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Abstract: The degradation of drugs is a substantial problem since it affects the safety and effectiveness
of pharmaceutical products, as well as their influence on the environment. A novel system of three
potentiometric cross-sensitive sensors (using the Donnan potential (DP) as an analytical signal) and
a reference electrode was developed for the analysis of UV-degraded sulfacetamide drugs. The mem-
branes for DP-sensors were prepared by a casting procedure from a dispersion of perfluorosulfonic
acid (PFSA) polymer, containing carbon nanotubes (CNTs), whose surface was preliminarily modified
with carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. A correlation between the
sorption and transport properties of the hybrid membranes and cross-sensitivity of the DP-sensor
to sulfacetamide, its degradation product, and inorganic ions was revealed. The analysis of the
UV-degraded sulfacetamide drugs using the multisensory system based on hybrid membranes with
optimized properties did not require a pre-separation of the components. The limits of detection of
sulfacetamide, sulfanilamide, and sodium were 1.8 × 10−7, 5.8 × 10−7, and 1.8 × 10−7 M. The relative
errors of the determination of the components of the UV-degraded sulfacetamide drugs were 2–3%
(at 6–8% relative standard deviation). PFSA/CNT hybrid materials provided the stable work of the
sensors for at least one year.

Keywords: Donnan potential; potentiometric multisensory system; PFSA; functionalized CNTs;
hybrid material; ultrasonic treatment; ion transport; sulfacetamide; sulfanilamide; degraded drug

1. Introduction

The degradation of the active ingredients of pharmaceutical drugs and the presence
of related organic impurities in their content are serious problems. This is due to the fact
that some side components may greatly affect the safety and effectiveness of drugs. High-
performance (HP) liquid chromatography (LC) with UV detection [1,2], reversed-phase
HPLC with photodiode array [3–5], UV [6,7] or fluorescence [7] detectors, HP thin-layer
chromatography with densitometry [1,2,4], capillary zone electrophoresis [8–10], and spec-
trophotometry combined with chemometrics [11–16] can be used to control the degradation
and purity of drugs. At the same time, there are two main approaches to the analysis. In
the first case, active ingredients are determined in the presence of side components so that
the content of the latter does not influence an analytical signal [1–3,8,11,12]. The second
approach is the simultaneous determination of drug components, including related organic
impurities and degradation products [4–7,9,10,13–16].

With regard to rapidity, high precision in a wide range of concentrations, low reagent
consumption, relatively low cost, and convenience, electrochemical sensors are attractive
for the analysis of pharmaceutical drugs.

Voltammetric sensors both for the determination of active ingredients in the presence
of side components and for their simultaneous determination are known. For example,
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voltammetric sensors based on glass carbon electrodes, modified by a nanocomposite of
nitrogen-doped hollow carbon nanospheres wrapped with MoS2 nanosheets [17] or by
a chitosan-covered hybrid composite based on reduced graphene, palladium, and gold
nanoparticles [18], were developed for the simultaneous determination of acetaminophen
and its primary hydrolytic degradation product (4-aminophenol). Paste electrodes are
widely used for the development of voltammetric sensors. A paste electrode made of
glass carbon nanospheres containing a CeO2–ZnO–chitosan composite provided the si-
multaneous determination of acetaminophen and 4-aminophenol as well [19]. Carbon
paste electrodes modified with C18 silica were described for the simultaneous determina-
tion of lidocaine and its metabolite (2,6-dimethylaniline) [20]. Paste electrodes based on
carbon nanotubes (CNTs) were developed for the determination of butenafine [21] and
naproxen [22] in the presence of their degradation products. The selective determination
of lurasidone in the presence of its hydrolytic and oxidative degradation products was
achieved using a screen-printed electrode made of graphite ink containing FeO nanoparti-
cles and reduced graphene oxide [23]. The absence of the interfering influence of potential
hydrolytic degradants of new carbapenems (meropenem and ertapenem) was revealed
using a pencil graphite electrode modified with poly (bromocresol green) [24].

The potentiometric selective determination of active ingredients in pharmaceutical
drugs is possible mainly due to the introduction of ion pairs of analytes into a poly (vinyl
chloride) (PVC) membrane. Therefore, a sensor with an inner reference solution based
on tetrakis (4-chlorophenyl) borate used as an ionophore was developed for the selective
determination of eszopiclone [25]. The same cation exchanger along with 2-hydroxy propyl-
β-cyclodextrin were introduced into the PVC membrane of solid contact potentiometric
sensors for the determination cyclopentolate hydrochloride and phenylephrine hydrochlo-
ride in the presence of their alkali and oxidative degradation products, respectively [26].
Solid contact sensors, prepared by the traditional method and by screen-printing, showed
high selectivity to bromazepam owing to the use of the PVC membrane containing ion
pairs of the analyte with tetraphenylborate [27].

The simultaneous determination of the key and side components of drugs using
different methods is complicated by the presence of the same structural moieties of the
analytes, which are relevant to the formation of the analytical signal. This makes it difficult
to discriminate between the responses for each component of the analysis object. The use
of multidimensional mathematical methods for data processing may be the solution to the
problem. This approach is used in spectrophotometry very successfully [13–16]. In the
case of electrochemical methods, chemometric techniques are generally combined with
arrays of cross-sensitive sensors. This is called a multisensory approach. It allows the use
of nonspecific sensor materials, which widens the ranges of materials used for the sensor
development and analytes for the determination, as well as the range of the performing
analytical goals [28,29].

It seems prospective to adopt materials from other applications for the sensor devel-
opment. Therefore, the interest in perfluorosulfonic acid (PFSA) membranes and hybrid
materials based on them has not been diminishing for a long time. The PFSA membranes
are made of a hydrophobic perfluorinated polymer matrix and a system of hydrophilic
pores and channels. The main functional properties of the PFSA membranes (high selectiv-
ity to cations and conductivity) are defined by the hydrophilic phase [30–32]. The change in
the conditions for the film formation [33–36] and their subsequent treatment [37,38], as well
as the introduction of dopants of different natures [39–42] allows us to vary the sorption
and transport properties of the PFSA membranes. The chemical and mechanical stability of
the materials based on the PFSA polymers is no less important. Such materials are widely
used in hydrogen–air fuel cells [43], lithium metal batteries [44], vanadium redox flow
batteries [45], and water treatment [46]. The combination of the stated properties is also the
reason for the use of the PFSA membranes in electrochemical sensors. They are used for the
dispersion [47–49] and stabilization [50–52] of active components of the sensors, as well as
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a barrier to interfering components (for instance, for protection against organic pollutants
or oxidant anions) and for the analyte concentration [53–55].

