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Abstract: Over the past few decades, the enhancement of polymer thermal conductivity has attracted
considerable attention in the scientific community due to its potential for the development of new
thermal interface materials (TIM) for both electronic and electrical devices. The mechanical elongation
of polymers may be considered as an appropriate tool for the improvement of heat transport through
polymers without the necessary addition of nanofillers. Polyimides (PIs) in particular have some of the
best thermal, dielectric, and mechanical properties, as well as radiation and chemical resistance. They
can therefore be used as polymer binders in TIM without compromising their dielectric properties. In
the present study, the effects of uniaxial deformation on the thermal conductivity of thermoplastic PIs
were examined for the first time using atomistic computer simulations. We believe that this approach
will be important for the development of thermal interface materials based on thermoplastic PIs
with improved thermal conductivity properties. Current research has focused on the analysis of
three thermoplastic PIs: two semicrystalline, namely BPDA-P3 and R-BAPB; and one amorphous,
ULTEMTM. To evaluate the impact of uniaxial deformation on the thermal conductivity, samples of
these PIs were deformed up to 200% at a temperature of 600 K, slightly above the melting temperatures
of BPDA-P3 and R-BAPB. The thermal conductivity coefficients of these PIs increased in the glassy
state and above the glass transition point. Notably, some improvement in the thermal conductivity
of the amorphous polyimide ULTEMTM was achieved. Our study demonstrates that the thermal
conductivity coefficient is anisotropic in different directions with respect to the deformation axis and
shows a significant increase in both semicrystalline and amorphous PIs in the direction parallel to the
deformation. Both types of structural ordering (self-ordering of semicrystalline PI and mechanical
elongation) led to the same significant increase in thermal conductivity coefficient.

Keywords: thermal interface materials; polyimides; thermal conductivity; mechanical elongation;
molecular dynamics simulations

1. Introduction

The development of new thermal interface materials (TIM) with improved thermal
conductivity properties is important in order to address various issues in modern elec-
tronic and electrical industries. These issues primarily relate to the need to minimize the
size of and lighten electronic components [1,2], including computers, consumer devices,
telecommunication infrastructure, LED lighting products, renewable energy, automotive
engineering, various types of industrial and medical equipment, wireless systems, and
solutions for 5G technology [3]. These materials allow for the removal of heat from the heat
source, extend the lifecycle of devices, and reduce the cost of maintenance and emergency
repair [3,4]. Recently, the use of polymers has become critical in the manufacture of new
devices due to their lower specific mass fraction, convenient recycling and usage capabil-
ities, and good dielectric characteristics [1,2]. The thermal conductivity coefficient (κ) of
polymers, however, is still rather low, lying in the range from ~0.1 to ~0.5 W/m·K [5,6].
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In particular, as noted above, the ability not only to remove heat from heat sources
but also to preserve excellent dielectric properties is extremely desirable in electronic and
electrical industries when producing new thermal interface materials. Among conjugated
polymers [7], thermoplastic polyimides (PIs) [8–10] can be used for polymer binding, since
they are heterocyclic polymers with one of the best thermal and dielectric properties and are
characterized by good thermal stability, mechanical strength, and chemical resistance. These
polymers are used as films, fibers, nanofibers, membranes, foams, adhesives, and coatings
in various industries, including electronics, aerospace, automotives, and medicine. PIs are
often used as heat-control coatings, as well as protective layers for electronic equipment [11]
due to their low coefficient of thermal expansion. The total global market for polyimides in
2022 was approximately USD 2.31 billion, with the compound annual growth rate (CAGR)
predicted to be 7.8% between 2023 and 2030 [12]. The thermal conductivity of PIs is quite
low, however, in comparison with that of other polymers [13,14], a fact which significantly
hinders the use of these compounds at the heat–dissipation interface in microelectronic
devices. Improving the thermal conductivity of PIs is therefore of great importance.

One possible way to improve the thermal conductivity coefficient of polymers [15,16]
is the addition of various organic [17–19] or inorganic [20,21] nanoparticles with a high
thermal conductivity coefficient. However, the desired thermal conductivity is often paired
with a growth in electrical conductivity, which ultimately degrades the dielectric prop-
erties [22]. For example, the addition of graphene derivatives can improve the thermal
conductivity of materials [17,23]; however, since graphene has a high electrical conduc-
tivity, this could impair the excellent dielectric characteristics of PIs [22,24]. Metal-based
nanoparticles (Al2O3, Fe2O3, etc.) [25–27] are also widely used to improve the thermal
conductivity properties of polymers; nevertheless, similar to graphene derivatives, the
incorporation of metal nanofillers into PI also causes a significant deterioration of their
dielectric properties. Boron nitride particles and their derivatives [20,28–32] can act in some
instances as a substitute for graphene particles to improve the thermal conductivity prop-
erties without losing the dielectric properties of PIs. However, the addition of nanofillers
to multicomponent systems has many technological problems related to the dispersion of
nanoparticles, heat transfer resistance at the nanofiller–polymer interface, and decrease in
the fragility of materials, all of which affect the mechanical properties of polymer nanocom-
posite materials [33]. Therefore, in some instances, it is necessary to change the heat transfer
properties of polymers without the addition of nanoparticles [34,35].

On the one hand, an alternative to adding nanoparticles to polymer binders is to
achieve structural order in polymer sample. With respect to semicrystalline polymers, an
enhancement in the thermal conductivity of these substances can be achieved by isother-
mal (structural ordering) [36,37] or nonisothermal crystallization [38–40]. The thermal
conductivity of the ordered polymer chains may depend on the crystallinity, crystallite
orientation, and size, as well as the orientation of the polymer chain in the amorphous
region [33]. The structural change in the polymer chains induced by the transition from a
disordered amorphous state to a partially or fully ordered state could cause an increase in
the phonon-free path, thereby reducing the number of phonon-scattering centers [41]. The
improvement in the thermal conductivity coefficient of semicrystalline polyethylene (PE)
was found to depend on the crystallinity degree of the samples [42]. Ruan et al. [43] studied
the thermal conductivity properties of liquid crystal PI films and found that the orientation
of polymer chains reduces phonon scattering between polymer chains, which improves the
intrinsic thermal conductivity. Kurabayashi et al. [44] investigated the anisotropy of the PI
films and established that enhancement in thermal conductivity was in the lateral direction.

