphate buffer saline at 37 ◦C for 24 h was followed by EtO sterilization
of the SS particulate-filled HDPE specimens, and the replacement of MG-63 cells was
undertaken using new media. At five different volumes in three sets, the SS particulate-
filled HDPE liquid extract was applied to the cells. Following an 18 h incubation period at
37 ◦C, an MTT assay (1 mg/mL) was applied and the specimens were further incubated
for 4 h. A small amount of an organic sulfur compound, dimethyl sulfoxide (DMSO), was
introduced to the well plates, and readings of cytotoxicity were obtained at 570 nm on
the photometer. The cell vitality and cytotoxicity were determined using the following
Equations (1) and (2), respectively.

Cell vitality =

{
treated
control

}
× 100 (1)

Cytotoxicity =

{
control − treated

control

}
× 100 (2)

3. Result and Discussions
3.1. FTIR Spectra of SS Particulates and SS Particulate-Filled HDPE Composite

The FTIR spectra of a seashell particulate are shown in Figure 3. The presence of the
OH group is confirmed by the peak around 3838, 3744, 3678, 3612, and 3358 cm−1. The
peak at 2356 cm−1 demonstrates the presence of C–C, which is predominantly found in
HDPE at 1784 and 1683 cm−1, in the band; 89 cm−1 demonstrates the presence of C=O
stretching vibration.
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Additionally, the bands at 1474 and 1080 cm−1 show the existence of vibrations of
groups C–C and C–O, while 858 and 709 cm−1 indicate the presence of various groups
of C–H in SS particles. The FTIR spectrum of an SS particulate-filled HDPE composite is
shown in Figure 2. In this spectrum, the typical band of about 4250 cm−1 was observed,
which indicates the existence of the OH group. The presence of C–H can be seen in the
bands about 2880 and 2710 cm−1, which is noticeable in HDPE. Further evidence for C–C
stretching vibration is provided by the development of a band at 2240 cm−1. For HDPE, the
bands at 1730 cm−1 reveal C=O vibrations, while those at 1610 cm−1 show N–H vibrations
and those at 1540 cm−1 show N–O vibrations.

3.2. XRD of SS Particulates and 30 wt% SS Particulate-Filled HDPE Composite

The XRD pattern of SS particulates is shown in Figure 4. A comparison was made
between the diffraction peaks and the usual XRD brag peaks obtained from hydroxyapatite
(ICDD 9-432). The 2θ value for the seashell particulates was found to be 25.55, 31.15, 37.06,
41.40, 46.28, 50.13, and 53.20 corresponding to plan (002), (211), (202), (310), (222), (213),
(321) and (004) which was in good agreement with the reference.

Figure 4 shows the XRD peaks of an HDPE/LC composite containing 30 wt.% SS
particles that were filled with an SS powder. Compared to conventional JCPDS data, the
diffraction peaks are in excellent agreement. The fact that the peaks were sharp and narrow
indicated that the crystallinity was high. The 2θ value for the SS particulate-filled HDPE
composite was found as 26.12, 31.02, 33.27, 39.23, 46.13, 48.88, 50.13 and 53.03 corresponding
to plans (002), (211), (300), (310), (222), (213), (321) and (004). The average grain size of
the SS particulates was estimated using Debye Scherer’s relation (3) over the most intense
(002) peak:

D =
0.9 λ

β cos θ
(3)
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where, D represents average grain size, β stands for full width at half maximum of the peak,
λ is the diffraction wavelength (0.154059 nm) and θ is the diffraction [26]. The average
crystallite size of the SS particulates from seashells was found to be 5.17 nm. Also, the
average particle size was measured to be 2.53 ± 0.19 µm using a particle size analyzer.
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Figure 4. X-ray diffraction (XRD) patterns of SS particulates and 30 wt% SS particulate-filled
HDPE composite.

