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Abstract: Polymerization of methyl methacrylate (MMA) in aqueous collagen (Col) dispersion was
studied in the presence of tributylborane (TBB) and p-quinone: 2,5-di-tert-butyl-p-benzoquinone
(2,5-DTBQ), p-benzoquinone (BQ), duroquinone (DQ), and p-naphthoquinone (NQ). It was found
that this system leads to the formation of a grafted cross-linked copolymer. The inhibitory effect
of p-quinone determines the amount of unreacted monomer, homopolymer, and percentage of
grafted poly(methyl methacrylate) (PMMA). The synthesis combines two approaches to form a
grafted copolymer with a cross-linked structure—“grafting to” and “grafting from”. The resulting
products exhibit biodegradation under the action of enzymes, do not have toxicity, and demonstrate a
stimulating effect on cell growth. At the same time, the denaturation of collagen occurring at elevated
temperatures does not impair the characteristics of copolymers. These results allow us to present the
research as a scaffold chemical model. Comparison of the properties of the obtained copolymers helps
to determine the optimal method for the synthesis of scaffold precursors—synthesis of a collagen and
poly(methyl methacrylate) copolymer at 60 ◦C in a 1% acetic acid dispersion of fish collagen with a
mass ratio of the components collagen:MMA:TBB:2,5-DTBQ equal to 1:1:0.015:0.25.

Keywords: collagen; poly(methyl methacrylate); tributylborane; quinone; radical polymerization;
grafted copolymer

1. Introduction

In modern medicine, bioengineered structures involving cellular technologies are
applied to restore damaged tissues. The task of creating a good tissue equivalent is to
find the right balance between creating conditions for the regeneration of this tissue and
restoring its main functions [1]. The composition of such a structure includes three necessary
components: scaffold, signaling factors, and cells, commonly referred to as the triad of
tissue engineering [2]. There are specific requirements for scaffolds:

1. The scaffold should be biodegradable so that no additional surgical intervention is
required to remove the implant, and, in an ideal case, the degradation rate should
correspond to the formation rate of new tissue [3,4];

2. The scaffold and its decomposition products should be biocompatible and not cause
particular mutagenic, carcinogenic, or cytotoxic effects [4–6];

3. The qualities of the implanted scaffold should correspond to the properties of the
recipient’s natural tissue [7];
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4. The scaffold must have an interconnected network of pores, which will ensure the pos-
sibility of its colonization by cells and circulation of gases and liquids and, ultimately,
causes tissue growth in all directions [2,8];

5. The scaffold should have properties that ensure the attachment, migration, and
proliferation of cells [9];

6. The scaffold should have optimal bioengineering qualities that will allow the material
to restore damaged tissues and organs, simulating physiological processes in the
replaced biostructures [10–12].

For the formation of most tissues when creating scaffolds, natural (collagen, chitosan,
alginate, agarose, fibrin, fibronectin) and synthetic (poly-α-hydroxyesters, in particular
polylactic acid, polyglycolic acid, their mixture, polyethylene glycol) polymers or hydrogels
formed by covalent or ionic cross-linking of water-soluble natural and synthetic polymers
are used [13–16].

The disadvantages of synthetic scaffolds are the lack of cellular recognition and some-
times low biocompatibility. Biopolymers such as collagen or fibronectin have numer-
ous advantages in tissue engineering, such as low toxicity, low immunogenicity, and
biodegradability. Natural polymers are preferable in forming the scaffold because sections
of molecules capable of binding to cell receptors are preserved. However, their use as
scaffolds is often complicated because they do not have sufficient strength and elasticity and
have a fibrillar rather than three-dimensional structure [17–20]. Natural polymers are given
that structure by copolymerization with other natural [21–26] or synthetic polymers [27–31]
to eliminate mentioned disadvantages.

