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Abstract: The dried form of the brown seaweed Sargassum latifolium was tested for its ability to
remove toxic Methylene Blue Dye (MBD) ions from aqueous synthetic solutions and industrial
wastewater effluents. In a batch adsorption experiment, different initial concentrations of MBD (5,
10, 20, 30, and 40 mg L−1), sorbent dosages (0.025, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g L−1), contact
time (5, 10, 15, 30, 60, 120 min), pH (3, 5, 8, 10, and 12), and temperature (30, 40, 50, 60 ◦C) were
observed. Dried powder of S. latifolium was characterized before and after adsorption of MBD using
different techniques, such as FTIR, SEM, UV visible spectral examination, and BET techniques. The
BET surface area suggests the formation of S. latifolium was 111.65 m2 g−1, and the average pore
size was 2.19 nm. The obtained results showed that at an MBD concentration of 40 mg L−1, the
adsorption was rapid in the first 5, 10, and 15 min of contact time, and an equilibrium was reached in
about 60 and 120 min for the adsorption. At the optimum temperature of 30 ◦C and the adsorbent
dose of 0.1 g L−1, approximately 94.88% of MBD were removed. To find the best-fit isotherm
model, the error function equations are applied to the isotherm model findings. Both Tempkin and
Freundlich isotherm models could appropriate the equilibrium data, as well as the pseudo 2nd order
kinetics model due to high correlation coefficients (R2). Thermodynamic and Freundlich model
parameters were assessed and showed that the mechanism of the sorption process occurs by an
endothermic and physical process. According to the results of the experiments, S. latifolium is a
promising environmentally friendly approach for eliminating MBD from the aqueous solution that is
also cost-effective. This technology could be useful in addressing the rising demand for adsorbents
employed in environmental protection processes.

Keywords: Sargassum latifolium; methylene blue dye; adsorption; water pollution; equilibrium isotherm

1. Introduction

A pollutant is a substance that changes the environment’s nature through chemical,
biological, or physical mechanisms, resulting in contamination of water, soil, and/or air [1].
Several synthetic dyes are primary sources of high effluent pollutants produced as a result
of industrial pollution [2]. Textile effluents are considered one of the most environmentally
harmful pollutants due to their massive discharge volume and verity in composition, as
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well as the high volumes of poisonous dye that are lost through the dyeing operation [3].
Several industries, including paper, dyeing, pulp, textiles, paint, and industrial effluent,
have produced over 8000 dyes, both insoluble and soluble [1]. Because of their carcinogenic
and mutagenic properties, these poisonous dyes pose a threat to human health [4–6].
Furthermore, these toxic dyes have had devastating effects on aquatic ecosystems, as
well as a significant impact on the distributions and compositions of aquatic animals,
zooplanktonic, and phytoplanktonic organisms [7–11]. The dyes alter the characteristics of
water and prevent sunlight from penetrating, decreasing photosynthetic activity [2,12,13].
With the harmful effects of several toxic dyes on ecosystem components, it is necessary
to find appropriate and effective substances to eliminate these toxic dyes from industrial
waste. Despite there being various physical, chemical, and biological processes available
for the elimination of these toxic dyes, their efficiency still needs improvement [14–17].
Globally, the annual production of a large assortment of these toxic dyes is estimated at
1.6 million tons [18].

As a result, the developed techniques that are capable of eliminating dyes that have
not adhered to tissue fibers over the process procedures and are emitted along with the ef-
fluents of such industries are a constant concern [19–22]. The chemical stability of synthetic
textile dyes makes existing wastewater treatment technologies incapable of the treatment of
effluents that contain these contaminants [23]. Adsorption methods have high adequacy in
industrial wastewater treatment, owing to their significant capacity for eliminating organic
matter and low cost [24–27]. Methylene blue dye (MBD) is one of the most extensively used
industrial dyes, especially in the textile industry. C16H18N3SCl is the formula for MBD, a
heterocyclic chemical molecule [28]. MBD appears as a dark green powder at room tempera-
ture and as a blue hue in the water [29]. MBD was first produced in 1876 as an aniline-based
synthetic dye to stain cotton for the textile industry [30]. The maximum absorption of MBD
was at around 665 nm [18]. Flocculation [31], coagulation [32], photocatalysis chemical pre-
cipitation [33,34], chemical oxidation [35], and ion exchange [36] are some of the treatment
procedures used to remove organic pollutants from wastewater effluents.

Adsorbent refers to either adsorption or absorption and is currently one of the most
widely used adsorbents. The amalgamation of a material into another material of an unlike
condition is known as absorption (liquids are absorbed by gases or/and a solid is absorbed
via a liquid). However, the adsorption process is a physical attachment of molecules
and ions to another molecule’s surface. Sorption has several advantages, including effi-
ciency, simplicity of operation, regeneration of the adsorbents, and processing [37]. Other
advantages of the adsorption process, such as the potential for cost-effective adsorbent
regeneration and less sludge generation, making it one of the most important treatment
methods for water-intensive sectors like textiles and paints. The efficacy of the adsorp-
tion techniques for textile and dye wastewater treatment has been demonstrated through
extensive previous work [38–40].

Numerous microorganisms’ biomass, for example, fungi, yeast, microalgae, seaweed,
and bacteria, have been used as biological, sustainable, and low-cost efficient adsorption
materials for the absorption of hazardous dyes, according to the literature [41–46]. Among
all microorganisms, algal cells are the most promising, sustainable, and low-cost biomateri-
als for adsorptions [47]. In general, aquatic organisms are the richest sources of biologically
active compounds on the planet [48–50]. However, amongst all aquatic organisms, algal
cells are the richest sources of biomolecules, making algae a vital player in a variety of
bioindustries [51–56]. Depending on the algal strain, algal cells contain proteins (EAAs),
lipids (PUFA, AA, EPA, and DHA), and carbohydrates (polysaccharides, etc.) [57]. How-
ever, algal cells’ adsorption ability is linked to the cell wall’s heteropolysaccharide and
lipid molecules, which contain several functional groups, for example, phosphate, carboxyl,
amino, carbonyl, and hydroxyl groups [46].