3.3. FESEM Surface Morphology of SS Particulates and SS Particulate-Filled HDPE

The morphology of SS particulates was examined using FESEM. The FESEM image
of the SS particulates exhibited that the powder was having shorter and long elongated
fibers in one direction and also a spherical shape, as shown in Figure 5. Also, the powder
particulates have smooth and larger surface areas. The morphology of SS particulates
packed in HDPE patterns demonstrates that the SS particles were evenly distributed
throughout the matrix. The matrix phase is represented by grey dark background color,
whereas the SS particles are represented by a silver metallic sparkling background color.
The FESEM picture reveals that the particulate-blended HDPE composites agglomerated
in a few areas in the specimen matrices. It is possible to manage the crater pattern by
modifying the melting temperature and the right blending proportions. It was also possible
to observe the orientation and plastic flow of the matrix (HDPE) and the particles.

The various elements present in the SS particulates were recognized using EDX analy-
sis. The wt% of Ca, O, and C, were 25.07, 56.42, and 18.5 respectively. The different elements
present in the SS particulate-filled HDPE composite specimens were also identified. The
wt.% of C, O, and Ca were found to be 86.99, 11.27, and 1.74, respectively.
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3.4. DSC Analysis of SS Particulate-Filled HDPE Composite

Figure 6 depicts the behavior of a 30 weight % SS (30 g) particle-filled high-density
polyethylene (100 g) composite as a function of rising temperature. We identified 138.7 ◦C
as the melting point, while 128.4 ◦C was found to be the melting start temperature. In
the course of this endothermic reaction, it was observed that the composite had absorbed
71.24 J/g of energy. The HDPE/LC composite with 30% SS particle filling absorbs heat,
which is represented by a negative peak on the graph. In this case, the polymer composite
has changed from a hard, glassy solid to a softer, more elastic structure. The polymer
structure can achieve sufficient flexibility by rearranging amorphous composites into
crystalline forms with lower energy requirements. Last but not least, when the heat was
gradually increased, the HDPE and SS powder mixture was melted to achieve the highest
point of incorporation and distribution and the rapid increase in the temperature will yield
an entirely amorphous polymer.

3.5. TGA Analysis of SS Particulate-Filled HDPE Composite

A thermogravimetric analysis (TGA) curve in Figure 7 depicts the decrease in weight
of a 30 weight % SS and SS particles-filled HDPE composite material as a function of
temperature rise. As the temperature was raised gradually from 29.83 to 404.83 ◦C, the
weight remains relatively consistent but started to decrease from 3.94 to 3.89 g. As the
temperature was further raised from 504.83 to 544.83 ◦C, a significant loss of matrix mass
occurred, from 2.17 to 2.14 mg, as increased temperature causes the components to oxidize,
and eventually degrade.
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4. Mechanical Characterization
4.1. Tensile Strength

The tensile strength of the HDPE/LC composite specimens with varying weight
percentages (0, 10, 20, 30, 40, and 50 wt%) were tested following the ASTM 638 stan-
dard [5,30,31]. The tensile strength of the composite was gradually increased by increasing
the SS particle concentrations from 0 wt% to 30 wt% over time. A progressive decrease
in the tensile strength was noticed after a rise in the SS-particle concentration of more
than 30 wt%, and recorded throughout the testing procedure. For the HDPE specimens
without the reinforcement of the SS-particulate filler, tensile strength was found to be
24.5 ± 0.5 MPa. The maximum tensile strength of the 30 wt% of SS particulate-filled HDPE
composite specimen was found to be 27. 5 ± 0.5 MPa. The tensile forces were increased
by varying the particulate contents from 0 wt% up to 30 wt%, gradually. The maximum
tensile force carried by the 30 wt% of SS particulate-filled HDPE specimen was found to
be 425 ± 0.5 N. The force was observed to be decreased gradually when the particulate
concentration was increased beyond 30 wt%. After reinforcing more than 30 wt% SS partic-
ulates in the HDPE matrix, the composite could not sustain more force due to the lack of
sufficient elongation properties to carry more force. It behaves like a brittle material after
adding over 30 wt% reinforcement and also spreading a greater number of particulates in
the matrix.