On the other hand, stretching the polymer sample might lead [34,45,46] to an im-
provement not only in thermal conductivity, but also in other properties [22,47,48] of both
polymers and nanocomposites on their bases. Using different experimental techniques,
Yoon et al. [34] studied the influence of orientation of amorphous BAPP-ODPA PI on the
heat transfer properties. They found that oriented samples, even of amorphous PIs, sig-
nificantly enhanced the thermal conductivity coefficient. The authors suggested that this
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improvement could be attributed to the orientation of the molecular chain and the appear-
ance of π–π interactions between the aromatic fragments of the PI chains. Lin et al. [48]
investigated the influence of draw ratio on the structural and mechanical properties of amor-
phous PIs and showed that the uniaxial deformation of amorphous PIs leads to a change
in their thermophysical properties. Xiang et al. [49] studied amorphous/low-crystallized
PI composite fibers and found an increase in the κ value in these systems, owing to the
orientation of polymer chain and the formation of interchain hydrogen bonds from the wet
spinning or low-ratio thermal drawing process.

A significant increase in the thermal conductivity of the drawn PE nanofibers was
observed after mechanical deformation was applied [50]. Furthermore, for crystallizable
polymers, the additional deformation of ordered samples might further enhance their ther-
mal conductivity [51]. He et al. [52] studied anisotropic thermal transport in crystalline PE.
They found that the thermal conductivity increased in the axial direction with an increase
in strain, while the thermal conductivity decreased in the radial direction upon deforma-
tion. Muthaiah et al. [53] investigated the influence of the strain amplitude on the thermal
conductivity coefficient of amorphous PE at different temperatures to understand the be-
havior of the value of κ upon the deformation up to 400% of the strain. Simavilla et al. [54]
studied the strain dependence of thermal conductivity for PE and polystyrene (PS) en-
tanglement melts. The strong anisotropy of κ values agreed well with the experimental
values. Donovan et al. [55] investigated the influence of the additional off-axis strain on the
thermal conductivity of polypropylene films using frequency-domain thermoreflectance
and molecular dynamics simulations. A significant improvement in the value of κ along
the deformation direction could be regulated by deformation in the orthogonal direction.
Ito et al. [56] found an increase in the thermal conductivity properties of one polymer
chain upon strain application. Generally, mechanical stretching is a useful technique for
increasing the thermal conductivity of polymers for thermal interface materials, although
the degree of improvement could be limited by the intrinsic thermal conductivity of the
polymer and may be characterized by some anisotropy relative to the deformation [57,58].
Previously, computer simulations have made it possible to investigate how even small
changes in the chemical structure of polymers can influence on the performance properties
of thermoplastic PIs [59,60]. However, there is a lack of simulation studies where the
influence of mechanical deformation on the thermal conductivity coefficient was performed
for both amorphous and semicrystalline PIs, despite the fact that these polymers are very
useful for the production of thermal interface materials.

In this study, we investigated the effects of uniaxial stretching on semicrystalline
and amorphous thermoplastic polymers. Two semicrystalline polyimides, BPDA-P3 and
R-BAPB as well as the amorphous polyimide ULTEMTM were considered. To analyze the
effect of uniaxial deformation on the thermal conductivity coefficient of semicrystalline and
amorphous PIs, we determined the values of the thermal conductivity coefficient along and
perpendicular to the deformation direction. The results were compared with the thermal
conductivity properties of unoriented samples. Additionally, with respect to PI BPDA-P3,
a comprehensive comparison of the influence of the type of structural ordering on the
thermal conductivity was performed. The structural ordering of semicrystalline BPDA-P3,
which appeared during uniaxial deformation, was compared with the properties of that
PI self-ordered during 30-µs-long molecular dynamics simulations, which corresponded
to an isothermal crystallization process. A comparative study of the thermal conductivity
of BPDA-P3 polyimide ordered in different ways is extremely important from a computer
simulation point of view, as it allows us to evaluate the difference between the thermal
conductivity coefficients of two differently ordered samples. Thus, a short simulation of
the mechanical stretching of a polymer sample can significantly reduce the simulation
time required for the complete self-ordering of the polymer chains of a semicrystalline
polyimide if the resulting thermal conductivity is the same as during a long simulation
of self-ordering.
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2. Methodology
2.1. Objects of Study

In this study, the thermoconductive properties were simulated for three thermo-
plastic polyimides: semicrystalline BPDA-P3 based on 3,3’,4,4’-biphenyltetracarboxylic
dianhydride (BPDA) and diamine 1,4-bis [4-(4-aminophenoxy)phenoxy]benzene (P3) [61];
semicrystalline R-BAPB based on 1,3-bis-(3′,4-dicarboxyphenoxy)benzene (dianhydride
R) and 4,4′-bis-(4′-aminophenoxy)biphenyl (BAPB diamine) [62,63]; and amorphous poly-
imide ULTEMTM, which is commercially produced by Sabic Innovative Plastics [64]
(Figure 1).
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2.2. Model and Simulation Techniques

In our previous studies [60,65–68], Gromos53a5 force field [69] was successfully used to
simulate the thermophysical, structural, rheological, and mechanical properties of various
PIs. The strong orientation of the polymer chains of semicrystalline PIs BPDA-P3 and
R-BAPB was observed using atomistic models based on this force field for both unfilled
samples [66] and composites reinforced by SWCNT [65,70] or graphene [10,71].