Organoborane compounds are used to synthesize grafted copolymers [32–34]. Tributyl
borane makes it possible to obtain copolymers of collagen and poly(methyl methacry-
late) [32,33], triethyl borane–copolymer of collagen and poly(butyl acrylate) [34], and the
combination of triethyl borane and p–quinone—a copolymer of starch and poly(methyl
acrylate) [35]. At the same time, alkylborane in the composition of various initiators
makes it possible to obtain grafted copolymers both by “grafting from” [32–34] or “grafting
to” [35]. Under certain conditions, the grafted copolymer can be obtained by combing both
approaches. In this case, the resulting product must have a cross-linked structure required
in scaffold technologies. This was first implemented in our work [36], which involved the
synthesis of gelatin and methyl methacrylate copolymers in the presence of tributylborane
and 2,5-di-tert-butyl-p-benzoquinone. In this case, the chain begins to grow on the borated
collagen (“grafting from”) and breaks off on the borated collagen (“grafting to”).

This work aimed to create a chemical model of scaffold construction based on graft-
copolymers of collagen and methyl methacrylate using tributyl borane and p-quinones. For
this, it was necessary to complete the following tasks:

• Obtain copolymers of methyl methacrylate and fish collagen in the presence of tributyl
borane and several p-quinones differing in their structure and reactivity, in addition to
the previously obtained data [36];

• Characterize the obtained products using the methods of gel-penetrating chromatog-
raphy and scanning electron microscopy;

• Evaluate the propensity of copolymers for biodegradation under the action of enzymes
in comparison with collagen to understand the prospects of their use as precursors
of scaffolds;

• Conduct a cytotoxicity examination;
• Form a chemical model of scaffold construction based on collagen and methyl methacry-

late graft-copolymers using tributyl borane and p-quinones.

2. Materials and Methods
2.1. Materials

Collagen dispersion in acetic acid (Mn = 244 kDa, Mw = 279 kDa, Mz = 304 kDa, and
PDI = 1.14) was obtained using the process described in [37]. The methods used to purify
organic solvents and MMA were outlined in [38]. NQ (Sigma-Aldrich, St. Louis, MI, USA)
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and DQ (Sigma-Aldrich, St. Louis, MI, USA) were used without preliminary purification.
BQ and 2,5-DTBQ were synthesized by oxidation of the corresponding hydroquinone.
All p-quinones were purified via recrystallization from petroleum ether. The purity of all
substances used was monitored by NMR spectroscopy.

2.2. Synthesis of TBB

TBB was synthesized by reacting BF3·Et2O with 1-butyl bromide over magnesium
shavings in diethyl ether by the method outlined in [39]. 11B NMR (128 MHz, CDCl3) was
conducted with a value of δ 86.7.

2.3. Polymerization Procedure

Thirty mL of 1% Col solution was placed in a three-necked flask equipped with a
mechanical stirrer and reflux condenser, and it was heated in a water bath to 60 ◦C in an
argon atmosphere. A solution of TBB in heptane was placed in a vacuum ampoule. The
required TBB volume (0.08 g (0.015 mol.%)) was taken with an argon-filled syringe and
poured into a collagen solution with intensive stirring. The mixture was kept for 30 min.
After that, a degassed solution containing 0.3 mL of MMA and 0.25 (0.15, 0.35, 2.5) mol.%
of p-quinone (2,5-DTBQ, DQ, BQ, and NQ) was added to the reaction flask. The reaction
mixture was kept for 3 h.

2.4. Determination of the Unreacted Monomer

Unreacted MMA was measured via Knopp bromination as described in [39].
MAA concentration was determined by:

X, % =
(a − b) × M

200 − m
, (1)

a, b—volumes of Na2S2O3 expended on the probe and blank titration, respectively,
mL; M—MAA molecular weight (MW), g/mole; m—copolymer probe mass, g.

2.5. Enzymatic Hydrolysis

The enzymatic hydrolysis of copolymers was carried out using collagenase, thrombin
(Renam NPO, Moscow, Russia), and pancreatin (Hubei Maxpharm Industries Co, Ltd.,
Wuhan, China) with proteolytic activity of 2 U/mg.

The hydrolysis of collagenase was implemented in this work as outlined in [36].
For thrombin and pancreatin hydrolysis, 1 M NaOH was added to the solution to

neutralize any acid, with the solution subsequently brought to the required volume with
distilled water. The hydrolysis was carried out by adding the enzyme to the resulting
mixture at a mass ratio of copolymer to an enzyme of 103:1. Samples (1 mL) were taken
at regular intervals (1, 10, 30, 60 min, and 3 days) after the addition of the enzyme. To
interrupt the hydrolysis, 1 mL of 4% acetic acid solution was added to the samples.