Sargassum species are brown macroalgae (seaweed) found in shallow marine mead-
ows in the tropical and subtropical regions. These are a good source of vitamins, carotenoids,
dietary fibers, proteins, and minerals, as well as other bioactive components. Biologically
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active substances such as terpenoids, flavonoids, sterols, sulfated polysaccharides, polyphe-
nols, sargaquinoic acids, sargachromenol, and pheophytine have also been identified in
various Sargassum species. [58].

This work aimed to investigate the efficacy of the brown seaweed, Sargassum lati-
folium, as a suggested MBD removal substance. This dye is globally utilized in textile
effluents. Characterizations of materials and understanding of the mechanisms comprised
in the sorption process of dyes through the identification of functional groups were deter-
mined using different characterization techniques (SEM, FTIR, BET, and UV visible). The
parameters (pH, contact time, sorbent dose, temperature, and initial MBD concentration)
controlling the sorption process were examined. Moreover, equilibrium and kinetics studies
were conducted using adsorption experiments. The experimental data have been used
to adjust the Langmuir, Freundlich, Smith Halsey, Henderson, Tempkin, and Harkins–
Jura models.

2. Materials and Methods
2.1. Brown Seaweeds (Sargassum latifolium)

Brown seaweed, S. latifolium, samples were collected in May 2021 from the intertidal
zone of Suez Bay, Red Sea, Egypt. To remove salts and particle materials adhering to
the surface, samples were first washed with seawater, then transferred to the laboratory
and cleaned with tap water, followed by deionized water [59]. After sample cleaning,
S. latifolium was sun-dried, and the obtained biomass were powdered using a grinder, sieved
to gain a uniform particle size, and stored in plastic bags until further use. Approximately
one gram of the brown algae powder was soaked in 100 mL of deionized water and boiled
at 45 ◦C for 1 h to obtain the extract.

2.2. Methylene Blue Dye (MBD)

The solid form of the studied dye (MBD) was obtained from Sigma-Aldrich (Milano,
Italy). MBD (Figure 1) is a cationic dye with the chemical formula C16H18N3SCl, molar
mass of 319.85 g mol−1, and a maximum wavelength of 665 nm [60]. MBD has a positively
charged S atom and is highly water soluble at 293 ◦K. The stock solutions of MBD were
made via dissolving one gram of MBD in one liter of distilled water.
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2.3. Adsorption Experimentation

The seaweed, S. latifolium, was utilized as a low-cost adsorbent in this investigation
to remove MBD from a synthetic aqueous solution. In distilled water, dried powdered
S. latifolium was suspended and then exposed to a vortex (Dremel, 1100-01, São Paulo,
Brazil) at 10,000 rpm for 20 min [47]. Using batch ion exchange, the experiments were
carried out in flasks (100 mL of distilled water, three replicates of each treatment) in a
constant shaker (120 rpm) under different initial MBD concentrations (5, 10, 20, 30, and
40 mg L−1), adsorbent doses of S. latifolium (0.025, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g L−1),
different contact times (5, 10, 15, 30, 60, and 120 min), temperature (30, 40, 50, and 60 ◦C),
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and pH (3, 5, 8, 10, and 12). The adsorption capacity (qe) and MBD elimination percentage
were calculated using Equations (1) and (2), as follows [61]:

qe =
(Ci − Cf)× V

W
(1)

Percentage removal (%) =
(Ci − Cf)

Ci
× 100 (2)

where Ci and Cf (mg L−1): the early concentration at the primary contact time in addition
to, the final concentration of MBD at a definite time, respectively, the volume of the MBD
mixture (L) is represented by V, while the weight of the dry adsorbent is represented by
W (g).

2.4. Adsorption Isotherm Studies

The amount of MBD removed from aqueous solutions is highly dependent on the
initial MBD concentrations. To measure the isotherm study, various MBD concentrations (5
to 40 mg L−1) were examined at constant factors of 0.01 g of S. latifolium adsorbents, pH 6,
30 ◦C, and at 150 rpm, 120 min, and mixed with 50 mL of MBD solution [62]. The data were
fitted and calculated in terms of the isotherm models of Freundlich, Langmuir, Henderson,
Halsey, Harkins–Jura, Smith, and Tempkin.

2.4.1. The Freundlich Model

By plotting a curve of log qe with relation to log Ce, the efficiency of the Freundlich
model to describe the experimental data was used to produce a slope of n and an intercept
value of Kf. By plotting the Freundlich model in logarithmic form, it is easy to linearize [63]:

log qe = log Kf + 1/n log Ce (3)

Freundlich parameters Kf and n were calculated from the isotherm equation by
Equation (3).

2.4.2. The Langmuir Model

The model of Langmuir predicts uniform adsorption energies of a solute from a liquid
solution onto a surface with a finite number of equal sites as monolayer adsorption with no
adsorbate movement in the surface plane [64]. To estimate the highest adsorption capacity
similar to complete monolayer adsorption on the sorbent surface, the Langmuir isotherm
model was used. The mathematical expression represents the Langmuir model as the
following equation [65]:

qe = qmax bCe/(1 + bCe) (4)

where qmax (mg g−1) considers the highest sorption capacity in proportion to the saturation
capacity, and b (L mg−1) shows a coefficient relating to the affinity between S. latifolium and
dye ions. The values of qmax and b calculated from the intercept and slope, respectively, by
plotting curve (1/qe) vs. (1/Ce) yields the following linear relationship:

1/qe = 1/(bqmax Ce) + 1/qmax (5)

2.4.3. The Henderson and Halsey Isotherm Models

These models are suitable for heterosporous solids and the multilayer sorption tech-
nique [66,67]. These models were calculated using the following equations:

Ln qe =
1
n

Ln K +
1
n

Ln Ce (6)

where: n and K are Halsey constants. Meanwhile, the Henderson model was obtained from
the following equation:
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Ln[nLn(1nCe)] = LnK +

(
1
n

)
Lnqe (7)

while: the Henderson constants are nh and Kh.