4.2. Compressive Strength

The compressive strength tests were carried out for the different weight percentages (0,
10, 20, 30, 40, and 50 wt%) of SS particulate-filled HDPE specimens as per the ASTM D695
standard. The compressive strength of SS particulate-filled HDPE composite was gradually
increased by increasing the natural particulates reinforcement. The results revealed that
the compressive strength was seen to improve from 62 MPa to 72 MPa for the 0 wt% to
50 wt% of SS particulate-filled HDPE composite, respectively. Moreover, the compressive
force was observed to be improved from 9752 N to 11165 N for the 0 wt% to 50 wt% of SS
particulate-filled composite. Another reason for this was that the amount of reinforcement
filler was nearly equivalent to the amount of matrix mass so that particulates were joined
together, which offers poor load transferring between matrix and reinforcement.

4.3. Shore D Hardness

The Shore D hardness tests were carried out for the different weight percentages (0,
10, 20, 30, 40, and 50 wt%) of SS particulate-filled HDPE composite following the ASTM
D2240 standard for each specimen. The Shore D hardness of the SS particulate-filled
HDPE composite was observed to increase by incorporating increased natural particulates
reinforcement. The D shore hardness value for specimens without SS particle reinforcement
was marked at 55, while maximum shore D hardness of 67. 5 was recorded for the 50 wt%
SS particulate-filled HDPE composite specimen. The indentation damage resistance of
composite specimen was increased by adding a greater percentage of reinforcement filler
in the HDPE.

4.4. Flexural Strength

The flexural test for different weight percentages (0, 10, 20, 30, 40, and 50 wt%) of SS
HDPE specimens was carried out as per ASTM D790 standards for each specimen. The
flexural strength was seen to increase for the composite specimens with SS fillers from
0 wt% to 30 wt% of reinforcement; however, beyond 30 wt% it was seen to decrease. The
flexural strength was identified as 19.6 MPa for specimens without fillers reinforcement.
On the other hand, the maximum flexural strength of the SS HDPE specimens was found
to be 32 ± 0.5 MPa at 30 wt%. However, HPDE-EG (eggshell) composite with 40 wt% HA
(from chicken eggshell: Gallus domesticus) via hydrothermal synthesis, exhibited the highest
flexural and yield strength [32].
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5. Biocompatibility Study
5.1. Evaluation of Cytotoxicity and Cell Viability of SS Particulate-Filled HDPE Composite

Figure 8a shows the results of the direct cytotoxicity test performed on the 30 wt%
SS HDPE for different volumes of the liquid extracts (10, 20, 30, 40, and 50 µL), which
determine the percentage of cell viability of this composite. The results of the study are
tabulated in Table 2. A comparison was made between the obtained findings with the
standard reference data of cytotoxicity reactivity [33,34]. The direct cytotoxicity test was
used to determine the amount of cytotoxicity (%) of 30% SS particle-filled HDPE composite
specimens with five different volumes of the extract (10, 20, 30, 40, and 50 µL) allowed
to contact with fresh culture media. A maximum % of cytotoxicity was found when a 50
µL liquid extract of the material interacted with new culture media, which also lies in a
mild reactivity level with 60% of cell viability. Table 2 compares the amount of cytotoxicity
(40%) with other levels of toxicity. The in vitro examinations of NIH-3T3 fibroblast cells
that interacted with the HA revealed a good cell interaction, cell attachment, growth of
cells, and non-toxicity. The in vitro studies proved that HA from snail shells has good
biocompatibility (cell viability more than 90%) with no cytotoxicity [35].
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Table 2. Cytotoxicity level of 30 wt% SS particulate-filled HDPE.