The PFSA membranes modified with CNTs are hybrid materials with a mixed electron-
ionic conductivity and high sorption ability [56,57]. The use of such materials in voltam-
metric sensors provides a simultaneous increase in the sensitivity and selectivity, as well as
a reduction in the exposure to fouling [58,59]. The modification of the CNTs’ surface by
hydrophilic groups allows us to decrease their aggregation in the PFSA polymer disper-
sion and affects their distribution between the hydrophilic and hydrophobic membrane
phases. It provides an opportunity to change the permeability and sorption capacity of the
membranes for the analytes of a different nature. In our previous work [60], the nature
varying of functional groups on the surface of CNTs, which were introduced into the
PFSA membranes, provided the development of an array of potentiometric cross-sensitive
DP-sensors (using the Donnan potential (DP) as an analytical signal) for the analysis of
the combination drug of sulfamethoxazole and trimethoprim. It seems very interesting to
study such materials for the simultaneous determination of the 4-aminobenzenesulfonic
acid derivatives (including sulfacetamide (SAA)) with the primary member of the class
(sulfanilamide (SA)), since it is their main UV-degradation product.

This work was devoted to the development of an array of cross-sensitive DP-sensors
based on hybrid materials consisting of the PFSA membranes, used as the main ion-
conducting phase, and functionalized CNTs, used as a dopant, for the simultaneous deter-
mination of SAA and SA in UV-degraded drugs.

2. Materials and Methods
2.1. Materials and Reagents

A 10 wt% dimethylformamide (DMF) dispersion of the PFSA polymer with equivalent
weight of 1100 in the Li+ form (MF-4SC, Plastpolymer, Saint-Petersburg, Russia) and
multiwall CNTs (Taunit S12, NanoTechCenter, Tambov, Russia) were used. Nitric acid
(special purity, >70%), acetone (reagent grade, >99.75%), hydrochloric acid (special purity,
35–38%), and potassium chloride (reagent grade) were bought in Chimmed (Moscow,
Russia). D-glucose (Ph Eur, hydrated form, Merck, Darmstadt, Germany), p-toluenesulfonic
acid (97.5%, Acros Organics, Geel, Belgium), ethanol (95%, Ferein, Minsk, Belarus), and
3-aminopropyl)trimethoxysilane (97%, Alfa Aesar, Ward Hill, MA, USA) were used. N-[(4-
aminophenyl)sulfonyl]acetamide (>99%) and 4-aminobenzenesulfonamide (>99%) were
supported from Sigma-Aldrich (Saint-Louis, MO, USA). Sulfacyl sodium-SOLOpharm
eye drops (Grotex, Saint-Petersburg, Russia) were analyzed. The deionized water with
resistance 18.2 MΩ and pH 5.41 ± 0.05 was obtained using a Simplicity® Water Purification
System (MerckMillipore, Darmstadt, Germany).

2.2. Functionalization of CNTs

CNT functionalization was performed according to the methods described else-
where [60]. Conditions for the surface modification of CNTs are listed in Table 1. Commer-
cial CNTs were treated with an oxidant to purify them from the catalyst remains used in
their synthesis. This led to the breaking of the C-C bonds on the inner surface of CNTs
and the formation of carboxyl and hydroxyl groups. The purified CNTs were treated with
a mixture of p-toluenesulfonic acid and D-glucose under hydrothermal conditions. As a re-
sult, a sulfonated polymer, which was bound to the CNT surface by stacking interactions,
was synthesized [61]. The carboxyl groups on the CNT surface were the centers for the
amination. To increase their concentration, the purified CNTs were additionally treated
with the oxidant solution upon obtaining CNTs-NH3

+. As a result of the interactions of car-
boxyl groups and (3-aminopropyl)trimethoxysilane, -O-Si(OCH3)2-(CH2)3-NH3

+ groups,
covalently bound to CNTs, were formed.
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Table 1. Conditions for the CNT functionalization [60].

Designation Precursor Treatment Drying

CNTs-COO− 30 wt% HNO3 aqueous solution CNTs:HNO3 (1:8 by weight), 90 ◦C (1 h),
washing with deionized water in air, 90 ◦C (24 h)

CNTs-SO3
− p-toluenesulfonic acid, D-glucose

CNTs-COO−:p-toluenesulfonic acid:D-glucose
(1:1.25:1.25 by weight), hydrothermal treatment
at 180 ◦C (24 h), washing with deionized water

and ethanol

in air, 110 ◦C (24 h)

CNTs-NH3
+

6 M HNO3 aqueous solution CNTs-COO−:HNO3 (1:8 by weight), 90 ◦C (1 h),
washed with deionized water in air, 90 ◦C (24 h)

5 wt% solution of
(3-aminopropyl)trimethoxy-

silane in acetone

CNTs-COO−:(3-aminopropyl)trimethoxysilane
(10:1 by weight), 80 ◦C (0.5 h),
washing with deionized water

in air, 90 ◦C (24 h)

The IEC and FTIR spectra characteristics, proving the effectiveness of the CNT modifi-
cation, as well as their structural characteristics (the values of the outer diameter, established
using SEM and declared by the manufacturer, were the same) are presented in Table 2.
A comprehensive discussion of the data was presented in our previous works [56,57,60].

Table 2. Some characteristics of the functionalized CNTs [60].

Designation CNTs-COO− CNTs-SO3− CNTs-NH3
+

Surface fragments
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IEC, mmol/g 0.014 0.27 0.64

FTIR spectra
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1364 cm−1 -COOH 986 cm−1

-SO3H
1056, 899 cm−1 -NH2

3700–3500 cm−1 -OH
1178 cm−1 1196 cm−1 Si-O

3700–3500 cm−1 -OH 3700–3500 cm−1 -OH

The designations of CNTs-COO−, CNTs-NH3
+, and CNTs-SO3

− (or CNTs-X in general)
were introduced for the functionalized CNTs.