To determine the thermal conductivities of low-molecular-weight paraffin compounds,
we developed a universal approach [72] that can also be applied to polymer systems. In this
case, molecular samples in a semicrystalline state were created in a natural manner during
long-time molecular dynamics (MD) simulations from the amorphous state with the use of
Gromacs package [73], which allows calculations on microsecond time scales. Structural
ordering of polymer chains is a time-consuming and computationally demanding process.
As we have shown [66], the entire unfolding and ordering of polymer chains of an unfilled
sample of semicrystalline PI BPDA-P3, even without electrostatic interactions, requires
approximately one and a half years of continuous simulation employing 64 processors. To
further reduce the required computing power, we used configurations of semicrystalline
BPDA-P3 and R-BAPB samples that had previously achieved structural ordering using
models based on Gromos53a5 force field.

The LAMMPS MD package [74] is widely used to study the heat transfer properties,
since this package implements calculation of the thermal conductivity coefficient by differ-
ent computational methods. However, since the LAMMPS package is much slower than
the Gromacs package, we performed all simulations for the creation of the initial configura-
tions in order to calculate the thermal conductive coefficient in Gromacs. Subsequently, we
changed the model to the LAMMPS format.
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Several factors determine the need to change the model for thermoplastic PIs. The
description of 1–4 van der Waals interactions limits the implementation of the Gromos53a5
force field from the Gromacs package in the LAMMPS package. In the Gromacs package, a
list of various scaling parameters for each type of atom is used to describe 1–4 van der Waals
interactions; however, in the LAMMPS package, only one scaling parameter for 1–4 van der
Waals interactions is used for all types of atoms. Therefore, the previously created ordered
configurations of polymer chains in the Gromos53a5 force field were simulated using a
model in which valence and nonvalence interactions were described using GAFF [75]
force field potentials, with one scaling parameter for 1–4 van der Waals interactions. It
should be noted that the GAFF force field used in our previous study [72,76] showed one
of the best agreements for calculating the thermal conductivity coefficient of paraffin in
the liquid state, as well as good results in simulating the thermal conductive properties of
different PIs [77–79]. Thus, in this study, a corresponding transition was also made from
the Gromos53a5 model to the GAFF model in order to simulate the thermal conductivity of
the ordered samples of the PIs under consideration. The procedure to change the model
consists of several steps; for more details, see the Supplementary Materials. Furthermore,
in the present study, we performed an additional validation of the GAFF force field for
the considered systems to simulate their thermophysical properties (See Section 3). Using
this force field, computer simulations of the studied PIs could reproduce the experimental
value of the thermal conductivity of the ULTEMTM in the glassy state, the experimental
ratio between Tg values of the PIs, and the coefficient of thermal expansion (CTE) of the
considered PIs.

2.2.1. Unordered Polyimide Samples

To accurately verify the use of the GAFF force field for the computer simulation of
the thermoconductivity characteristics of thermoplastic PIs, we created and equilibrated
thermoplastic PI samples in the GAFF force field. We then studied how MD simulations
using PI models based on the GAFF force field could predict their thermodynamic char-
acteristics. To validate the calculation of the partial charge method, which was used to
parameterize the electrostatic interactions in the GAFF force field, the partial charges were
evaluated using two methods prescribed for the GAFF force field: the semiempirical AM1-
BCC approach and ab initio calculations HF/6-31G*(RESP) [75,80]. All the bonded and
nonbonded parameters (except partial charges) of the GAFF force field were implemented
using the ACPYPE program [81]. The AM1-BCC partial charges were calculated using the
sqm package in Ambertools [82]. The RESP partial charges were evaluated using the ab
initio quantum chemistry package Gaussian 09 [83].

As in our previous studies [59,84], each polymer chain has eight repeating units [59].
A polyimide chain with eight repeating units may be considered a Gaussian chain because
it has more than 15 Kuhn segments for all studied PIs. Therefore, the polymer chains for
BPDA-P3, R-BAPB, and ULTEMTM consisted of 658, 658, and 554 atoms, respectively. MD
simulations were carried out using the Gromacs package (v. 2018) [73]. The simulation
step was set to 2 fs. The Lennard-Jones potential (potential 6–12) that was truncated at
0.9 nm [75] was employed to simulate van der Waals interactions. The electrostatic interac-
tions were implemented using the particle mesh Ewald algorithm with a cut-off radius of
0.9 nm [85]. The P-LINCS algorithm [86] was used to constrain only the bond lengths be-
tween carbon and hydrogen atoms. Simulations were performed using NPT ensemble. The
Nosé–Hoover thermostat [87] and the Parrinello–Rahman barostat [88] with temperature
and pressure coupling times of 1 fs and 5 fs, respectively, were used.

The initial configurations of the PI samples were created from the ‘polymer gas’
according to the methodology developed in our previous study [84]. At 700 K, 27 polymer
chains were randomly placed in a periodic box with the side of the box equal to 50 nm.
Then, gradual compression was performed at constant pressure of 50 bar for 50 ns. After
completion of the compression procedure, the pressure was reduced to 1 bar and each
PI sample was equilibrated in the first stage for 3 µs at 700 K. In the second stage, the
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temperature was immediately increased to 800 K, and then the simulation was performed
for 2 µs. Thus, the total equilibration time for each system was 5 µs. During the 5 µs long
run, the average sizes of polymer chains were checked. Equilibration was detected by
determining the average size of the polymer chains (radius of gyration), which achieved a
constant value close to the predicted theoretical value of the size of the polymer molecules in
the melt using the free-joint model (Figure S1 in the Supplementary Materials). Throughout
the equilibration at 800 K, the translational mobility of the polymer chains was sufficient
for the polymer chains to mix well, because the mean squared displacement of the center
of mass of the polymer chains was not comparable with the size of the polymer molecule
as a whole at 700 K, as shown in Figure S2 in the Supplementary Materials.