Sample Particulars
Cytotoxicity (%) Cell Viability

(%)
Cytotoxicity
ReactivityDescription The Volume of

the Extract (µL)

30 wt% SS
particulate-filled

HDPE

10 26 74 Mild

20 26 74 Mild

30 37 63 Mild

40 39 61 Mild

50 40 60 Mild

Only viable cells have functioning mitochondrial dehydrogenase enzymes, which are
required to convert MTT to formazan, and hence only viable cells were used in this study.
SS HDPE composites with cell contacts were used to construct the composites. Cells were
rinsed three times with PBS (pH 7.3) culture fluid before MTT (0.5 mg/mL) was added
to cells and incubated at 37 ◦C for 4 h [36]. The cytotoxicity was observed as 40 wt% SS
particulate-filled HDPE, which falls between grades 3 and 4 (21–50%). As the reactivity
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level was below a mild level, it is within an acceptable range for such situation. This result
was compared with 30 wt% HAP derived from a fish scale-HDPE composite sample, which
exhibited a 50–50 cell viability to cytotoxicity during the same test [36] and it is evident that
HA derived from seashell also demonstrated good biocompatibility with HDPE matrix-
based composites. A direct cytotoxicity test for the 30 wt% of SS particulate-filled HDPE
composite specimen for different volumes of the extract (10, 20, 30, 40, and 50 µL) was
performed and the results are shown in Figure 8b.

5.2. Cell Morphology

Figure 9a depicts the cell morphology of a fresh medium (control) 30 wt% SS-particles
filled HDPE composite. The morphology of varied quantities of liquid extract given
to fresh medium (10, 20, 30, 40, and 50 µL) is illustrated in Figure 9b–f. Cell viability
was measured for various amounts of extract applied and compared to a control group
(fresh medium) [37–43]. There were five different concentrations of liquid extract tested
in new cell culture media to observe how they affect the cell viability. Non-living cells
are represented as spherical bubbles, while live cells are shown by hairlines in the culture
liquid. Cell viability was 74% and mild cytotoxicity was observed, i.e., 26% in the culture
media containing 10 and 20 µL extract, respectively. Cell viability was 63% and mild
cytotoxicity was 37% in the culture medium containing 30 µL. Cell viability was 61% and
mild cytotoxicity was 39% in the culture medium with 40 µL. The cell viability was 60%
and the mild cytotoxicity was 40% in the 50 µL culture media. Cells were observed to have
numerous filopodia attaching onto the material surface after 24 h of interaction; 30 vol.%
HAP-HDPE composites are bioactive and support osteoblast attachment.
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Figure 9. Cell morphologies of MG63 cells at (a) control and (b–f) after interacting with liquid extracts
(10, 20, 30, 40 and 50 µL).

6. Conclusions

The HAP was extracted from Laevistrombus canarium (LC) seashells (SS) that have
similar chemical composition to bones. The SS particulate-filled HDPE composite was fab-
ricated and characterized. The average particle size was measured to be of 2.53 ± 0.19 µm
using a particle size analyzer. The XRD spectrum revealed the peaks of the crystal plane
corresponding to the (i) seashell, and (ii) 30 wt% of SS particulate-filled HDPE composite.
FTIR was used to identify the presence of both organic and inorganic polymers. The
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(i) SS particulate, (ii) 30 wt% of SS particulate-filled HDPE composite morphologies were
investigated and elementally analyzed by EDX using FESEM. In endothermic processes,
the absorbed thermal energy was found to be of 71.24 J/g and peak melt temperature (Tm)
of 128.4◦C was found for 30 wt% of SS particulate-filled HDPE composite specimens, using
a DSC instrument. A range of temperatures (from 10 to 700 ◦C) was used to test the thermal
stability and mass deterioration. The 30 wt% SS particulate-filled HDPE composite exhib-
ited the maximum tensile strength of 27 ± 0.5 MPa and thus further studies were carried
out on this sample group (30 wt%). Mild cytotoxicity was identified in case of 50 µL culture
medium, and excellent cell viability was observed through in vitro biocompatibility studies.
The results demonstrate that the fabricated composite could be a suitable biomaterial for
implant applications.
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authors have read and agreed to the published version of the manuscript.
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