2.3. Membrane Synthesis

Hybrid membranes were fabricated by casting procedure from a DMF dispersion of
CNTs-X and PFSA polymer [60]. CNTs-X for the dispersions were prepared preliminarily
according to the aforementioned methods. The concentration of CNTs-X in the dispersion
was 0.5, 1.0, or 1.5 wt% of the polymer weight. To prepare the dispersion, ultrasonic (US)
treatment with an RK-100 cleaner sonication bath (Bandelin Electronic, Berlin, Germany)
was used. US treatment led to a decrease in viscosity of the dispersions (Table 3) due
to deagglomeration and reduction in the average molecular weight of the polymer [62].
A special cell was used for the membrane casting [60]. The PFSA polymer dispersion
without US treatment and the US-treated dispersion of CNTs-X and the PFSA polymer
were simultaneously cast on a glass surface toward each other. The fabricated film included
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unmodified and bulk modified parts (gradient modification) with a narrow intermediate
part between them. The latter was formed as a result of mixing of the dispersions with and
without the dopant. The removal of the solvent was performed using a vacuum-drying
oven (Jeio Tech, Daejion, Korea). The films were hot-pressed to improve their endurance.
The obtained membranes were conditioned and converted into the K+ form. Conditions
for every step of the membrane synthesis and preparation for work are listed in Table 3.

Table 3. Conditions for the membrane preparation [60].

Designation Precursor Treatment,
Viscosity Film Formation Drying, Pressing Conditioning

PFSA 10 wt% DMF
dispersion of the

PFSA polymer in the
Li+ form

-,
82.5 ± 0.4 mPa·s

Casting on
a glass surface

Drying in vacuum at
60 ◦C (4 h),

80 ◦C (12 h), 110 ◦C
(4 h), hot-pressing at

5 MPa,
110 ◦C (3 min)

5 wt% HCl solution
at room temperature
(1.5 h), washing with
deionized water, 2 M
KCl solution (72 h),

washing with
deionized water

PFSA-US
US, 35 kHz,

≤50 ◦C (45 min),
64.6 ± 0.6 mPa·s

PFSA/CNTs-X

DMF dispersion of
CNTs-X and PFSA

polymer
(10 wt%) in the

Li+ form

US, 35 kHz,
≤50 ◦C (45 min),

58–62 mPa·s
Casting two

dispersions on
a glass surface

toward
each other

10 wt% DMF
dispersion of the

PFSA polymer in the
Li+ form

-,
82.5 ± 0.4 mPa·s

Additionally, uniformly modified PFSA/CNTs-X membranes were synthesized for the
estimation of the sorption properties and diffusion permeability. Membranes prepared from
the PFSA dispersion without US treatment and the PFSA dispersion with US treatment
were the reference samples (Table 3).

The designations of the PFSA/CNTs-COO−, PFSA/CNTs-NH3
+, and PFSA/CNTs-

SO3
− (or PFSA/CNTs-X in general) were introduced for the hybrid membranes.

2.4. Apparatus and Experiment

The ion-exchange capacity (the IEC values are given per 1 g of a dry membrane
or the CNTs-X powder) of the materials was determined by titration. The end of the
titration was detected using an Ekonix-Expert 001 pH-meter (Ekonix-Expert, Moscow,
Russia). Preliminarily, the membranes, conditioned at 150 ◦C for 30 min, were weighed.
The weighed samples of 0.1–0.2 g of the PFSA membranes in the dry state or the powder
of CNTs-X were used for the experiments. The PFSA membranes were placed into 50 mL
of a 0.1 M NaCl solution, while the powder of CNTs-COO− or CNTs-SO3

− in 10 mL of
a 0.5 M NaCl solution, and CNTs-NH3

+ in 10 mL of a 0.1 M HCl solution. The titration was
conducted after 4 h using a 0.05 M NaOH solution.

The change in the membrane weight upon heating from 20 ◦C to 150 ◦C was established
for the estimation of the water uptake. A Netzsch-TG 209 F1 thermal balance (Netzsch,
Selb, Germany) was used. The amount of water molecules per 1 sulfonic acid group
(n(H2O/–SO3

−)) was calculated using the membrane IEC and water uptake.
The diffusion permeability was studied at ~25 ◦C for a membrane dividing 0.02 M KCl

and 0.5 M KCl solutions. The composition of the solutions was controlled by performing
conductometric measurements using an Ekonix-Expert 002 conductometer.

A Vertex 70 FTIR spectrometer (Bruker, Mannheim, Germany) was used for the
analysis of solid substances of the analytes, their solutions, and solutions of the drugs.
Measurements for solid substances were performed relative to air, while, for drug solutions,
the measurements were performed relative to deionized water. Additionally, FTIR spectrum
of the solution of the UV-degraded drug was obtained relative to the untreated drug
solution. FTIR spectra of deionized water and aqueous solutions were registrated in
attenuated total reflection mode.
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A Shimadzu UV-1800 spectrometer (Shimadzu, Kyoto, Japan) was used for the spec-
trophotometric analysis of the drugs.

A DP-sensor consisted of a reference electrode, a reference solution (1 M KCl), and
an ion-selective membrane in the K+ form, which connected the reference and test solutions
as a bridge [63].

The depth of membrane immersion into the solutions was no greater than 0.3 cm
while its length was 6 cm. A significant increase in the distance between membrane inter-
faces with the solutions eliminated transmembrane transfer and minimized the diffusion
potential. A statistically constant value of the circuit voltage was established in several
seconds. The time of the electrolyte diffusion through the membrane (taking into account
the membrane permeability of P ≈ 10−7 cm2/s) exceeded the time of quasi-equilibration
significantly. Therefore, the diffusion potential in the membrane phase consisted of two dif-
fusion potentials in the surface layers of the membrane parts which were in contact with
the solutions. The diffusion potential in the membrane surface layer, which contacted the
concentrated reference solution, was eliminated owing to the concentration closeness of
the outer and inner solutions. The DP at this interface was low because of the same reason.
The concentration equilibration of the ions at the membrane interface with the diluted test
solution was limited by the Donnan exclusion. Thus, the main contribution in the circuit
voltage was the DP at the membrane interface with the test solution.