2.4.4. The Harkins–Jura Model

This model explains multilayer sorption and the presence of heterogeneous pore
scattering in a sorbent [68]. This model was obtained from the following equation:

1
q2

e
=

(
B2

A

)
−

(
1
A

)
log Ce (8)

where: the isotherm constants are A and B.

2.4.5. The Smith Model

For heteroporous solids and multilayer adsorption, the Smith model is acceptable.
This model is usually obtained from the following equation:

qe = WbS − WS Ln (1 − Ce) (9)

where: the Smith model parameters are Wbs and Ws.

2.4.6. The Tempkin Model

The Tempkin isotherm model assumes that owing to adsorbate–adsorbent interactions,
a uniform distribution of binding energies up to greater binding energies characterizes the
sorption process, and the heat of adsorption of each particle in the layer decreases with
saturation [69,70]. The following equation was used to calculate the Tempkin model:

qe = B Ln A + B Ln Ce (10)

where: A is the equilibrium binding constant (L g−1), b (J mol−1) is a constant that corre-
sponds to the heat of sorption, and B = (RT/b) (J mol−1) is the Tempkin constant, which is
connected to the heat of adsorption and the gas constant (R = 8.314 J mol−1 K−1).

2.5. Error Functions Tests

Various error functions were examined to find the best and most fitting model for
analyzing the equilibrium data. The following models were used for the error function
test [40,71].

2.5.1. Fractional Error Hybrid (HYBRID)

Because it adjusts for small concentrations by balancing absolute deviation versus
fractional error and is more dependable than other error functions, the hybrid fractional
error function is used. The following equation represents the hybrid error (11).

HYBRID =
100

N − P ∑
∣∣∣∣∣qe,exp − qe,calc

qe,exp

∣∣∣∣∣
i

(11)

where: the qe,exp and qe,calc denote the experimental and the calculated data (mg g−1), in
addition to N is the number of parameters of the isotherm equation, and P the number of
data points.
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2.5.2. Average Percentage Error (APE)

The ABE model shows a tendency or appropriateness among the predicted and
experimental values of the sorption capacity used for plotting model curves (APE) and can
be designed consistent with the following equation:

APE(%) =
100
N

N

∑
i=1

∣∣∣∣∣qe,isotherm − qe,calc

qe,isotherm

∣∣∣∣∣
i

(12)

The number of data points under investigation is denoted by the letter N.

2.5.3. Nonlinear Chi-Square Analysis (χ2)

The nonlinear chi-square experiment is a statistical factor for evaluating which treat-
ment system is best. The approach of the chi-square error, χ2, and model is assumed as the
following equation:

χ2 =

(
qe,isotherm − qe,calc

)2

qe,isotherm
(13)

2.5.4. Sum Squares of the Errors (ERRSQ)

The following Equation (14) gives the sum of the squares of the errors (ERRSQ) [72].

ERRSQ =
P

∑
i=1

(
qe,calc − qe,isotherm

)2

i
(14)

2.5.5. Sum of Absolute Errors (EABS)

An increase in errors increases the fit, resulting in a bias toward high concentration
data. EABS examinations can be evaluated [73] using the following equation:

EABS =
P

∑
i=1

∣∣∣qe,calc − qe,isotherm

∣∣∣ (15)

where P is the number of data points.

2.6. Adsorption Kinetics Studies
2.6.1. Pseudo-First-Order (PFO)

The model equation of the generalized pseudo-first-order equation is given by the
following equation [74].

Dq/dt = K1 (qe − qt) (16)

where qe represents the quantity of dye adsorbed at equilibrium (mg g−1), qt represents
the number of dyes adsorbed at time t (mg g−1), and K1 represents a pseudo-first-order
rate constant (min−1). The integrating equation was assessed [75] as follows:

Log (qe/qe − qt) = k1t/2.303 (17)

In a linear equation, the PFO equation is given by the formula:

Log (qe − qt) = log qe − k1t/2.303 (18)

Log(qe − qt) against (t) plots should show a linear relationship between k1 and qe, as
measured by the slope and intercept, respectively.
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2.6.2. Pseudo-Second-Order (PSO)

The PSO equation is expressed as follows [76].

dqt/dt = K2(qe − qt)2 (19)

where: K2 indicates the constant of the second-order rate (g mg−1 min). The integrated
equation is presented as follows:

1/(qe − qt) = 1/qe + K2 (20)

Following Ho et al. [76] and the following linear form of the pseudo-second-order
equation:

t/qt = 1/K2 qe
2 + t/qe (21)

Plotting (t/qt) versus (t) would yield a linear relationship, and the values of (t/qt)
would be the values of the qe from the slope and intercept can be used to calculate the K2
parameters, respectively.

2.6.3. The Intraparticle Diffusion Model

The following is the intraparticle diffusion equation [14]:

qt = Kdif t1/2 + C (22)

where C denotes the intercept, and Kdif (mg g−1 min0.5) is the intraparticle diffusion rate
constant, which is calculated using the regression lines of the slope.

2.7. Characterization of Adsorbents

The morphological characterization (before and after the experiment) of the adsorbent
brown seaweed, S. latifolium, was performed via Scanning Electron Microscope, SEM (JEOL
JSM 6360, Peabody, MA, USA), followed by Fourier transform infrared (Shimadzu FTIR-
8400 S, Kyoto, Japan). A UV–vis spectrophotometer (UV-2550, Shimadzu, OSLO, Kyoto,
Japan) was used to evaluate the absorption spectrum of S. latifolium marine algae extract in
the range of 200–800 nm, with deionized water as a blank.