The mixtures from each hydrolysis were filtered out. The remaining PMMA was
concentrated and analyzed using size-exclusion chromatography (SEC).

2.6. Size-Exclusion Chromatography

The aqueous dispersion of Col and PMMA copolymer was analyzed on an LC-20
HPLC system (Shimadzu, Kyoto, Japan) with a low-temperature light-scattering detector
ELSD-LT II with the LC-Solutions-GPC software module. Measurements were performed at
the following conditions: the column—Tosoh Bioscience TSKgel G3000SWxl (Tosoh, Tokyo,
Japan) with a 5.0 µm pore size; column temperature—30 ◦C; the eluent—0.5 M acetic acid
solution with the 0.8 mL/min flow rate. Narrow disperse dextran standards with an MW
range of 1–410 kDa (Fluka, Buchs, Switzerland) were used for calibration.

Graft-PMMA driven out by enzymatic hydrolysis from a copolymer was analyzed on
a Prominence LC-20VP system (Shimadzu, Kyoto, Japan) with the following conditions:
column—Tosoh Bioscience (polystyrene-divinylbenzene gel, 106 and 105 Å pore size) (Tosoh,
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Tokyo, Japan); column temperature—40 ◦C; eluent—tetrahydrofuran with a 0.7 mL/min flow
rate. A differential refractometer and a UV detector (λ = 254 nm) were used as a detector.
Calibration was performed using narrow dispersion of PMMA standards.

2.7. Scanning Electron Microscopy

The surface of collagen and copolymer samples was studied using a scanning electron
microscope (SEM) JSM-IT300LV (JEOL Ltd., Akishima, Japan) with an electron probe
diameter of 4 nm (operating voltage 30 kV) by using detectors of low-energy secondary
electrons in a low-vacuum mode to prevent the samples from charging. The sponges for
the electron microscope were obtained via freeze-drying. The pore size of freeze-dried
samples was determined from micrographs using a scale bar.

2.8. NMR Spectroscopy
1H NMR spectra were recorded on Agilent DD2 400 instrument. Chemical shifts

(δ) are given in ppm relative to the solvent reference as an internal standard (δ 7.26 ppm
for CDCl3).

2.9. Cytotoxicity Examination via MTT Assay

Human dermal fibroblasts (HDF) of 4–6 passages were used to study the samples.
An active, morphologically homogeneous culture was used, which adheres well to plastic.
The immunophenotype of the culture cells corresponded to the immunophenotype of
mesenchymal cells. The sustainability of the culture was more than 97%. HDF with a
density of 10 thousand per 1 cm2 was seeded into the wells of a flat-bottomed 96-well tablet
in DMEM/F12 growth medium, with antibiotics (penicillin, 100 units/mL; streptomycin,
100 µg/mL) and 10% inactivated calf embryonic serum. Then, they were cultivated under
standard conditions for one day. After 24 h, even growth of typical fibroblast-like cells in
the form of a subconfluent monolayer was recorded in all wells. After 24 h of cultivation,
the growth medium above the cells was replaced with the studied solutions.

The MTT assay is a colorimetric method based on the reaction of the recovery of
the tetrazolium dye 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide into
insoluble formazan. The formazan concentration reflected in the optical density was
measured using a Sunrise tablet reader (Austria) at a wavelength of 540 nm.

The test samples in the form of films brought to a constant mass in a vacuum cabinet
were placed in a prepared growth medium (DMEM/F12 with antibiotics and 2% calf
embryonic serum). Samples were placed in a CO2 incubator for 24 h under standard
conditions (temperature—37 ◦C; CO2 concentration—5%). After 24 h of incubation, the
extract was taken from the studied samples, and a series of dilutions with the growth
medium was prepared in the ratios 1:1, 1:2, 1:4, and 1:8.

Various concentrations of the extract were added to the culture of HDF sown in a
96-well tablet. Each was performed in 8 dexterities (8 holes). The sample tablet was placed
in a CO2 incubator for 72 h.