To provide the aforementioned conditions for the measurement of the DP-sensor ana-
lytical signal, the membranes were gradient-modified. The end of the modified membrane
part was in contact with the test solution while the unmodified one was in contact with the
reference solution. As a result of that, the DP at the membrane interface with the reference
solution was independent from the dopant concentration and nature. The membrane modi-
fied and unmodified parts shared a thin intermediate part (no thicker than 0.5 cm). It did
not affect the DP-sensor analytical signal, since the composition of the membrane during
the measurement changed only in the surface layer at the interfaces with the solutions.

For the simultaneous estimation of the DP at the interfaces of several membranes
with the test solution, the method, described elsewhere [63], was used. The cell included
one section for the test solution connected with membranes to several sections for the
reference solutions. The cell construction provided the measurement simultaneously for
up to 8 membranes. The voltage values between a reference electrode, contacting the test
solution, and each of reference electrodes, contacting the reference solution, were measured
using an analog-to-digital transmitter multichannel potentiometer. Additionally, the pH of
the test solutions was measured. The silver chloride electrodes (ESr-10103) and the glass
electrode (ES-10301/4) from Econix-Expert were used.

2.5. Model Solutions and Pharmaceutical Solutions

The analytes were SAA and its primary UV-degradation product SA (Equation (1)).
Some characteristics of SA and SAA are listed in Table 4.

Polymers 2023, 15, x FOR PEER REVIEW 6 of 20 
 

 

solution. FTIR spectra of deionized water and aqueous solutions were registrated in at-
tenuated total reflection mode. 

A Shimadzu UV-1800 spectrometer (Shimadzu, Kyoto, Japan) was used for the spec-
trophotometric analysis of the drugs. 

A DP-sensor consisted of a reference electrode, a reference solution (1 M KCl), and 
an ion-selective membrane in the K+ form, which connected the reference and test solu-
tions as a bridge [63]. 

The depth of membrane immersion into the solutions was no greater than 0.3 cm 
while its length was 6 cm. A significant increase in the distance between membrane inter-
faces with the solutions eliminated transmembrane transfer and minimized the diffusion 
potential. A statistically constant value of the circuit voltage was established in several 
seconds. The time of the electrolyte diffusion through the membrane (taking into account 
the membrane permeability of P ≈ 10-7 cm2/s) exceeded the time of quasi-equilibration sig-
nificantly. Therefore, the diffusion potential in the membrane phase consisted of two dif-
fusion potentials in the surface layers of the membrane parts which were in contact with 
the solutions. The diffusion potential in the membrane surface layer, which contacted the 
concentrated reference solution, was eliminated owing to the concentration closeness of 
the outer and inner solutions. The DP at this interface was low because of the same reason. 
The concentration equilibration of the ions at the membrane interface with the diluted test 
solution was limited by the Donnan exclusion. Thus, the main contribution in the circuit 
voltage was the DP at the membrane interface with the test solution. 

To provide the aforementioned conditions for the measurement of the DP-sensor an-
alytical signal, the membranes were gradient-modified. The end of the modified mem-
brane part was in contact with the test solution while the unmodified one was in contact 
with the reference solution. As a result of that, the DP at the membrane interface with the 
reference solution was independent from the dopant concentration and nature. The mem-
brane modified and unmodified parts shared a thin intermediate part (no thicker than 0.5 
cm). It did not affect the DP-sensor analytical signal, since the composition of the mem-
brane during the measurement changed only in the surface layer at the interfaces with the 
solutions. 

For the simultaneous estimation of the DP at the interfaces of several membranes 
with the test solution, the method, described elsewhere [63], was used. The cell included 
one section for the test solution connected with membranes to several sections for the ref-
erence solutions. The cell construction provided the measurement simultaneously for up 
to 8 membranes. The voltage values between a reference electrode, contacting the test so-
lution, and each of reference electrodes, contacting the reference solution, were measured 
using an analog-to-digital transmitter multichannel potentiometer. Additionally, the pH 
of the test solutions was measured. The silver chloride electrodes (ESr-10103) and the glass 
electrode (ES-10301/4) from Econix-Expert were used. 

2.5. Model Solutions and Pharmaceutical Solutions 
The analytes were SAA and its primary UV-degradation product SA (Equation (1)). 

Some characteristics of SA and SAA are listed in Table 4. 

 

(1) 

  

O O O

NS

NH2

UV radiation
n

O O

N HS

NH2
H

O
CH3

OH

O O O

NS

NH2

+(n-m) + m m (1)

Precisely weighed amounts of pure substances were used to prepare calibration solu-
tions. The model solutions for potentiometry contained SAA− anions, SA molecules, Na+

cations, and water dissociation products (pH 4.68–10.56). The concentrations of SA, SAA,
and NaOH were in the range of 1.0 × 10−5–1.0 × 10−3 M. For the spectrophotometric tech-
nique, the model solutions contained SAA molecules with concentrations from 1.0 × 10−5

to 4.0 × 10−5 M and SA molecules with concentrations from 0.2 × 10−5 to 0.8 × 10−5 M.
Moreover, an acetate buffer solution (pH = 4.0) was added.
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Table 4. Some characteristics of SA and SAA (P is the partition coefficient between octanol and water,
and DpH=7 is the distribution coefficient at pH = 7).

Characteristics SA SAA

Dissociation constant pKa1 = 2.40,
pKa2 = 10.43 [64]

pKa1 = 1.78,
pKa2 = 5.38 [64]

Log P −0.67 [65] −0.96 [65]

Log DpH=7 −0.67 [65] −2.24 [65]

Mole fractions at pH = 7 1.00 SA 0.98 SAA−

0.02 SAA

The drug was subjected to forced degradation. The initial composition of the Sul-
facyl sodium-SOLOpharm eye drops included SAANa·H2O (the SAANa concentration
is 200 mg/mL), Na2S2O3·5H2O (1.0 mg/mL), HCl (for the pH correction), and purified
water. The drug was diluted 500 times with deionized water and treated with UV radiation
for 10 min. To perform potentiometric and spectrophotometric measurements, additional
2-fold and 50-fold dilutions were required, respectively. To perform the spectrophotometric
analysis of the untreated drug, it was diluted 25,000 times.