2.2.2. Mechanically Elongated Samples of Polyimides

The structural ordering of semicrystalline PIs in simulations is observed even at
temperatures slightly higher than the experimental melting temperatures [70,89]. This
modeling is physically valid because the simulation results may provide a higher melting
temperature of the polymer compared to the experimental findings [90]. Similarity was
observed for the increase in glass transition temperature owing to the difference in the time
scales of the cooling procedure between the experiment and computer simulation [59]. It
should be mentioned that both semicrystalline PIs, BPDA-P3 and R-BAPB, are character-
ized by experimental values of melting temperatures close to 577 K [61] and 593 K [91],
respectively. Therefore, we achieved in simulation precrystalline-oriented structures of
samples at a temperature of 600 K.

The unordered PI samples were subjected to uniaxial deformation at 600 K. During
the deformation, the PI samples BPDA-P3, R-BAPB, and ULTEMTM were elongated with
a strain rate γd = 10−3 nm/ps (~1.8 × 108 s−1) in the x direction, similar to [92]. The
stretching duration was selected such that the sample size increased by 200% [93] over the
original size, representing a threefold increase.

In order (i) to compare the results of the thermal conductivity calculation of the
semicrystalline polyimides BPDA-P3 and R-BAPB ordered by mechanical deformation,
as well as (ii) to study the difference between the thermal conductivity coefficients of
the deformed BPDA-P3 and the self-ordered BPDA-P3 during 30 µs long computer sim-
ulations [66], the previously equilibrated samples of BPDA-P3 and R-BAPB using the
model based on Gromos53a5 force field were deformed to create mechanically ordered
samples [60]. For the amorphous polyimide ULTEMTM, the unordered samples created
by employing a model based initially on the GAFF force field were elongated at 600 K.
The deformed samples of considered PIs were then further simulated at 600 K (models
based on the Gromos53a5 force field were used for BPDA-P3 and R-BAPB; model based
on the GAFF force field was used for ULTEMTM). During these additional simulations,
the polyimide chains of BPDA-P3 unfolded and aligned relative to each other, while the
PI chains of R-BAPB and ULTEMTM remained practically unchanged (Figure S3 in the
Supplementary Materials).

To estimate the degree of elongation during and after deformation, we calculated the ne-
matic order parameter SN of the end-to-end vector of the polymer molecule. SN is determined
as the largest eigenvalue of the nematic order tensor Sαβ = 1/Nch ∑Nch

i=1
3
2
→
u i∝
→
u iβ − 1

2 δαβ,

where Nch is the number of chains,
→
u is a unit vector parallel to the end-to-end vector of

the i-th chain, δ is the Kronecker delta, and α, β = x, y, or z are coordinates [70]. Calculated
<SN> mean value of nematic order parameter after additional simulation following sam-
ple deformation for semicrystalline BPDA-P3 was 0.96, for semicrystalline R-BAPB was
0.62, and for amorphous ULTEMTM was 0.59 (Figure S3 in the Supplementary Materials).
Snapshots of the instance configurations of some PI samples are shown in Figure 2.
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simulation following sample elongation.

2.2.3. Cooling down of Polyimide Samples from the Melt to the Glassy State

To study the thermal conductivity coefficients of thermoplastic PIs for unordered and
ordered samples in glassy and melt states, simulations were carried out at temperatures
well below (T = 290 K), very close to (T = 600 K), and much higher (T = 800 K) than
the melting temperature. Further, cooling from two different temperatures (T = 600 and
T = 800 K) above the experimental melting points of BPDA-P3 and R-BAPB will allow
us to trace how the thermal history influences on the value of the thermal conductivity
coefficient in the glassy state at room temperature in simulations. The cooling from higher
temperatures (T = 800 K) may reduce the value of thermal conductivity coefficient in a
glassy state, owing to the effect of high temperatures on the orientation of the polymer
chains. This suggestion will be investigated further in this study.

In order to investigate the influence of thermal history on the thermal conductivity
coefficient, instantaneous heating was performed from T = 600 K to T = 800 K to achieve the
highest considered temperature. Then, all samples were simulated for 10 ns at T = 800 K
and after cooled from T = 800 K to T = 290 K at a cooling rate γc = 1.5 × 1011 K/min. The
chosen cooling rate was previously used to study various properties of thermoplastic PIs.
We previously showed [59,92] that cooling at this rate is sufficient to model the properties of
thermoplastic PIs to predict the experimental relationships of thermophysical, mechanical,
and other properties.

As discussed earlier, before the cooling procedure, for the BPDA-P3 and R-BAPB poly-
imide samples ordered during mechanical stretching and self-ordered BPDA-P3 polyimide
samples during a long computer simulation, the Gromos53a5 force-field-based model was
changed to the GAFF force field model. With respect to ordered systems, the samples
were cooled from T = 600 K (the temperature at which ordering was achieved) and from
T = 800 K. When cooling started at T = 600 K, the samples were cooled stepwise from this
temperature to T = 290 K with a cooling rate γc = 1.5 × 1011 K/min. While cooling began at
T = 800 K, for the unordered samples, instantaneous heating was performed from T = 600 K
to T = 800 K, after which the samples were simulated for 10 ns and subsequently cooled
stepwise from T = 800 K to T = 290 K at the same cooling rate.
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2.2.4. Calculation of the Thermal Conductivity Coefficient

First, we should know how the method for calculating the thermal conductivity co-
efficient influences on the simulation results. Thus, to calculate the thermal conductivity
coefficient, equilibrium (EMD) and non-equilibrium (NEMD) molecular dynamics sim-
ulations were performed. Previously [72], when studying the properties of paraffins, it
was found that the EMD method better reproduced the thermal conductivity coefficient
of n-eicosane in the crystalline and liquid states than NEMD. Nevertheless, in this study,
we also verified that EMD and NEMD can be used to predict heat transfer properties. The
parameters of the computer simulation for the PI in LAMMPS (15 April 2020) were similar
to those used in our previous study [72].