After 72 h, 20 µL of a solution of MTT (5 mg/mL in a phosphate-buffered solution)
was added to each well. Then, the cells were incubated with MTT for 3 h in a CO2 incubator.
After 3 h of incubation, the supernatant was selected and replaced with an equal volume of
DMSO solution. The optical density (OD) was recorded at 540 nm on a tablet reader.

The relative growth intensity (RGI) was calculated according to the following formula:

RGI, % =
average OD in test culture

average OD in control
× 100. (2)

The RGI of the experimental series was compared with the RGI of the control, taking
it to 100%.

The severity of cytotoxicity was ranked as follows:

• RGI 100%—rank 0;
• RGI 99–75%—rank 1 corresponds to the absence of cytotoxicity;
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• RGI 74–50%—rank 2 corresponds to a mild degree of cytotoxicity;
• RGI 49–25%—rank 3 corresponds to an average degree of cytotoxicity;
• RGI 24–0%—rank 4 corresponds to high cytotoxicity [40].

3. Results and Discussion

To create a chemical model of scaffold construction based on collagen and methyl
methacrylate copolymers using tributyl borane and p-quinones, it was necessary, in addi-
tion to the previously obtained data [33,36,39], to synthesize copolymers in the presence
of tributyl borane and some p-quinones differing in their structure and reactivity, and
evaluate their parameters as materials for scaffolds. As in previously published studies,
copolymers were synthesized under varying temperature conditions—25 ◦C, 45 ◦C, and
60 ◦C. It is known [41] that fish collagen undergoes denaturation and gradually turns into
its analog—gelatin. The properties of gelatin in comparison with collagen in catalytic
processes (enzymatic catalysis of protein hydrolysis) and its functional properties in hybrid
hydrogel scaffolds differ slightly [42–46]. In this regard, we conducted research including a
temperature of synthesis at 60 ◦C when part of the collagen can turn into gelatin. It was
taken into consideration when interpreting the results.

For this research, collagen–PMMA copolymers (Col–co–PMMA) were synthesized us-

ing the following p-quinones: 2,5-di-tert-butyl-p-benzoquinone
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the alkylborane–quinone system [47]. As shown in Table 1, the conversion of the monomer
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Table 1. The amount of MMA conversion, unreacted monomer, homopolymer, and the proportion of
grafted PMMA in Col–co–PMMA synthesized in the presence of the TBB–2,5-DTBQ system.

Monomer T, ◦C Unreacted
Monomer, %

MMA
Conversion,

%

The Yield of
PMMA Ho-
mopolymer,

%

The Proportion
of Grafted

PMMA in the
Copolymer, %

MMA
25 38 62 8 35

45 38 62 11 31

60 17 83 14 41

The molecular weight (MW) determined by the GPC method and the morphology
of freeze-dried samples were determined for the copolymers. In addition, enzymatic
hydrolysis of copolymer samples with pancreatin and thrombin enzymes was carried
out, with molecular weight characteristics controlled during the process. The results of
hydrolysis were compared with those for collagen. It was not possible to estimate the MW
parameters of the formed copolymer because the molecular weight distribution (MWD)
curves of the samples (Figure 1, curves 2–4) differ little from the MWD curves of collagen
(Figure 1, curve 1). We suppose, when preparing highly diluted copolymer solutions
for analysis, in this case, unreacted collagen remains in the filtrate during filtration, and
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the copolymer does not pass through the filter with a pore size of 0.45 µm due to the
cross-linked structure. A similar result was observed in [36] when studying the MW
characteristics of gelatin copolymers.
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Further experiments have confirmed this. The analysis of hydrolysates becomes
possible because the cross-linked structure is broken in contrast to the copolymer from
synthesis. MWD curves of copolymer hydrolysates in the case of pancreatin (Figure 2)
and even more so in the presence of thrombin (Figure 3) confirm the formation of a
grafted copolymer. When hydrolyzed by pancreatin, the high-molecular mode gradually
disappears (Figure 2), and only corresponding low-molecular fractions of collagen remain,
which are not hydrolyzed with values of ~20 kDa and ~10 kDa [33,48]. If we compare the
obtained results of copolymer hydrolysis with those for collagen [48], then a noticeable
decrease in the rate of copolymer hydrolysis occurs, although results are identical in three
days. It is well known that proteolytic enzymes break down protein bonds created by
arginine and lysine [49]. When synthetic fragments are added to the collagen molecule, they
do not affect the breakdown of peptide molecules by those same bonds. Nevertheless, steric
difficulties caused by grafted synthetic fragments onto collagen slow down this process. The
MWD curves of copolymers hydrolyzed by thrombin do not undergo noticeable changes
over time (Figure 3). The inertia of the copolymer to thrombin hydrolysis is because the
active center of the globular protein thrombin, unlike pancreatin, is unable to approach the
peptide bond of the copolymer.