3. Results and Discussion
3.1. Characterizations
3.1.1. Functional Groups

The infrared spectrum of biomass in nature is shown in Figure 2. The stretching of
the extension vibrations of the –NH and O–H groups was attributed to the inter- and
intermolecular hydrogen bonding of polymeric compounds such as phenols or alcohols,
which resulted in large and intense peaks at 3112 and 3729 cm−1 [77]. Similarly, the band
at 2925 cm−1 corresponds to methylene’s symmetric and asymmetric stretch (H-C-H),
whereas the peaks at 1649 cm−1 are C=C stretches, which could be owing to the presence
of aromatic, olefinic, or N-H bending bands.

Only dye saturated biomass showed a peak, as the 1547 cm−1 band, indicating the
presence of C=N and C=C stretch and the typical absorptions. Stretching of the sp3 C-H
bond is responsible for the band at 1419 cm−1. The C-O stretching of acyl or phenol is
related to the sharp peak at 1251 cm−1. The absorption band of the –OH and –NH groups
at 3733 cm−1 changed to 3436 cm−1 after interaction with MBD adsorption, as shown in
Figure 2. The C–H stretching vibrations of sp3 hybridized C in CH3 and CH2 functional
groups is assigned to another peak with a shoulder at 2937 cm−1 and 2939 cm−1 [78]. CH3
bending and C–H stretching vibrations are responsible for the other absorption peaks,
which occurred at 1419, 1467 cm−1, and 1361 cm−1, respectively. Algal cells have many
functional groups on their surfaces, such as phosphate, hydroxyl, amino, and carboxylate,
which are responsible for removing pollutants from various wastewaters. The accumulation
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of dye ions on the biopolymers of the algal surface, followed by dye migration from the
aqueous phase to the biopolymer solid phase, could be the source of dye removal using
algae [79].
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Figure 2. FTIR analysis of Sargassum latifolium before (A) and safter adsorption (B) of methylene
blue dye.

3.1.2. Surface Morphology

SEM analysis of algal cells showed the surface shape of the adsorbents before and after
MBD adsorption. Figure 3 presents SEM pictures of S. latifolium before and after dye uptake
at 2000 magnifications as an example. Figure 3a shows that the adsorbent has a uniform
porosity structure and that salt crystals are present on the biosorbent’s outside because
of natural mineral deposition. There are also spots related to crystalline salts and the
irregularity of the algal cell surface. The cross-linked micropores on the adsorbent surface
may enhance the efficient uptake of the liquid electrolyte and improve the adsorbent’s
ionic conductivity. In Figure 3b there are significant changes to the surface morphology of
the adsorbents, as well as the formation of separate aggregates on their surfaces following
MBD adsorption. In addition, after contact with MBD, the porous texture was filled and
vanished. Interaction with MBD changed the surface texture of the algal cell surface from
smooth to rough and irregular. Meanwhile, tiny swellings were observed after contact
with MBD.
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3.1.3. UV—Visible Spectral Examination

Spectral analysis in the ultraviolet (UV) ranges according to the sharpness of the peaks,
the UV-VIS spectrum summary of S. latifolium extract was chosen between 200 and 800 nm,
as shown in Figure 4. Flavonoids and their derivatives have unique absorption spectra.
The spectral bands of flavonoids are typically absorption spectra with maximal values in
the range of 300–360 nm [80]. The absorption maximum bands for anthocyanins are at
460–560 nm, while flavones and flavonols are around 310–370 nm, as seen in peaks (350, 375,
399, 461,485, 547, and 559 nm) [81,82]. Furthermore, the profile revealed that the compounds
were separated at 608, 657, and 694 nm. The exact location and virtual intensities of these
peaks provide a wealth of information about the flavonoids’ nature [83]. These peaks
at 234–676 nm indicate the presence of phenolic and alkalidic chemicals in S. latifolium.
The extract has some comparable alkaloid, flavonoids, and glycoside components when
compared to the spectra of seeds and flowers [84,85]. The absorption spectra of S. latifolium
seaweed extract revealed a broad absorbance range between 300 and 700 nm [86] with
absorption maxima in the visible area of the solar spectrum at 412.5, 608, and 657 nm. The
characteristic absorption of chlorophylls can be related to these absorption peaks [86,87].
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3.1.4. BET Characterization

To investigate any changes in the porosity of the sample under investigation, the
specific surface area and pore volumes of the adsorbent were investigated as presented in
Table 1. The S. latifolium isotherm displays quick N2 uptake at low pressures (P/P0 0.01)
and constant high adsorption with hysteresis at higher pressures. The surface area of the
BET is estimated to be 111.65 m2/g. Because the pores operate as binding or receptor sites
during the adsorption phase, this is critical for pollutant trapping. Additionally, the pore
volume is 0.122 cc/g.

Table 1. Textural properties of S. latifolium as determined by N2 adsorption.

Surface Area Results (m2/g)
Total Pore

Volume
Average

Pore Size
Average Particle

RadiusSingle Point
BET

Multipoint
BET

Langmuir
Method

BJH
Adsorption

BJH
Desorption

100.78 111.65 178.40 67.87 58.486 0.12 cc/g 2.19 nm 1.22 + 001 nm
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3.2. Study of Batch Adsorption Process
3.2.1. pH