In the EMD simulations, the Green–Kubo relation was employed to determine the
thermal conductivity coefficient κ. The calculation of κ value was derived from the total heat

flux vector
→
j , as reported in ref. [94]. The autocorrelation function of heat flow, denoted as

〈
→
j (0)

→
j (t)〉, was integrated to provide the calculation of κ value. The resulting equation

for the thermal conductivity calculation was as follows: κ = V
3kBT2

∫ ∞
0 〈
→
j (0)

→
j (t)〉 [95,96],

where V is the volume of a simulation box, kB is the Boltzmann constant, and T is the
temperature. The heat flux was determined by 1 ns equilibrium molecular dynamics
simulations performed in the microcanonical ensemble (NVE). The heat flux was recorded
at each 1 fs. We used a correlation time of 10 ps to derive the autocorrelation functions of the
heat flux [97]. In order to obtain a reliable estimate of the heat flow, we employed a virial
correction to the many-body potentials [97,98]. The calculation was carried out at three
distinct temperatures: significantly below (290 K), close to (600 K), and significantly higher
(800 K) than the melting temperature. The final value of thermal conductivity coefficient κ
was computed by taking the mean of the three distinct samples.

The determination of the thermal conductivity coefficient κ in NEMD simulations
involves the use of a methodology that relies on the creation of a heat flux gradient within
the system. The present research employs the reverse non-equilibrium molecular dynamics
(r-NEMD) technique, wherein heat flux is produced via the transfer of kinetic energy
between atoms located in separate compartments of a simulation box [99,100]. The atoms
that were moving at the slowest rate inside the ‘hot’ layers were the ones that participated
in an exchange with the atoms that were moving at the fastest rate within the ‘cold’ layers.
The frequency at which the interchange of velocities takes place guarantees that the entire
kinetic energy of the system is preserved. When establishing a consistent temperature
gradient within the given system, the thermal conductivity coefficient κ is determined
using Fourier’s law, which states that jz = −κ (dT/dz). Here, jz is the heat flow in the
defined heat flux direction (such as z), and T is the temperature.

This methodology for NEMD implemented in LAMMPS was employed to determine
the thermal conductivity coefficient κ. The simulation box was partitioned into 20 lay-
ers [100]. The first and last layers were designated as ‘low-temperature’ layers, while the
eleventh layer was designated as a ‘high-temperature’ one. The thermal conductivity of
the infinite box was determined by extrapolating the reciprocal of the thermal conductivity
(κ−1) as a function of the reciprocal of the system length (L−1) when L−1 = 0 [101,102]. The
dimensions of the periodic box were increased two or three times along the coordinate
axes relative to their original size. For the enlarged systems, 40 and 60 layers were used.
The 21st and 31st layers were correspondingly set as the ‘hot’ layers. The calculation did
not incorporate the nonlinear segment of the temperature profile, owing to a significant
scattering at the boundaries of the heat source and sink.

Note that the implementation of the SHAKE algorithm for constraining hydrogen
bonds during the simulation resulted in significant temperature variation within the NVE
ensemble. To mitigate temperature fluctuations in the NEMD simulation, we conducted
simulations using the canonical ensemble (NVT). As was previously demonstrated [99],
the thermal conductivity coefficient exhibited a deviation of no greater than 10%, and our
calculations are in agreement with these results.
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3. Results and Discussion

From the outset, it is crucial to determine which predetermined methods of partial
charge calculation, namely AM1-BCC or HF/6-31G* (RESP), are best suited to parameterize
the electrostatic interactions of the PI within the GAFF force field. The thermal conductivity
coefficients of PIs were analyzed using the EMD and NEMD calculation methods.

3.1. Validation of GAFF Force Field for Computer Simulation of Polyimides

Unfortunately, the literature does not provide any available data on the experimental
determination of thermal conductivity coefficient κ for the PIs BPDA-P3 and R-BAPB.
An analysis was conducted to compare the outcomes of a computer simulation with the
empirical thermal conductivity coefficient of PI ULTEMTM. The κ value of the polyimide
ULTEMTM provided by the Sabic Innovative Plastics website [64] was selected for compari-
son with the simulation results. The value of κ is 0.220 W/(m·K) at room temperature.

To make a quantitative comparison between the experimental and simulation outcomes
of κ values, the relative percentage deviation was computed as

(
κsim − κexp)/κexp × 100% of

calculated thermal conductivity values κsim from the experimental thermal conductivity
value κexp. The results are presented in Table 1.

Table 1. The thermal conductivity coefficient values κ and the relative percentage deviation(
κsim − κexp

)
/κexp × 100% of simulated thermal conductivity coefficient values κsim from the ex-

perimental thermal conductivity coefficient value κexp of PI ULTEMTM at 290 K were calculated by
different thermal conductivity coefficient calculation methods (EMD or NEMD). For the considered
systems, partial charges were computed using different partial charge calculation methods (AM1-BCC
or HF/6-31G* (RESP)).

Partial Charge Calculation Method AM1-BCC HF/6-31G* (RESP)

Thermal conductivity calculation methods EMD NEMD EMD NEMD
Thermal conductivity of ULTEMTM, T = 290 K 0.284 ± 0.005 0.296 ± 0.001 0.265 ± 0.001 0.339 ± 0.001(

κsim − κexp
)

/κexp × 100% 29.1% 34.5% 20.5% 54.1%

Based on a comparative analysis of the thermal conductivity coefficient of PI ULTEMTM

at room temperature, the following conclusions can be drawn. All computational tech-
niques produced a relative percentage deviation from the experimental value of κ, which
exceeded 20%.

Overall, the NEMD method, which was worse than EMD, predicted the value of κexp.
The EMD method yielded the most accurate thermal conductivity results when partial
charges were assessed using the HF/6-31G* (RESP) method, with a relative percentage
deviation of approximately 20.5% of the calculated κsim value from the experimental
κexp value. The EMD method showed better agreement with the experimental thermal
conductivity coefficient of PI ULTEMTM, which agrees well with the outcome of the study
of the thermal conductivity properties of phase-change materials based on paraffin n-
eicosane [72].