The data on the conditions of SAA degradation with the formation of SA were found
in literature [66]. Additionally, the analysis of the drug before and after forced degradation
was performed by FT-IR spectroscopy.

The FTIR spectrum of the solid mixture of SAA and SA differed from that of SAA
in the form and intensity of the peaks in the following regions (Figure 1): ~1470 cm−1

(CH3 bending vibrations), ~1300 cm−1 (SO2 asymmetric stretching vibrations), ~1130 cm−1

(SO2 symmetric stretching vibrations), ~1250 cm−1 (N–H bending vibrations and C–N
stretching vibrations), and ~620 cm−1 (O=C–N bending vibrations). Moreover, a new
band at 900 cm−1 (S–N stretching vibration), which is characteristic of SA and is not
observed in the SAA spectrum due to the presence of an acetate substitute of nitrogen atom,
appeared (Figure 1). The FTIR spectra of the aqueous SAANa and SA solutions, established
relative to deionized water, had slightly pronounced differences and low intensity of the
peaks (Figure 2). With a small reliability, it may be said that, in the FTIR spectrum of the
UV-degraded drug solution comparing to that of the SAANa solution, the form of the
peak in the 1100 cm−1 region (SO2 symmetric stretching vibrations) changed because of
the decrease in the SAA concentration and the lack of the corresponding peaks for SA
(Figure 2a). Moreover, in the FTIR spectrum of the UV-degraded drug solution, established
relative to deionized water, the band with a low intensity at 974 cm−1 (S–N stretching
vibrations) and characteristic of the SA solution appeared. The appearance of the band
at 970 cm−1 was also observed in the FTIR spectrum of the UV-degraded drug solution,
established relative to the untreated drug solution (Figure 2b). The low intensity of the
peak in this region was due to the low concentration of SA formed upon degradation.

2.6. Data-Processing Procedures

The DP-sensor calibration characteristics were calculated by the least-square method
according to the algorithm described previously [67]. The dependence of the DP-sensor
analytical signal was described by a multidimensional linear regression equation with a sta-
tistically insignificant scatter between theoretically predicted and experimental values in
the studied concentration range (Equation (2)). The response reproducibility was estimated
as a mean value of the response variance for the matrix of the calibration equations:

∆ϕD = b0 + b1 × pNa + b2 × pH + b3 × pSA + b4 × pSAA, (2)

where ∆φD (mV) is the DP-sensor analytical signal; pNa, pSA, and pSAA are negative
decimal logarithms of the Na+, SA, and SAA− concentration, respectively; and bi (mV/pc)
is the sensitivity coefficient to the Na+, SA, and SAA−, respectively.
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A sensory array for the analysis of the degraded drug included three DP-sensors
with a high sensitivity to the analytes and minimal correlation between the analytical
signals. Moreover, a glass electrode was added into the multisensory system to provide an
opportunity to perform the analysis without pH correction. A system of three calibration
equations was used for the simultaneous determination of Na+, SA, and SAA−. The “3σ”
rule was used for the estimation of limits of detection (LODs) of the analytes.

To perform the spectrophotometric analysis of the initial and UV-degraded drug,
calibrations of Equations (3) and (4) were obtained, respectively. A multidimensional
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regression analysis was used because a satisfactory resolution of the characteristic peaks of
SAA and SA, which are structural analogs, in their UV spectra was not achieved (Figure 3).

A269 = 16.8 × 103·cSAA (3){
A258 = 12.5 × 103 × cSAA + 16.6 × 103·cSA,
A269 = 15.9 × 103·cSAA + 14.8 × 103·cSA,

(4)

where Ai is the absorbance at the i-th wavelength. The wavelengths 258 and 269 nm corre-
sponded to the absorbance maxima of individual solutions of SA and SAA, respectively.
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3. Results and Discussion
3.1. Cross-Sensitivity of the DP-Sensors

The sensitivity of DP-sensors based on the PFSA and PFSA-US membranes in the K+

form to SA molecules was 1.43 ± 0.11 and 3.25 ± 0.14 mV/pc, while, to SAA− anions, it
was 19.82 ± 0.11 and 13.79 ± 0.08 mV/pc, respectively (Figure 4). Both analytes entered
the membrane by non-exchange sorption. The sensitivity to SAA− anions was significantly
higher than to SA molecules despite the effect of the Donnan exclusion. This was due to
the higher hydrophilicity of SAA− anions (Table 4), as well as their facilitated mechanism
of the transfer into the membrane. The latter was owing to the presence in the solutions
of the other mineral ion (Na+) instead of the initial ionic form of the membrane (K+) [63].
SAA− anions entered the membrane due to the formation of hydrogen bonds between
the hydration shells of the charged sulfonamide moieties and the hydration shells of the
counter-ions. The formation of hydrogen bonds between aniline amino groups of the
analytes and sulfonic acid groups of the membrane was also possible.
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the PFSA, PFSA-US, and PFSA/CNTs-X membranes.

The dopant in the PFSA/CNTs-X membranes was mainly located in the hydrophobic
matrix and partially located in the hydrophilic phase owing to the functionalization of
the surface [60]. The presence of the dopant in the pores was proven by an increase in
the IEC of the PFSA/CNTs-SO3

− membranes of up to 1.03 mmol/g and a decrease in
that of the PFSA/CNTs-NH3

+ membranes of down to 0.94 mmol/g (the values are for
the dopant concentration of 1.5 wt%) in comparison with the IEC of the initial membrane
(1.00 mmol/g). The IEC of the PFSA/CNTs-COO− and PFSA-US membranes was the same
(0.97–0.98 mmol/g) and slightly below the initial one. The latter was due to the loss of
some –SO3

− groups as a result of the breaking of the polymer chains upon US treatment
of the polymer dispersion [60]. The dopant parts located in the pores could be the centers
for the electrostatic and stacking interactions with the analytes. The affinity of the dopant
functional groups to the analytes increased in the membrane series of PFSA/CNTs-SO3

−

< PFSA/CNTs-COO− < PFSA/CNTs-NH3
+. An increase in the membrane permeability

to non-exchange sorbed particles (the diffusion permeability) was observed in the same
series (Figure 5). The rate of anion transfer through the PFSA/CNTs-SO3