The pH value of the MBD solution has a significant effect on the adsorption mechanism
because it affects both the adsorbent’s surface binding sites and the dye molecules’ ioniza-
tion process. The net charge on the adsorbent is also pH-dependent since the adsorbent
surface contains polymers with numerous unique functional groups such as phosphates,
carboxyl, amino, and hydroxyl. In this work, the influence of pH was determined for pH
values ranging from 3 to 12, as shown in Figure 5.
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The S. latifolium can be employed in a wide pH range, and the rate of MBD removal
increases as the pH value increases. When the pH was 10, the removal rate was 81.3%,
demonstrating that the pH of the solution had an important influence on MBD adsorption.
The presence of a positive charge on the nitrogen in the MB dye’s structure indicates that it
is a basic and cationic dye. The surface charge on the adsorbent can be used to explain the
influence of pH. However, the poor MBD adsorption has been seen at low pH values (pH 3),
increasing the density of positive charge (protons) at surface biomass sites. The electrostatic
repulsion that occurs between the MBD cations and the positive charges on the adsorbent’s
surface explains this. The rate of negative surface charge of the biomass increases at a
higher pH value (pH > 3), which electrostatically attracts cationic dyes [88], resulting in
good MB adsorption on the surface of the adsorbent. Furthermore, the strong physical
interactions (such as H-bonds) between both the adsorbate molecules (MBD) and various
functional groups, namely hydroxyl, esters, alkynes, carbonyl, and carboxyl present in
the phenols and flavonoids present in the noncellulosic cells of adsorbents of brown algal
Sargassum, may describe the adsorption of MBD on S. latifolium.

The surface charge on the adsorbent, which is affected by the solution pH, is the most
important factor in the adsorption of these positively charged dye groups on the surface of
the adsorbent [89]. Methylene blue adsorption by dried Ulothrix sp. Biomass was examined
by Doğar, et al. [90], who showed that the adsorption increased as the pH was increased.

3.2.2. MDB Concentration

The initial dye concentration works as a forceful driving force, increasing the dye’s
mass transfer resistance between the aqueous and solid phases to its limit. The effect of
concentrations of MBD on the adsorption was studied at 5, 10, 20, 30, and 40 mg L−1 with the
initial pH value of 10. Figure 6 shows the relationship between the percentage removals of
MBD and adsorbent capacity (qe) and the equilibrium dye concentration in the liquid phase
(Ce). When the MBD initial concentration is augmented from 5 to 40 mg L−1, the quantity
of MBD adsorbed increases from 68.42% to 84.96%. In addition, the adsorption capacity is
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improved from 7.8 to 25.9 by increasing the initial dye concentration from 5 to 40 mg L−1

as shown in Figure 6. The total number of dye molecule collisions and macrophytes
increases when the initial dye concentration is increased. As a result, increasing the initial
dye concentration could accelerate the adsorption process [91]. Furthermore, it might
be attributed to an increase in the driving force of the concentration gradient with the
increase in the initial concentration [92]. This is in agreement with results reported by other
studies [2].
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3.2.3. Sorbent Loading

At an MBD concentration of 10 mg L−1, the impact of the adsorbent amount on
methylene blue removal was examined. In the MBD solution, S. latifolium concentrations
varying from 0.025 to 0.5 g L−1 were incorporated. Figure 7 shows that when the adsorbent
loading was raised from 0.025 to 0.1 g, the elimination effectiveness increased from 86.53 to
95.97 percent, then dropped after this value. The availability of additional active adsorption
sites, as well as an increase in the adsorptive surface area, is the key reason for this. Fur-
thermore, adsorption onto the adsorbent surface happens very quickly at higher adsorbent
dosages. The amounts of MBD adsorbed per unit weight of seaweed were lowered when
the adsorbent loading was augmented from 0.2 to 0.5 g. Increased biomass loading may
lead to a decrease in the removal percentage value due to the complicated interaction of
numerous factors, for example, solute availability, binding site interference, and electro-
static interactions [93]. At higher adsorbent dosages, the available MBD molecules are
inadequate to cover all of the exchangeable sites on the adsorbent, resulting in the limited
dye uptake. Additionally, as adsorbent mass increases, the amount of dye adsorbed qe
(mg g−1) decreases due to a split in the flow or concentration gradient between the solute
concentration in the solution and solute concentration on the adsorbent surface [2].
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Figure 7. Impact of adsorbent dose on adsorption capacity and removal percentages of methylene
blue dye.

3.2.4. Contact Time

The equilibrium adsorption of S. latifolium was measured at various contact time inter-
vals to investigate the influence of different contact times on adsorption. The percentage of
elimination efficiency increases as contact time increases (Figure 8). The result showed that
the percentage of removal efficiency increased from 12.7% to 80.43% with increasing the
heating time from 5 to 15 min, then decreased to 76% after the first and the second hour of
contact time (Figure 8).
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The rapid adsorption at the initial contact time is due to the availability of the positively
charged surface of the S. latifolium for the adsorption of MBD. Moreover, it is clear that
MBD ions adsorption mainly consists of two stages, an initial rapid stage related to the
instantaneous external surface adsorption of MBD ions with the more available reactive
groups, which allows quick binding of ions on the biomass [94], whereas fast adsorption
equilibrium was reached in the first 15 min. This could be due to the high specific surface
area of the adsorbent particles and the absence of internal diffusion resistance at this
stage [95]. As these sites became progressively covered, the rate of adsorption decreased.
The second stage is much slower, with gradual adsorption levels taking place and lasting
until adsorbate ions adsorption attains equilibrium, which is attributed to the diffusion
of dye ions into the adsorbent layers for binding on the inner reactive groups, with the
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aid of hydrophilic and swelling characteristics of the adsorbent material. Therefore, the
initial adsorption uptake rate is increased while the second step is slowed down [96].
Additionally, Khan et al. [97] reported that the transfer of the dye from the solution phase
into the pores of the adsorbent is the rate-controlling stage in batch experiments under
rapid stirring circumstances. Likewise, Sheen [98] found that adsorption was rapid in
the first 5 min of contact with an uptake of more than 90%, and equilibrium was reached
in 60 min of agitation time as the binding sites became exhausted. As the binding sites
became exhausted, the uptake rate slowed due to metal ions competing for the decreasing
availability of active sites. According to the test results, the rest of the batch experiment’s
shaking period was set at 120 min to ensure that equilibrium was achieved. This quick (or
rapid) adsorption phenomenon is advantageous in applications because the short contact
time effectively allows for a smaller contact equipment size, which has a direct effect on
both the capacity and operation cost of the process.