When using EMD, the AM1-BCC approach exhibited worse results by approximately
9% in terms of the relative percentage deviation compared with HF/6-31G* (RESP). The
opposite trend was found for NEMD: the AM1-BCC partial charge calculation method
showed an ~18% better reproduction of the experimental value of the ULTEMTM thermal
conductivity coefficient than HF/6-31G*(RESP). However, the relative percentage deviation
from the experiment for NEMD was much higher than that for EMD. Nevertheless, the
disparity in the relative percentage deviation between AM1-BCC and HF/6-31G* (RESP)
using EMD is rather low. The increase in the thermal conductivity coefficient in the
simulation for both the calculation methods EMD and NEMD, and for the two partial charge
calculation methods compared to the experimental value of κ, is qualitatively consistent
with a small overestimation of the thermal conductivity coefficient, as previously shown for
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all-atom force fields [72]. This improvement in the thermal conductivity coefficient could
be caused by the presence of additional vibrational degrees of freedom for all-atom-based
models capable of enhancing phonon transport.

As a result, we conducted further research to determine how these partial charge
calculation methods can accurately replicate some of the main thermal–physical charac-
teristics (coefficients of thermal expansion [59] and glass transition temperatures [103])
of the studied PIs. Consequently, as in our previous studies [104,105], (i) the ability of
various partial charge parameterization methods to accurately replicate the coefficient
of thermal expansion (CTE) in the glassy state was studied, and (ii) a comparison was
made between the ratio of the glass transition temperatures and the corresponding ex-
perimental ratio (Figures S4–S5 and Tables S1–S2 in the Supplementary Materials). The
results obtained revealed that the use of the HF/6-31G* (RESP) method reproduces the
CTE value of PI ULTEMTM in the glassy state better than the AM1-BCC calculation, and
the ab initio method HF/6-31G* (RESP) could qualitatively reproduce the experimental
ratio TULTEMTM

g > TBPDA−P3
g > TR−BAPB

g between the Tg of the considered PIs. Therefore,
the HF/6-31G* (RESP) method is more convenient than the AM1-BCC one to study the
influence of ordering on the thermal conductivity coefficient of PI.

The influence of temperature on the thermal conductivity coefficients of PIs was also
studied. It was found that an increase in temperature from 290 to 600 K led to an increase
in the thermal conductivity of the undeformed samples, and there was a slight decrease
in the thermal conductivity coefficient when the temperature rose above the Tg values of
the PIs. The results obtained were in good qualitative agreement with the experimental
results [106], showing that the thermal conductivity coefficient of amorphous polymers
increases with the increasing temperature to the polymer Tg, and a decrease in the value
of the thermal conductivity coefficient was observed at temperatures above Tg. The ratio
between the thermal conductivity coefficients κBPDA−P3 > κR−BAPB > κULTEMTM

of the
considered PIs correlates with the ratio between the maximums of the vibrational density
of state (VDOS) spectra (Figures S6 and S7 in the Supplementary Materials).

It should be noted that for the unordered samples of the considered PIs, cooling from
800 K and 600 K resulted in nearly identical values of the thermal conductivity coefficient at
T = 290 K. Therefore, for comparison with the results of deformed samples and self-ordering
during 30 µs long molecular dynamics simulations, the thermal conductivity coefficients of
the unordered samples will be similar at T = 290 K for systems cooled from T = 800 K and
T = 600 K to T = 290 K.

Thus, the thermal conductivity coefficient κ is calculated using the EMD approach and
the HF/6-31G*(RESP) method for the partial charge calculation will be used.

3.2. Influence of Deformation on the Thermal Conductivity Coefficient

To assess the impact of uniaxial deformation on the thermal conductivity of polyimide-
based TIMs at various temperatures, the thermal conductivity coefficients were calculated
at 290 K, 600 K, and 800 K (Figure 3).

The results showed an increase in the thermal conductivity coefficient κ of the de-
formed samples for semicrystalline BPDA-P3 and R-BAPB, as well as for amorphous
ULTEMTM polyimide at T = 290 K. The strongest improvement in the heat transfer prop-
erties among all the PIs considered was observed for BPDA-P3 (Figure 3). A similar
enhancement in the thermal conductivity coefficient of the amorphous PI [34] and PE [54]
samples was observed.

To estimate the enhancement in the heat transfer properties for mechanically ordered

samples, we computed the relative percentage deviation (κde f−κunord)
κunord

× 100% of the thermal
conductivity coefficient value κdef of the deformed samples from the value κunord for the
unordered samples, as shown in Figure 4.
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Increases in κ values of 33% and 20.9% were observed for semicrystalline BPDA-P3
and R-BAPB PIs, respectively, during cooling from 800 K to room temperature. The weakest
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improvement in the thermal conductivity was observed for the amorphous ULTEMTM.
This PI demonstrated a relative percentage deviation of 12.2% in κ value after deformation.

A much better improvement in the κ value for glassy samples at room temperature
was observed when cooling started at T = 600 K, at which semicrystalline polymers could
be partially ordered. The relative percentage deviation almost doubled for semicrystalline
R-BAPB and amorphous ULTEMTM PIs compared with the cooling that started at T = 800 K.
At the high temperatures of 600 K and 800 K, the effect of mechanical orientation on the
heat transfer properties deteriorated the thermal conductivity coefficient κ of the deformed
samples compared to the values for the unordered PIs, as shown in Figure 4. Note that
the enhancement in thermal conductivity properties of thermally stable polyimides might
improve by only 40% owing to the selected amplitude of mechanical elongation, whereas
increasing the strain amplitude might sufficiently change the heat transport properties of
amorphous and semicrystalline polymers [53].

The elongation of both semicrystalline and amorphous polymer samples can lead to
anisotropy in κ value [41]. Furthermore, we estimated the parallel (||) and perpendicular
(⊥) counterparts of κ value by using the EMD method, as shown in Figure 5.
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Figure 5. Thermal conductivity coefficients κ of polyimides BPDA-P3, R-BAPB, and ULTEMTM at
different temperatures. For deformed samples, the thermal conductivity coefficient was evaluated in
the directions parallel (||) and perpendicular (⊥) to the deformation direction. Systems ‘290_800’ and
‘290_600’ were simulated at T = 290 K. These samples were created by cooling them from T = 800 K
to T = 290 K (‘290_800’) and from T = 600 K to T = 290 K (‘290_600’). System ‘600’ was simulated at
T = 600 K, and system ‘800’ was simulated at T = 800 K.