− membrane
(when the dopant concentration was no greater than 1.0 wt%) was lower than through
the PFSA-US membrane due to the higher concentration of the proton-acceptor groups
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which prevented the anion transfer within the pores. The diffusion permeability of the
PFSA/CNTs-COO− membranes was comparable to that of the PFSA-US membrane. The
introduction of the anion-exchange groups and a partial binding of the –SO3

− groups led
to a sufficient increase in the diffusion permeability of the PFSA/CNTs-NH3

+ membranes.
Moreover, in the work [60], it was proposed that CNTs-NH3

+ were incorporated into
the coils of the polymer macromolecules in the dispersion because of the amphiphilic
nature of both of them and the presence of the opposite-charged groups. As a result,
a well-developed system of pores and channels of the membrane was formed, and the
CNTs-NH3

+ concentration in the hydrophilic phase was increased. This was also favored
by a higher level of the surface functionalization of CNTs-NH3

+ compared to CNTs-COO−

and CNTs-SO3
−. At the same time, the sensitivity of DP-sensors to SA molecules and

SAA− anions increased in the membrane series of PFSA/CNTs-SO3
− < PFSA/CNTs-NH3

+

< PFSA/CNTs-COO− (Figure 4). It is due to the fact that the CNT surface, containing
a small amount of covalently bound carboxyl groups, provides higher availability to the
analytes, whereas –NH3

+ groups on the surface of CNTs were included in the bulk moieties,
which screened the CNT surface, and were partially bound to the membrane –SO3

− groups.
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Figure 5. The amount of water molecules per 1 sulfonic acid group (n(H2O/–SO3
−)) in contact with

water and diffusion permeability (the relative error is below 1.0%) of the membranes in the K+ form
(the CNTs-X concentration was 1.0 wt%).

The influence of the membrane modification on the DP-sensor sensitivity to Na+

cations depended on the nature of the organic analyte, presented in the solutions. The
sensitivity of DP-sensors in the solutions, containing SA molecules, to Na+ cations increased
in the series of PFSA/CNTs-SO3

− < PFSA-US < PFSA/CNTs-NH3
+ < PFSA < PFSA/CNTs-

COO− (Figure 4). It correlated with the change in the amount of water molecules per one
–SO3

− group in the membranes in the series of PFSA/CNTs-SO3
− > PFSA-US > PFSA >

PFSA/CNTs-COO− > PFSA/CNTs-NH3
+, except for the position of the PFSA/CNTs-NH3

+

membrane (Figure 5). Some decrease in the IEC and a significant reduction in the water
uptake of the PFSA/CNTs-COO− and PFSA/CNTs-NH3

+ membranes led to an increase
in the molar concentration of the counter-ions in the membranes and an increase in the
DP-sensor sensitivity to them. However, the increase in the DP-sensor sensitivity to Na+

cations was weakly pronounced for the PFSA/CNTs-NH3
+ membrane since its diffusion

permeability increased and should decrease in the counter-ion transport numbers in the
membrane (Figure 5). In the solutions, containing SAA− anions, the DP-sensor sensitivity
to Na+ cations decreased with the increasing sensitivity of DP-sensors to the organic analyte.
This was an additional proof of the sufficiently high affinity of the membranes to SAA−

anions, the presence of which, in the membrane pores, might decrease the availability of
the functional groups for the ion exchange.



Polymers 2023, 15, 2682 12 of 19

3.2. Characteristics of the Multisensory System

The DP-sensor sensitivity for all membranes to SA molecules and SAA− anions in
the solutions, containing both analytes, was lower (Figure 6). For these solutions, the
dependencies discussed above were the same. Nevertheless, they were less pronounced
than when studying the solutions containing just one of the organic analytes and the alkali
(Figure 4). It seemed that the reason was the steric factor limiting the sorption of the bulk
organic analytes.
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Figure 6. DP-sensor sensitivity to ions in the solutions of SA + SAA + NaOH for the PFSA, PFSA-US,
and PFSA/1.0 wt% CNTs-X membranes.

DP-sensors based on the PFSA-US, PFSA/1.0 wt% CNTs-COO−, and PFSA/1.0 wt%
CNTs-SO3

− membranes were included into a multisensory system for the analysis of
aqueous solutions, containing SAA−, SA, and Na+ as analytes (Table 5). The PFSA/1.0 wt%
CNTs-COO− membrane was chosen since it provided the highest sensitivity of the DP-
sensor to both organic analytes due to the higher availability of the sorption centers. Two
other membranes were selected so that the correlation between the responses of the DP-
sensors based on them and the response of the DP-sensor based on the PFSA/1.0 wt%
CNTs-COO− membrane was the lowest.

Table 5. The characteristics of the multisensory systems based on the PFSA-US, PFSA/1.0 wt%
CNTs-COO−, and PFSA/1.0 wt% CNTs-SO3

− membranes for the determination of SAA−, SA and
Na+ in aqueous solutions.

Characteristic

Membrane Composition

PFSA-US PFSA/1.0 wt%
CNTs-COO−

PFSA/1.0 wt%
CNTs-SO3−

ε, mV 6 7 6

D, mV2 17 16 18

Drift, mV/h 4 insignificant insignificant

Response time, min <1

pH (working range) 4.68–10.56

c, M (working range) 1.0 × 10−5–1.0 × 10−3

Stability, month ≥12

LOD, M 1.8 × 10−7/5.8 × 10−7/1.8 × 10−7 (SAA−/SA/Na+)

RSD, % (n = 4, p = 0.95) 5–18/4–13/4–20 (SAA−/SA/Na+)