The morphology of copolymers obtained at different temperatures, shown in Fig-
ure 4b–d, varies significantly compared to the morphology of collagen (Figure 4a). The
collagen sponge has clear outlines of collagen fibers and formed pores (Figure 4a), and the
morphology of the copolymer sponges clearly shows the denser contours of the collagen
matrix due to the grafted synthetic fragments of the copolymer (Figure 4b–d). The pore
size of the copolymers is different for different temperatures: the copolymer synthesized at
25 ◦C has a pore size close to collagen ~20 µm (Figure 4b). When the synthesis temperature
rises to 45 ◦C (Figure 4b), the pore size varies from 30 to 100 µm; this can be explained by the
disruption of the bonds of individual collagen α-chains and the formation of their chaotic
intermolecular interactions due to partial denaturation of the protein in the copolymer. As
a result, the resulting cross-linked structure changes. In the copolymer synthesized at 60 ◦C,
the pore size is leveled to ~40 µm (Figure 4d).
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The analysis of the literature and the obtained results suggest the formation of a
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Scheme 1. Boration of collagen at hydroxyl groups of hydroxyproline units.

The release of butane was confirmed earlier by chromatography–mass spectrome-
try [33]. Borated collagen can initiate the polymer chain addition of MMA in two distinct
manners: reversible inhibition (Scheme 2) or via the well-known scheme due to the sep-
aration of hydrogen atoms by radicals formed during the oxidation of TBB by residual
oxygen [50]. The resultant growth radicals interact with p-quinone through a radical sub-
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stitution process on the boron atom, forming a cross-linked polymer structure (Scheme 3).
Thus, the growth of the grafted chain begins (“grafting from”) and ends (“grafting to”) on
collagen.
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Scheme 3. The assumed mechanism of polymerization of collagen and MMA in the presence of the
alkylborane–p-quinone system.

The cytotoxicity parameter is essential to apply the obtained copolymers as a basis for
the scaffolds. Evaluation of cytotoxicity allows for predicting the prospects of synthesized
copolymers for use in biomedical purposes. All the copolymers obtained were examined
for cytotoxicity using the MTT assay. The data of the analysis results of Sample I—collagen,
MMA, TBB, and 2,5-DTBQ (60 ◦C); Sample II—collagen, MMA, TBB, and 2,5-DTBQ (45
◦C); and Sample III—collagen, MMA, TBB, and 2,5-DTBQ (25 ◦C) are presented in Table 2.

Table 2 shows that the Col–co–PMMA samples do not have any cytotoxicity or only
have a slight amount. Sample I and its dilutions showed Rank 1 cytotoxicity, with the RGI
level remaining consistent at an average of 82.74 ± 1.35%. Sample II also exhibited Rank
1 cytotoxicity in its extract and 1:1 dilution but showed a slight degree of cytotoxicity in
subsequent dilutions (1:2–1:8). Conversely, Sample III exhibited a little bit of cytotoxicity
(Rank 2) when tested in its 1:1 and 1:2 dilutions. No cytotoxicity was observed in its
dilutions of 1:4 and 1:8 (Rank 1). Notably, when examining cells cultured with Samples II
and III, a thin film-like layer with wave-like folds was observed in the subcellular layer
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(Figure 5). It is possible that these copolymers spontaneously form such structures upon
contact with cells or their waste products.

Table 2. Evaluation of cytotoxicity of Col–co–PMMA samples.