3.2.5. Temperature

The equilibrium uptake of dye into the biomass of S. latifolium was also influenced
by the temperature parameter (Figure 9). The uptake of MBD onto the dried biomass was
found to be most effective at 50 ◦C, with a removal percentage of 89.71%. With a decrease in
temperature, adsorption decreased. The viscosity of the dye-containing solution is reduced
as the temperature rises, allowing more dye molecules to diffuse through the external
boundary layer and into the internal pores of the adsorbent particles [99]. Temperature also
has a major influence on dye degradation, first by directly changing the chemistry of the
pollutant, and then by influencing its physiology.
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3.3. Equilibrium Adsorption

Sorption equilibrium is reached when the concentration of solutes adsorbent onto
matches the amount of associated development. When this happens, the equilibrium
solution concentration remains constant. By graphing the concentration of the solid phase
versus the concentration of the liquid phase, the equilibrium adsorption isotherm will be
seen. The Freundlich, Langmuir, Harkins–Jura, Halsey, Henderson, Smith, and Tempkin
models were used to analyze equilibrium data.

3.3.1. Freundlich Isotherm

The Freundlich adsorption isotherms with the correlation coefficient are shown in
Figure 10 and Table 2.
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Table 2. Factors of isotherm models from non-linear and linear solvation.

Isotherm Model Isotherm Parameter Value

Freundlich
1/n 1.115

KF (mg1–1/nL1/ng−1) 31.6
R2 0.906

Langmuir

Qmax (mg g−1) 0.819
b (L mg−1) 0.068

RL 0.969
R2 0.751

Tempkin

AT 2.47
BT 14.67
bT 168.88
R2 0.916

Harkins–Jura
A 0.02
B 0.3

R2 0.719

Halsey
1/nH 1.912
KH 11
R2 0.768

Henderson
1/nh 0.519
Kh 0.119
R2 0.735

Smith
Wbs 0.768
Ws 36.01
R2 0.605

The R2 (0.906) and 1/n (1.115) results indicate that adsorption isotherms and mono-
layer coverage on the adsorbent surface are applicable, based on the discovered linear
relationships. The value of 1/n, also known as the heterogeneity factor, describes the
deviation from sorption linearity as follows: if 1/n = 1, the adsorption is linear, and the
dye particle concentration does not affect the division between the two stages. Chemical
adsorption occurs when 1/n is less than 1, whereas cooperative adsorption occurs when
1/n is more than 1, which is more physically favorable and involves strong contacts be-
tween the adsorbate particles [100]. In this study, the values of factor “1/n” are more than
1, indicating that using this isotherm equation to properly perform the physical sorption
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mechanism on an exterior surface is preferable. The adsorbent could be used as a low-cost
adsorbent for MBD removal due to its outstanding monolayer adsorption properties. Addi-
tionally, the Freundlich isotherm equation can be used to describe heterogeneous systems
and can be applied to adsorption on heterogeneous surfaces with the interaction between
adsorbed molecules.

3.3.2. Langmuir Isotherm

The regression data and adsorption parameters obtained are shown in Figure 11
and Table 2. The Langmuir equation’s linear form has the advantage of pointing to the
high success rate of using algal biomass for dye removal. R2 = 0.751 for MBD shows the
monolayer coverage of MBD on the outer surface of the sorbent, in which the mechanism
of adsorption occurs uniformly on the reactive section of the surface. The sorbent shows
that the Langmuir model does not apply to the tested system. The maximum adsorption
capacity (qmax) is 0.819 mg g−1, which corresponds to complete monolayer coverage on the
surface. The adsorption capacities (qmax) of various adsorbents for MBD are compared in
Table 3. qmax of S. latifolium is significantly higher than those of other adsorbents. Due to
its low cost, reusability, and high adsorption capacity, RL can also be used to express the
fundamental features of a Langmuir isotherm, which is determined from the relation of
Hall et al. [101]:

RL =
1

1 + bCi
(23)
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Table 3. Comparison of higher monolayer sorption of MBD onto different adsorbents materials.

Adsorbent Capacities (mg g−1) Reference

Banana peel 0.124 [102]
Cotton stalk 11.6 [103]
Wheat shells 16.6 [104]

Coir pith carbon 5.9 [105]
Wheat shells 16.6 [104]

Activated date pits 12.9 [106]
Cereal chaff 20.3 [107]

Fly Ash 0.0727 [108]
S. latifolium 0.819 This study

The types of equilibrium isotherms are related to the RL values; for RL > 1, an unfavor-
able process dominates, but for RL = 1, a favorable mechanism is available [109]. Table 2
shows that the values of RL in this study ranged from zero to one (0.969), indicating that
MBD adsorption on algal biomass was favorable.
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3.3.3. Tempkin Isotherm

The Tempkin isotherm model posits that the heat of adsorption of all molecules reduces
linearly rather than logarithmically, with coverage due to the interaction between adsorbate
and adsorbent. From the Tempkin model (Figure 12 and Table 2), the following values were
obtained: A = 2.47 L g−1, B = 14.67 J mol−1, and bT = 168.8. The correlation coefficient value
(R2 = 0.916) is high and demonstrates a satisfactory well to the experimental data where the
sorption process of MBD of the algal biomass does obey the Tempkin isotherm. Additionally,
it assumes that the heat of adsorption of all the molecules in the layer decreases linearly
with coverage due to adsorbate–adsorbate repulsions and that the adsorption is a uniform
distribution of maximum binding energy [110].
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3.3.4. Harkins–Jura Isotherm