Relative error, % 5–10/6–17/1.7–9 (SAA−/SA/Na+)
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The composition of the membranes and their preparation conditions did not sig-
nificantly affect the time of the DP-sensor response. Using chronopotentiometry, it was
established that the change of the response value after several seconds of the DP-sensor
contact with the analyte solution was no greater than the scatter upon repetition of the
experiment. The drift of the DP-sensor response after quasi-equilibration was insignificant
or varied from 4 to 8 mV/h. The DP-sensor calibration was repeated for several weeks
after membrane preparation (the results are presented in Figure 6). The variance of the
DP-sensor response (D, mV2) was 16–19 mV2. The scatter (ε, mV) between theoretically
predicted and experimental values varied from 6 to 7 mV. After a long-term work with
the membranes, a recalibration of the multisensory system (the comparison of the initial
and re-established calibrations is given in Table 5) was carried out. This allowed us to
conclude that degradation and fouling of the membranes after a long period of their use
in the DP-sensors were not observed if the storage and operation conditions were proper
(Table 6). The stability of the sensory characteristics was due to a number of reasons.
Macromolecules of the PFSA polymer were efficiently entangled in the membrane between
each other and CNTs-X particles since the membranes were formed by a casting procedure
from the dispersions in the aprotic solvent. This prevented the leakage of the dopant from
the membrane upon its operation and storage. The treatment of the membranes with KCl
solutions effectively purified them from organic analytes, which could be accumulated in
the membrane part, contacting the test solution. The sorption of the analytes in the mem-
brane bulk was excluded owing to the original organization of the DP-sensor, minimizing
the transmembrane transfer.

Table 6. The values of t-test and F-test criteria upon the recalibration of the multisensory system.

Membrane Composition
b0, mV b1,

mV/pSAA
b2,

mV/pSA
b3,

mV/pNa
b4,

mV/pH t-Test,
f = 8,

p = 0.95

F-Test,
f 1 = 3, f 2 = 5,

p = 0.95t F t F t F t F
PFSA-US 1.71 1.08 0.55 1.09 0.38 1.11 1.61 1.10 1.11 1.08

2.31 8.91PFSA/1.0 wt% CNTs-COO− 0.33 1.06 0.53 1.04 0.09 1.10 0.39 1.07 0.44 1.03

PFSA/1.0 wt% CNTs-SO3
− 0.42 1.13 0.49 1.11 0.23 1.13 0.87 1.11 0.34 1.14

The LODs of SAA−, SA, and Na+ were 1.8 × 10−7, 5.8 × 10−7, and 1.8 × 10−7 M,
respectively. The relative errors of the SAA−, SA, and Na+ determination in the model
solutions were 5–10% (at 5–18% RSD), 6–17% (at 4–13% RSD), and 1.7–9% (at 4–20% RSD),
respectively (Table 5). The highest RSD values for each analyte were established in solutions,
which contained the concentration of the analyte close to the lower limit of the concentration
working range.

3.3. Analysis of the UV-Degraded Drug

The analysis of the Sulfacyl sodium-SOLOpharm eye drops, subjected to forced degra-
dation, was performed using a multisensory system based on the PFSA-US, PFSA/1.0 wt%
CNTs-COO−, and PFSA/1.0 wt% CNTs-SO3

− membranes, as well as by the spectropho-
tometric method. Using the latter, it was established that the concentration of SAANa in
the drug without UV treatment was 200.6 ± 1.2 mg/mL (the error relative to the concen-
tration declared by the manufacturer was 0.5%) while in the UV-degraded drug, it was
184.5 ± 1.7 mg/mL (Table 7). At the same time, the concentration of SA in the UV-degraded
drug was comparable with the error of its determination by spectrophotometry. The use
of the DP-sensor array provided a statistically significant determination of three analytes
in the solution of the UV-degraded drug. The concentrations of SAA−, SA, and Na+ were
(8.1 ± 0.8) × 10−4, (6.7 ± 0.8) × 10−5, and (8.9 ± 0.8) × 10−4 M at a 1000-fold dilution of
the drug. Hence, the content of the UV-degraded drug was calculated to be the following:
190 ± 18 mg/mL of SAANa and 11.5 ± 1.4 mg/mL of SA (Table 8).
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Table 7. The analysis of the Sulfacyl sodium-SOLOpharm eye drops using the spectrophotomet-
ric technique.

Drug
Pretreatment

c, M
(Pharmaceutical Solution)

RSD, %
(n = 4, p = 0.95)

c, mg/mL
(Drug)

SAA SA SAA SA SAANa SA

Dilution 1/25,000,
acetate buffer (pH = 4.0) (3.40 ± 0.02) × 10−5 - 0.3 - 200.6 ± 1.2 -

UV treatment, dilution 1/25,000,
acetate buffer (pH = 4.0) (3.11 ± 0.04) × 10−5 insignificant 1.5 - 184.5 ± 1.7 -

Table 8. The analysis of the Sulfacyl sodium-SOLOpharm eye drops using the multisensory system
based on PFSA-US, PFSA/1.0 wt% CNTs-COO−, and PFSA/1.0 wt% CNTs-SO3

− membranes.

Drug
Pretreatment

c, M
(Pharmaceutical Solution)

RSD, %
(n = 4, p = 0.95)

c, mg/mL
(Drug) Relative Error, %

SAA− SA Na+ SAA− SA Na+ SAANa SA SAANa SA

UV treatment,
dilution 1/1000 (8.1 ± 0.8) × 10−4 (6.7 ± 0.8) × 10−5 (8.9 ± 0.8) × 10−4 6 8 6 190 ± 18 11.5 ± 1.4 3 2

The relative error of the SAANa determination in the UV-degraded drug using the
DP-sensor array relative to the concentration found by spectrophotometry was 3%. Taking
into account the fact that the difference in the SAANa concentrations in the initial and
UV-treated drug was due to the formation of SA, the error of the SA determination using
the DP-sensor array was 2% compared to the spectrophotometry.

3.4. Comparison of the Proposed Sensors with the Reported Ones

In our previous works, multisensory systems with cross-sensitive DP-sensors based
on the PFSA membranes modified with poly(3,4-ethylenedioxythiophene) (PEDOT) or
polyaniline (PANI) were developed for the analysis of drugs of 4-aminobenzenesulfonic
acid derivatives [67] (Table 9). One of the stages of the composite membrane preparation
was their hydrothermal treatment (HT) [68]. The relative errors and RSD of the determi-
nation of the drug components were comparable for the arrays of DP-sensors based on
both the PFSA/CNTs-X membranes, and the PFSA/PANI and PFSA/PEDOT membranes.
Precursors for the preparation of PANI or PEDOT are cheaper and more available, while
varying the conditions of the dopant synthesis provides regulation of their distribution in
the membrane and directed changes in the characteristics of devices based on them. At
the same time, the PFSA/CNTs-X membranes have some advantages over the composite
membranes based on conductive polymers. As already noted, the CNTs-X are located
in the matrix of the PFSA membrane. It almost completely eliminates the possibility of
dopant leakage from the membrane and improves the mechanical properties of the material.
Moreover, the preliminary modification of the CNT surface provides huge opportunities
for the fabrication of materials with new properties to different analytes.