Sample I Sample II Sample III

OD RGI, % Rank OD RGI, % Rank OD RGI, % Rank

Control 0:1 0.340 ± 0.006 100.000 0 0.500 ± 0.014 100.000 0 0.415 ± 0.009 100.000 0

Extract 1:0 0.291 ± 0.008 85.662 1 0.384 ± 0.023 76.664 1 0.255 ± 0.006 61.351 2

Extract 1:1 0.289 ± 0.006 84.861 1 0.448 ± 0.029 89.425 1 0.280 ± 0.005 67.409 2

Extract 1:2 0.266 ± 0.002 78.237 1 0.334 ± 0.028 66.789 2 0.277 ± 0.008 66.843 2

Extract 1:4 0.275 ± 0.005 80.926 1 0.357 ± 0.027 71.373 2 0.319 ± 0.016 76.858 1

Extract 1:8 0.281 ± 0.004 82.689 1 0.331 ± 0.029 66.165 2 0.342 ± 0.011 82.378 1
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Figure 5. Representative micrographs of HDF culture with Col–co–PMMA samples: (a) synthesized
at 45 ◦C; (b) synthesized at 25 ◦C; (c) control, a growth media without copolymer.

Summarizing the data obtained above, we can conclude that from the point of view of
the biomedical application, the collagen and PMMA copolymer synthesized at a tempera-
ture of 60 ◦C is the most promising.

Col–co–PMMA copolymers were synthesized using the TBB–2,5-DTBQ initiation
system with varying p-quinone percentages relative to MMA (0.15 mol.%, 0.25 mol.%,
0.35 mol.%, and 2.5 mol.%) to examine the impact of 2,5-DTBQ on the qualities of the
copolymer under the current temperature. The amount of unreacted monomer and ho-
mopolymer and the proportion of grafted polymer relative to the initial MMA are presented
in Table 3. When the concentration of p-quinone is higher, more chain transfer acts are
likely to occur (Scheme 3). This results in the release of butyl radicals into the reaction
mixture, which increases the yield of the homopolymer and reduces the proportion of
grafted PMMA.

Table 3. The amount of unreacted monomer, homopolymer, and the proportion of grafted PMMA in
Col–co–PMMA synthesized in the presence of the TBB–2,5-DTBQ system.

The Concentration
of p-Quinone, mol.%

Unreacted Monomer,
%

The Yield of PMMA
Homopolymer, %

The Proportion of
Grafted PMMA in
the Copolymer, %

0.15 16 6 44

0.25 17 14 41

0.35 43 8 33

2.50 21 52 15
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According to the results of the cytotoxicity assessment, Sample IV (a copolymer
containing 0.15 mol.% of 2,5-DTBQ) is not toxic. The cytotoxicity rank of the extract and its
dilutions varied from 0 to 1 (Table 4). Notably, diluting to 1:8, the RGI was significantly
higher than 100%. The latter indicates that low concentrations of copolymer stimulate cell
growth. Sample V, which contained 0.35 mol.% of 2,5-DTBQ, showed similar cytotoxicity to
Sample I. Nonetheless, when the extract of Sample V was diluted, it increased RGI (Table 4).
The results obtained in the study of Sample VI (a copolymer containing 2.5 mol.% of 2,5-
DTBQ) differed sharply from the results of Samples I–V. The extract and its 1:1 dilution
showed pronounced cytotoxicity corresponding to Rank 3. The toxicity is likely caused
by unreacted p-quinone. As the extract was diluted, the copolymer became less toxic. At
dilutions of 1:4 and 1:8, the toxicity level was Rank 1. However, even at high dilutions,
Sample VI still had toxicity, as evidenced by affected cells observed under the microscope
(Figure 6).

Table 4. Evaluation of cytotoxicity of Col–co–PMMA samples with different concentrations of 2,5-DTBQ.

Sample IV Sample V Sample VI

OD RGI, % Rank OD RGI, % Rank OD RGI, % Rank

Control 0:1 0.417 ± 0.012 100.000 0 0.308 ± 0.009 100.000 0 0.269 ± 0.014 100.000 0

Extract 1:0 0.317 ± 0.008 76.019 1 0.232 ± 0.014 75.132 1 0.119 ± 0.001 44.249 3

Extract 1:1 0.350 ± 0.025 83.933 1 0.270 ± 0.018 87.627 1 0.116 ± 0.002 43.043 3

Extract 1:2 0.450 ± 0.044 108.004 0 0.293 ± 0.009 94.929 1 0.194 ± 0.008 72.124 2

Extract 1:4 0.356 ± 0.019 85.462 1 0.313 ± 0.015 101.623 0 0.239 ± 0.007 88.868 1

Extract 1:8 0.584 ± 0.044 139.958 0 0.297 ± 0.012 96.430 1 0.232 ± 0.015 86.132 1
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mol.% and 0.15 mol.%, respectively—are the most promising for use in scaffold 
technologies (Figure 7). For further studies, the concentration of p-quinone equal to 0.25 
mol.% was chosen since it allows to obtain more branched polymer and, at the same time, 
does not influence the toxicity effect. 