As shown in Figure 13, the Harkins–Jura adsorption isotherm can be written as Equa-
tion (8), which can be solved by plotting 1/qe vs. log Ce. The presence of a heterogeneous
pore distribution and multilayer adsorption can be represented by the Harkins–Jura model.
The range of isotherm constants and correlation coefficients is R2 = 0.719 (Table 2). This
may indicate that the Harkins–Jura model is less applicable.
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3.3.5. Halsey and Henderson Isotherm

Figures 14 and 15 show the Halsey and Henderson adsorption isotherms, respectively.
The Halsey isotherm shows that the correlation coefficient was R2 = 0.768, while Henderson
shows the regression coefficient value of R2 = 0.735. The results obtained from Halsey
and Henderson show that both models are small and did not demonstrate a satisfactory
response to the experimental data where the sorption process of MBD onto algal biomass
was concerned.
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3.3.6. Smith Isotherm

Smith’s model is useful in explaining the adsorption isotherm of biological substances,
such as cellulose and starch, in addition to being appropriate for heterosporous solids
and multilayer adsorption [111]. The Smith model can be solved by the plot of qe vs. Ln
(1 − Ce) as presented in Figure 16 and Table 2. The sorption isotherms were accurately
reproduced by Smith models across the entire range of water activity. However, Smith’s
equation was not effective in describing the isotherms of MBD on algal biomass because
the model gave lower R2 values (0.605).
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3.3.7. Error Functions Examination for Best-Appropriate Isotherm Model

Traditional linear regression methods for calculating isotherm parameters appear to
provide a satisfactory fit to the experimental data. The R2 is determined using the linear
versions of the isotherm equations, but it eliminates the isotherm curve error [71]. To
assess the fit of the isotherm equations to the experimental data, several error functions
of non-linear regression were employed to establish the constant model parameters, and
they were compared to those determined from less precise linearized data fitting [112].
Several error functions, such as the hybrid fractional error (Hybrid), the average percentage
errors (APE) equation, the Chi-square error (X2) equation, the sum of the squares of the
errors (ERRSQ), and the sum of absolute errors (SAE), were applied to determine the
most-fit model for the investigational data (EABS). Table 4 summarizes the data gathered
from various error functions. From the observed data, the best appropriate isotherm
models are Halsey, Henderson, Freundlich, Langmuir Harkins–Jura, Tempkin, and Smith.
However, the error functions studied gave variable results for each isotherm model and
the comparison between the isotherm models should be focused on each error function
separately. The (EABS) equation demonstrates that all the isotherm models can be applied to
the investigational data except the Harkins–Jura, Tempkin, and Smith isotherms. Analysis
of Table 4 shows that the Halsey, Henderson, Freundlich, and Langmuir models have
smaller errors in almost all of the cases and that the Harkins–Jura, Tempkin, and Smith
models did not show high accuracy. In this case, the Freundlich isotherm model can be
more useful for describing the adsorption process of MB by S. latifolium adsorbent.

Table 4. The values of the five various error assessments of isotherm models for adsorption.

Isotherm Model Hybrid APE% X2 ERRSQ EABS

Freundlich 5.453 2.035 1.854 4.707 13.017
Langmuir 363.42 13.66 83.58 305.55 87.40

Harkins–Jura 202.700 10.203 46.621 170.425 65.273
Halsey 0.151 0.278 0.035 0.127 1.781

Henderson 0.605 0.557 0.139 0.508 3.565
Smith 391.312 14.177 90.002 329.004 90.692

Tempkin 359.232 13.583 82.623 302.033 86.895

3.4. Kinetic Models

Kinetic analysis was performed using pseudo-first and second-order models, as well
as the intraparticle diffusion model, to evaluate the adsorption processes of MBD on
S. latifolium. These models are commonly used to describe the sorption of dyes and other
pollutants on solid sorbents, as well as to evaluate their applicability. For the adsorption of a
solute from a liquid solution, the Lagergren rate equation is one of the most extensively used
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adsorption rate equations. The linear regressions are shown in Figures 17–19. In addition
to the intraparticle diffusion model, Table 5 shows the coefficients of the pseudo-first and
second-order adsorption kinetic models.
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Table 5. The comparison of the first order, second-order, and intraparticle diffusion for adsorption
rate constants.

Model Parameter Value

First-order Kinetic
qe (calc.) 3.30

K1 2.07
R2 0.001

Second-order Kinetic

qe (calc) 6.44
K2 0.01
R2 0.936

qe (exp.) 4.18

Interparticle Diffusion
Kdif 1.747

C 0.44
R2 0.45

The linearized form of the plot log (qe − qt) versus time (t) as shown in Figure 17
showed a poor pseudo-first-order linear regression coefficient (R2) value of 0.001. The
slope of the plot is used to calculate the rate constant of pseudo-first-order adsorption. Fur-
thermore, the pseudo first-order kinetic model predicted a significantly lower equilibrium
adsorption capacity (qe = 3.30) than the experimental value (qe = 4.181), indicating the
model’s impermissibility.

On the other hand, the intercept and slope of the plots of t/qt vs. t, were used to
compute the second-order rate constant, k2, and the equilibrium adsorption capacity, qe.
Figure 18 depicts pseudo-second-order kinetic graphs. In addition, the linear regression
coefficient (R2) value for the pseudo-second-order kinetic model was 0.943, indicating that
the model is applicable, as shown in Table 5. The (qe) computed value was close to the
experimental data, hence a pseudo-second-order model was fitted. Generally, the kinetic
studies displayed that the adsorption of MBD was followed by pseudo-second-order ki-
netics models and the sorption process was controlled through the chemisorption process.
Similar results have been reported for the adsorption of organic pollutants [113,114]. Fur-
thermore, understanding the adsorption system’s dynamic behavior is critical for process
design. The removal of MBD by adsorption on biomass was shown to be quick for the
first 15 min, but thereafter became slow as contact duration increased. The dye molecules
migrate from the bulk solution to the surface of the sorbent and penetrate through the
boundary layer to the surface of the sorbent, where adsorption and intra-particle diffusion
actually occur, according to the intra-particle diffusion mechanism for the sorption system
of MBD removal from its aqueous phase [115]. The intercept is C, and the slope directly
predicts the rate constant Kdif, as illustrated in Figure 19. The form of Figure 16 reveals that
straight lines do not pass through the origin and that the removal of MBD on S. latifolium
has a poor correlation (0.446), reflecting the fact that the intraparticle diffusion model does
not suit the experimental results. Because the resistance to exterior mass transfer increases
as the intercept increases, the value of the C factor provides information about the thickness
of the boundary layer.