Table 9. Potentiometric sensors for the analysis of 4-aminobenzenesulfonic acid derivatives drugs.

Analyte *
Sensor

Composition
Linear Range, M;

LOD, M
Relative Error, %;

RSD, % Stability Ref.

SAANa PVC membrane with
tetradodecylammonium SAA

1.0 × 10−4.5–1.0 × 10−2;
2.23 × 10−5

0.16–1.99;
- 4 weeks [69]

SAANa, SA
PFSA/PANI,

PFSA/PEDOT

1.0 × 10−4–1.0 × 10−2;
(4.1–7.2) × 10−6 (SAA−),

1.0 × 10−5 (SA)

1.2–1.4 (SAANa),
1.7–4 (SA);

6–7 (SAANa),
8–9 (SA)

≥12 months [67]
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Table 9. Cont.

Analyte *
Sensor

Composition
Linear Range, M;

LOD, M
Relative Error, %;

RSD, % Stability Ref.

PFSA/CNTs–X
1.0 × 10−5–1.0 × 10−3;

1.8 × 10−7 (SAA−),
5.8 × 10−7 (SA)

3 (SAANa), 2 (SA);
6 (SAANa), 8 (SA) This work

SDZ

PVC membrane with bis(tri-
phenylphosphoranilidene)-

ammonium SDZ

1.0 × 10−5–1.0 × 10−2;
4.36 × 10−6

0.7–2.6;
4.6–4.7 - [70]

PVC membrane with MIPs 9.0 × 10−6–1.0 × 10−4;
2.7 × 10−6

0.3–3.7;
0.6–1.4 2 months [71]

SQX
Carbon paste electrode with
2,3,5-triphenyltetrazolium

SQX

5.0 × 10−6–1.0 × 10−2;
3.0 × 10−6

-;
- - [72]

SMX PVC membrane with MIPs 1.0 × 10−7–1.0 × 10−3;
6.3 × 10−8

-;
0.25–0.36 3 months [73]

SMX, TMP

PFSA/PANI with
hydrothermal treatment

1.0 × 10−5–1.0 × 10−3;
1.4 × 10−6 (SMX−),
8.5 × 10−8 (TMP+)

4 (SMX), 5 (TMP);
5 (SMX), 6 (TMP)

≥12 months

[68]

PFSA/CNTs–X
1.0 × 10−5–1.0 × 10−3;

3.5 × 10−7 (SMX−),
1.3 × 10−7 (TMP+)

4 (SMX), 5 (TMP);
6 (SMX), 7 (TMP) [60]

* SDZ—sulfadiazine; SQX—sulfaquinoxaline; SMX—sulfamethoxazole; and TMP—trimethoprim.

To prepare selective potentiometric sensors for the analysis of drugs of 4-aminoben-
zenesulfonic acid derivatives, we use plasticized PVC membranes or carbon paste contain-
ing ion pairs of anion-exchangers with the analytes [69,70,72] or molecularly imprinted
polymers (MIPs) [71,73] (Table 9). The selectivity of the sensors based on anion-exchangers
to the determining 4-aminobenzenesulfonic acid derivatives in the precense of their deriva-
tives was not estimated [70,72] or was not high (the selectivity coefficient KPot

SAANa,SA
was 5.63 × 10−2 M [69]). Some works showed high selectivity when MIPs are used as
ionophores (–logKPot

SMX,SAA and –logKPot
SMX,Sulfasalazine varied from 3 to 4 depending on

the method of their estimation and sensor composition), as well as a wider linear range of
concentrations and lower limits of detection [73] (Table 9). At the same time, the authors
did not always state how they solve such problems of using MIPs such as the complexity
of the bound analyte extraction, the difference in the constants of multiple interaction of
the analyte and reaction centers, as well as non-specific binding with the matrix material. It
should be mentioned that the selective potentiometric sensors [69–73] have a sufficiently
shorter time of stable work than the cross-sensitive DP sensors with the PFSA-based hybrid
and composite membranes (Table 9).

4. Conclusions

A novel multisensory system, using the Donnan potential (DP) as an analytical
signal, was developed for the analysis of UV-degraded sulfacetamide drugs. Mem-
branes for cross-sensitive DP-sensors were prepared by a casting procedure from a dis-
persion of perfluorosulfonic acid (PFSA) polymer, containing carbon nanotubes (CNTs),
which surface was preliminarily modified with –COO−, –SO3

− (in the form of the sul-
fonated polymer), or –O–Si(OCH3)2–(CH2)2–NH3

+ groups. The formation of the mem-
branes from the dispersions of the polymer and the dopant in the aprotonic solvent
(DMF) with a preliminary US treatment provided their high stability. A correlation
between the sorption and transport properties of hybrid membranes and DP-sensor
cross-sensitivity to sulfacetamide, its degradation product, and inorganic ions was re-
vealed. The sensitivity of DP-sensors to SA molecules and SAA− anions increased for
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the membranes, containing CNTs modified with (3-aminopropyl)trimethoxysilanol (be-
cause of the presence of the proton-acceptor groups and the enhanced permeability for
anions of the hybrid membranes) and carboxyl (because of the highest availability of
the dopant surface for interactions) groups. The analysis of the UV-degraded sulfac-
etamide drugs using the multisensory system based on hybrid membranes with opti-
mized properties did not require the pre-separation of the components. The limits of
detection of sulfacetamide, sulfanilamide, and sodium were 1.8 × 10−7, 5.8 × 10−7, and
1.8 × 10−7 M. The errors of the determination of the components of the UV-degraded sulfac-
etamide drugs were 2–3% (at 6–8% RSD). The degradation and fouling of the membranes
after a long-term use in the DP-sensors were not observed.
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