  

Figure 6. Representative micrographs of HDF culture with (a) control, a growth media without
copolymer; (b) Sample VI (Extract 1:0); (c) Sample VI (Extract 1:4).

Thus, Samples I and IV synthesized with low concentrations of p-quinone—0.25 mol.%
and 0.15 mol.%, respectively—are the most promising for use in scaffold technologies
(Figure 7). For further studies, the concentration of p-quinone equal to 0.25 mol.% was
chosen since it allows to obtain more branched polymer and, at the same time, does not
influence the toxicity effect.

To confirm the concepts put forward at a quinone concentration of 0.25 mol.%, Col–
co–PMMA copolymers were synthesized using the following p-quinones: BQ, DQ, and
NQ. The amount of unreacted monomer, homopolymer, and the proportion of grafted
polymer depends on the structure of p-quinone (Table 5). Thus, in the presence of the
weakest inhibitors [51]—2,5-DTBQ and DQ—the proportion of grafted PMMA is ~40%; a
more potent inhibitor, NQ, leads to a copolymer containing 20% PMMA. An increase in the
proportion of grafted PMMA and an insignificant amount of homopolymer is present using
the most potent inhibitor (BQ) we associate with the course of controlled polymerization
characteristic of the alkylborane–p-quinone system [47].
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Figure 7. Representative micrographs of HDF culture with (a,c) control, a growth media without
copolymer; (b) Sample I (Extract 1:0); (d) Sample IV (Extract 1:0)—fragments of the copolymer are
visualized on the cells in the form of dark grains.

Table 5. The amount of unreacted monomer, homopolymer, and the proportion of grafted PMMA in
Col–co–PMMA synthesized in the presence of the alkylborane–p-quinone system.

p-Quinone Unreacted Monomer,
%

The Yield of PMMA
Homopolymer, %

The Proportion of
Grafted PMMA in
the Copolymer, %

2,5-DTBQ 17 14 41

BQ 0 3 49

DQ 33 3 39

NQ 65 10 20

The GPC method was ineffective in analyzing copolymers synthesized with BQ, DQ,
and NQ due to the formation of a cross-linked structure, which is similar to copolymers
synthesized with 2,5-DTBQ (Figure 1). After the hydrolysis of copolymers by collagenase,
the most effective collagen destruction enzyme [52], a water-insoluble polymer, is isolated
from the grafted copolymer in a separate phase during the day, which was filtered and
analyzed by NMR and GPC methods. 1H NMR spectra have shown a wide signal at
3.6 ppm in all samples belonging to the methoxy group of polymethyl methacrylate. The
MWD of PMMA (Figure 8) obtained after the hydrolysis of copolymers by collagenase also
depends on the inhibitory effect of the p-quinone used in the synthesis. The higher the rate
constant of the reaction of the growth radical with p-quinone, the shorter the chains of the
grafted PMMA (Scheme 3) and the lower the molecular weight. The inhibitory effect of
quinone decreases in the following order: BQ, NQ, 2,5-DTBQ, and DQ [51]. In the same
sequence, the molecular weight of the grafted PMMA isolated after collagenase hydrolysis
increases (Figure 8). This result provides further evidence that PMMA was indeed grafted
onto collagen.
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Figure 8. MWD of PMMA isolated as a result of enzymatic hydrolysis by collagenase of Col–co–
PMMA obtained in the presence of the alkylborane–p-quinone system using: (1) 2,5-DTBQ; (2) BQ;
(3) DQ; (4) NQ.