3.5. Thermodynamic Studies

Table 6 displays the values for ∆G◦, ∆H◦, and ∆S◦. The reaction is spontaneous and
endothermic, as evidenced by the positive values of ∆H◦ and ∆S◦. The negative values of
∆G◦ also represent the process’s spontaneity. The values of ∆G◦ get increasingly negative as
the temperature rises, indicating that the process is becoming more spontaneous. Physical
binding forces may be involved in the process, as evidenced by the low value of ∆H◦. The
range of ∆G◦ values for physisorption is between −20 and 0 kJ mol−1, but the range for
chemisorption is between −80 and −400 kJ mol−1. According to the activation energy
estimations in this work, MBD sorption onto the marine algae S. latifolium occurred via a
physisorption mechanism.
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Table 6. Thermodynamic factors of the sorption of IV MB 2R onto S. latifolium.

Temperature (◦C) ∆G◦ (kJ mol−1) ∆H◦ (kJ mol−1) ∆S◦ (J mol−1)

30 −6.35 35.205 −0.131
40 −6.62
50 −7.86
60 −7.54

3.6. Treatment of Real Dye Effluent

To check the efficiency of S. latifolium as an adsorbent for the removal of MBD from
industrial effluents, simulated water was prepared as a control to study the influence of
biomass on the adsorption process, and optimization conditions (at an acidic pH 10, 0.1 g
of adsorbent after 120 min at a higher temperature of 50 ◦C) were used. Due to the low
quantities of MBD, a large amount of MBD was applied to achieve a final concentration
of 40 mg L−1. Industrial effluent samples were obtained from a factory in Al-Mahla Al-
kobra, Egypt, which specializes in dyeing and printing. To track the percentage of the dye
combination eliminated from the real dye effluents, the UV–vis spectra of the simulated
water and effluents treated with S. latifolium were recorded at 665 nm. The results confirmed
that changing the type of water affected the largest removal, with simulated water having
the least impact on the sorption process, with a percentage removal of 89.15%. Real
wastewater, on the other hand, contains very high concentrations of interfering ions from a
variety of contaminants, which had a major impact on the removal effectiveness of MBD,
with a percentage removal of 65.9%.

The novelty in this research lies in different values of the optimization process, mathe-
matical models, and the highest suitable model being achieved by using error function tests
such as a fractional error hybrid, average percentage error, sum squares of errors, nonlinear
chi-square analysis, and the sum of absolute errors. To describe the elimination of the
MBD’s effects on S. latifolium, error functions were proposed. This study is unique in that it
highlights the possibility of integrating the use of marine algae biomass into the removal of
MBD from aqueous environments in accordance with circular economic principles. Thus,
using a simple and abandoned, readily available, low-cost, cheap, and environmentally
friendly bio-material experimental procedure, the S. latifolium material, which can be more
efficiently used to retain MBD, is obtained from a low-performance adsorbent material,
such as marine brown algae biomass. Therefore, S. latifolium was chosen to prepare the
adsorbent based on the above parameters. A step was taken to prepare the adsorbent,
which was then utilized to remove the MBD from the water.

4. Conclusions

In the current study, brown seaweed, S. latifolium, was applied as an adsorbent for
the elimination of methylene blue dye (MBD) from an aqueous solution. Initial pH, initial
MBD concentration, adsorbent dose, and adsorption temperature all had an impact on
adsorption. The highest removal of MB was 95.97% under optimal operating conditions,
which included an initial MBD concentration of 40 mg L−1, a temperature of 50 ◦C, and a
pH of 10. Increases in the adsorbent dose and starting MBD concentrations increased MBD
removal effectiveness. Furthermore, MBD removal using S. latifolium is also influenced
by the presence of functional groups such as carbonyl, hydroxyl, amino, carboxylate
groups, and other natural compounds that support ions binding like lignins, cellulose,
and lipids. Additionally, SEM analysis demonstrates the ability of S. latifolium biomass
to adsorb and remove MBD from an aqueous solution. Moreover, the absorption bands
for photosynthetic pigments, such as flavonoids and their derivatives, were found in the
UV-visible spectra of seaweed. In addition, the quality of S. latifolium was also assessed
using BET characterization, which shows that S. latifolium has a greater surface area. MBD
adsorption on S. latifolium followed Halsey, Henderson, Harkins–Jura, Freundlich, Tempkin,
Smith, and Langmuir isotherms revealed in the research. S. latifolium was found to be a
good adsorbent for removing MBD from wastewater through the adsorption process.
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90. Doğar, Ç.; Gürses, A.; Açıkyıldız, M.; Özkan, E. Thermodynamics and kinetic studies of biosorption of a basic dye from aqueous

solution using green algae Ulothrix sp. Colloids. Surf. B Biointerfaces 2010, 76, 279–285. [CrossRef] [PubMed]
91. Maleki, A.; Mahvi, A.H.; Ebrahimi, R.; Zandsalimi, Y. Study of photochemical and sonochemical processes efficiency for

degradation of dyes in aqueous solution. Korean J. Chem. Eng. 2010, 27, 1805–1810. [CrossRef]
92. Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Adsorption behavior of methylene blue on carbon nanotubes. Bioresour. Technol. 2010,

101, 3040–3046. [CrossRef]
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