To quantitatively estimate the anisotropy of the thermal conductivity coefficient of the
deformed polyimide samples, we calculated the relative percentage deviation of the κdef
value for the deformed samples from the κunord value for unordered samples of considered
PIs in different directions relative to the direction of elongation (Figure 6).

Concerning the deformed samples, the relative percentage deviation was evaluated
in the directions parallel (||) and perpendicular (⊥) to the deformation direction. Both
semicrystalline and amorphous PIs showed a significant increase in the κ value for all
glassy PIs in the deformation direction compared to the κ value of unordered samples
(Figures 5 and 6). However, for the semicrystalline PIs BPDA-P3 and R-BAPB, the en-
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hancement in thermal conductivity is much more essential than that of the amorphous
ULTEMTM. It is worth mentioning that if we compare the increase in the thermal conduc-
tivity coefficient in the deformation direction with the enhancement in the average thermal
conductivity coefficient value, one can see a much higher increase along the deformation
direction than along all three directions in average. The relative percentage deviation of
PI BPDA-P3 along the deformation direction was 223.5% (Figure 6), whereas the relative
percentage deviation for the average thermal conductivity coefficient was lower and equals
only to 39.2% (Figure 4).
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coefficient κdef values of the deformed sample from the κunord values for unordered samples of
BPDA-P3, R-BAPB, and ULTEMTM at different temperatures. Systems ‘290_800’ and ‘290_600’ were
simulated at T = 290 K. These samples were created by cooling them from T = 800 K to T = 290 K
(‘290_800’) and from T = 600 K to T = 290 K (‘290_600’). System ‘600’ was simulated at T = 600 K, and
system ‘800’ was simulated at T = 800 K.

In turn, in the perpendicular direction, the reduction in the size of the samples during
deformation impaired the thermal conductivity. Similar results have proven that thermal
conductivity anisotropy has been found for other polymers [42,45,46,53,55]. The improve-
ment [41,45] of the thermal conductivity coefficient in the parallel direction and decrease in
the κ value of PE [45,52,54], PS [54], and PI [44] in the lateral direction have been shown.
An increase of more than 160% in the deformation direction was found for amorphous PE
by the elongation of polymer systems by up to 400%.

Figure 6 shows that the κ value in the perpendicular direction decreased from 40% to
90% for the semicrystalline polyimides BPDA-P3 and R-BAPB, as well as a slightly weaker
decrease from 4% to 55% for the amorphous polyimide ULTEMTM.

An analysis of the influence of uniaxial deformation on κ values of semicrystalline and
amorphous PIs showed that the heat transfer properties of both types of PIs could be signif-
icantly modified by applying uniaxial deformation. Although the average enhancement in
the κ value of the deformed samples for semicrystalline PIs at room temperature was close
to 40%, the increase in the κ value in the direction parallel to the deformation was much
higher than that in the perpendicular direction. In the direction parallel to the deformation,
the enhancement in the thermal conductivity coefficient κ reached approximately 223.5%
for semicrystalline PI and 93.3% for amorphous PI.
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3.3. Comparison of the Influence of Polymer Ordering after Mechanical Elongation and
Self-Ordering during Long Simulation on the Thermal Conductivity Coefficient of Semicrystalline
Polyimide BPDA-P3

In this section, we discuss the effect of the difference of structural ordering on the
thermal conductivity coefficient of semicrystalline polymer chains [107–109]. To investigate
the effect of the difference of structural ordering on the thermal conductivity properties of
semicrystalline PIs, we compared only the κ value of BPDA-P3 samples ordered as follows:
(i) by application of uniaxial elongation to unordered BPDA-P3 samples and (ii) BPDA-P3
samples self-ordered during 30 µs long simulations [66].

Our previous study [66] examined the transport properties of BPDA-P3, a semicrys-
talline PI, during the unfolding and stretching of polymer chains. This ordering was
initiated during tens of microseconds of simulations at temperatures slightly above the
melting point of the PI BPDA-P3 (Tm = 577 K). After 30 µs of computer simulations, when
the nematic order reached a value close to 0.97–0.98 [66], the initial configurations of
the BPDA-P3 samples were compared with those of the mechanically stretched ones. In
the present study, the systems that self-ordered during 30 µs long molecular dynamics
were cooled down similarly from T = 600 K and T = 800 K to 290 K with a cooling rate
γc = 1.5 × 1011 K/min. The temperature dependence of the density of the analyzed sam-
ples ordered during uniaxial elongation and self-ordered during a 30 µs long simulation is
shown in Figure S8 in the Supplementary Materials.

The ordering of the BPDA-P3 samples led to the densification of the systems. Both
ordered samples that were cooled, starting from T = 800 K and T = 600 K, had very
close temperature dependencies of the density. However, cooling from 600 K to room
temperature led to much higher density of the PI samples. The κ values were calculated at
290, 600, and 800 K, as shown in Figure 7.
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simulated at T = 290 K. These samples were created by cooling them from T = 800 K to T = 290 K
(‘290_800’) and from T = 600 K to T = 290 K (‘290_600’). System ‘600’ was simulated at T = 600 K, and
system ‘800’ was simulated at T = 800 K.