The morphology of copolymers using the next p-quinones—BQ, DQ, and NQ (Figure 9b–d),
similar to the copolymer synthesized in the presence of 2,5-DTBQ (Figure 4d)—differs only in
the pore size. So, the pore size in the case of 2,5-DTBQ is ~40 µm (Figure 4d), BQ is ~20 µm,
DQ is ~65 µm, and NQ is ~30 µm. The pore sizes are in strict accordance with the inhibitory
effect of p-quinones [51]: the shorter the polymer chain of the grafted PMMA (Scheme 3),
the shorter the “cross-linking” and the smaller the pore size of the freeze-dried sample.
For PMMA synthesized in the presence of the alkylborane–p-quinone system, there is a
strict correspondence of the molecular weights of polymers with the inhibitory action of
p-quinones [47].

After analyzing Samples VII–IX (Col-co-PMMA in the presence of TBB–p-quinone sys-
tem using NQ (Sample VII), DQ (Sample VIII), and BQ (Sample IX)), it was discovered that
the extracts had some level of toxicity. However, upon dilution, the degree of toxicity varied
in different ways (Table 6). Based on the results, Sample VII was Rank 3 for cytotoxicity and
remained cytotoxic even after being diluted. Sample VIII had a lower level of cytotoxicity,
Rank 2, and the cytotoxic effect decreased to Rank 1 after dilution (Table 6). Sample IX was
ranked 2 for cytotoxicity, and a dilution of 1:1—Rank 3. It is worth noting that the RGI
values for the extract and its 1:1 dilution were close to the boundary between Ranks 2 and
3. However, with further dilution, the cytotoxic effect of the copolymer decreased until it
reached 0. When diluted at ratios of 1:4 or 1:8, the RGI showed an over 100% increase in
cell proliferation due to the low content of copolymer.
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Figure 9. SEM images of the morphology of (a) collagen and Col–co–PMMA synthesized in the
presence of the TBB–p-quinone system using: (b) BQ; (c) DQ; (d) NQ.

Table 6. Evaluation of cytotoxicity of Col–co–PMMA samples using the alkyl borane–p-quinone
system (NQ, DQ, and BQ).

Sample VII Sample VIII Sample IX

OD RGI, % Rank OD RGI, % Rank OD RGI, % Rank

Control 0:1 0.386 ± 0.009 100.000 0 0.309 ± 0.013 100.000 0 0.269 ± 0.005 100.000 0

Extract 1:0 0.110 ± 0.002 28.562 3 0.184 ± 0.007 59.521 2 0.144 ± 0.003 53.671 2

Extract 1:1 0.098 ± 0.001 25.324 3 0.294 ± 0.013 95.526 1 0.114 ± 0.003 42.658 3

Extract 1:2 0.089 ± 0.002 22.959 4 0.313 ± 0.016 101.334 0 0.267 ± 0.022 99.395 0

Extract 1:4 0.106 ± 0.002 27.364 3 0.274 ± 0.009 88.637 1 0.374 ± 0.019 138.987 0

Extract 1:8 0.223 ± 0.009 57.869 2 0.292 ± 0.012 94.379 1 0.319 ± 0.015 118.587 0

4. Conclusions

Thus, polymerization of MMA in the aqueous dispersion of collagen in the presence of
tri-n-butyl borane and p-quinone (2,5-DTBQ, BQ, DQ, and NQ) leads to the formation of a
grafted cross-linked copolymer of collagen and poly(methyl methacrylate). The quantity of
unreacted monomer, homopolymer, and the proportion of grafted PMMA depends on the
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inhibitory effect of p-quinone, which is consistent with the data obtained for (co)polymers
of alkyl(meth)acrylates and styrene in the presence of the alkylborane–p-quinone system.
These copolymers tend to biodegrade when exposed to certain enzymes, are non-toxic,
and promote the growth of cells. At the same time, collagen denaturation occurring at
high temperatures does not worsen the obtained characteristics. Based on the results, we
can present our research as a chemical model of scaffolds. By comparing the copolymer
characteristics with the composition of the polymerizing mixture and synthesis conditions,
we determined that the optimal method for synthesizing the scaffold precursor involves
creating a collagen and PMMA copolymer at 60 ◦C in a 1% acetic acid dispersion of
fish collagen, with a mass ratio of components: collagen:MMA:TBB:2,5-DTBQ equal to
1:1:0.015:0.25.
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