As expected, both samples ordered by mechanical deformation and self-ordered
during a 30 µs long simulation demonstrated an increase in the κ value at room temperature
(T = 290 K). At T = 290 K, the samples cooled from T = 800 K showed a higher thermal
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conductivity coefficient in the case of mechanical deformation than the self-ordered samples
during long simulations. Cooling from T = 600 K led to an increase in the κ value in the
glassy state because of the much stronger preservation of the ordered structure of PI BPDA-
P3. The preserved ordering of the polymer chains, which in the end greatly improves
the heat transfer, compared to the situation when the structurally ordered samples cooled
from T = 800 K correspond to a highly mobile melt. Although the samples were cooled
quite rapidly compared to the experimental cooling rate, the instance configurations of
the ordered samples apparently did not undergo substantial derangement of the polymer
chains, and the κ value remained higher than that of the undeformed samples. At higher
temperatures, when the temperature was 600 K or 800 K, the self-ordering during the
30 µs long simulation showed a greater increase in κ value compared to the mechanically
elongated samples.

To analyze how the thermal conductivity coefficient κ is enhanced in terms of quantity,
we calculated the relative percentage deviation (κord−κunord)

κunord
× 100% of the thermal conduc-

tivity coefficient κord value for the ordered samples from that for the unordered ones’ κunord
value, as shown in Figure 8.
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Figure 8. Relative percentage deviation (κord − κunord)/κunord × 100% of thermal conductivity coeffi-
cient κord value for ordered samples from κunord value for unordered samples of BPDA-P3 calculated
at different temperatures. Systems ‘290_800’ and ‘290_600’ were simulated at T = 290 K. These
samples were created by cooling them from T = 800 K to T = 290 K (‘290_800’) and from T = 600 K to
T = 290 K (‘290_600’). System ‘600’ was simulated at T = 600 K, and system ‘800’ was simulated at
T = 800 K.

Analysis of the results in Figure 8 shows that the enhancement in κ values of BPDA-P3
for both ordering cases at room temperature when the samples were cooled from T = 600 K
was rather close, and did not exceed 40%. However, when cooling was carried out from
T = 800 K, the BPDA-P3 samples self-ordered during the long simulation showed a smaller
improvement in the heat transfer properties, whereas the thermal conductivity properties
of the mechanically ordered samples had a weaker deterioration. This might be because
the deformation was carried out at a temperature close to the melting point of BPDA-P3.
The deformation of the PI sample at a temperature close to the transition temperature
may cause heat flux fluctuations that are combined with a decrease in the κ value. It is
worth noting that at T = 600 K, the mechanically ordered samples demonstrated a decrease
in κ value compared to the self-ordered samples over a 30 µs long simulation. When
the temperature increased to 800 K, the heat transfer properties of both ordered systems
increased by approximately 21.4% and 16.5%, respectively. The enhancement in the κ value
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might be related not only to the emergence of order in polymer chains, but also to an
increase in the density of ordered systems [110].

Overall, both types of oriented systems exhibited a rather similar increase in κ value
in the glassy state after fast cooling. The maximum enhancement in the thermal conduc-
tivity properties did not exceed 40% for either case when the cooling started at T = 600 K.
However, when cooling started at T = 800 K, the mechanical deformation of the semicrys-
talline PI BPDA-P3 resulted in a more significant enhancement in the value of the thermal
conductivity coefficient κ compared to κ value of self-ordered systems during a 30 µs long
simulation due to the arbitrarily oriented polymer chains relative to different coordinate
axes. With an increase in temperature (T = 600 K and T = 800 K) greater than Tg, the κ value
of the ordered samples showed a slight decrease in enhancement compared to the κ value
of the ordered sample in a glassy state.

4. Conclusions

The development of new thermal interface materials that combine necessary dielectric
properties with improved conductive properties is an important industrial task. To provide
an overview of this problem, microsecond-scale computer simulations were performed
to investigate the thermal conductivity of TIMs based on three thermoplastic PIs. The
influence of mechanical deformation performed in melting state on the thermal conductivity
coefficient κ of three thermostable PI including two semicrystalline BPDA-P3 and R-BAPB
as well as amorphous ULTEMTM was considered at different temperatures.

To study the thermal conductivity properties of the thermoplastic polyimides, the
choice of the partial charge calculation method for their model based on the GAFF force
field as well as the choice of thermal conductivity coefficient calculation method were
performed. The best agreement with thermophysical properties of considered PIs was
obtained for the HF/6-31G* (RESP) method using EMD.

The influence of mechanical deformation of polymer samples on the thermal conduc-
tivity coefficient of semicrystalline and amorphous polyimides was studied. The samples
stretched up to 200% of their initial size, demonstrating the initiation of nematic ordering of
the polymer chains along the deformation direction. Semicrystalline PIs were ordered upon
deformation, which was significantly more substantial than that of the amorphous PIs.
The enhancement in the thermal conductivity of the ordered PI samples accounts for the
appearance of structural ordering in one direction in the polyimide chains. The anisotropy
of the heat transfer properties was found: the thermal conductivity coefficient along the
deformation was essentially higher than that computed in the lateral direction.

The impact of two different structural orderings on the thermal conductivity coefficient
of PI chains was studied. With regard to the semicrystalline PI BPDA-P3, the thermal
conductive properties of the samples ordered over tens of microseconds by computer
simulations were compared with the thermal conductive properties of the samples ordered
by mechanical elongation. When cooling started from T = 800 K, a higher enhancement
in the thermal conductive properties of the samples ordered by mechanical elongation
was observed compared to the properties of the unordered samples. However, when
cooling started at 600 K, the results reveal that both structural orderings caused a similar
enhancement in thermal conductivity in the glassy state. For this case, the EMD method
showed an almost 40% increase in the thermal conductivity coefficient of semicrystalline
PI. This might be useful for the creation of the BPDA-P3 samples by applying mechanical
elongation, which would reduce the computational time for the creation of BPDA-P3
self-ordered 30 µs long computer simulation samples.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15132926/s1. Figure S1. Radius of gyration of polymer chains
of different polyimides: (a) BPDA-P3, (b) R-BAPB, and (c) ULTEMTM as a function of time when
partial charges were calculated using the AM1-BCC and HF/6-31G* (RESP) partial charge calculation
methods. Figure S2. Mean squared displacement of the center-of-mass of the polyimide chain of
BPDA-P3, R-BAPB, and ULTEMTM when partial charges were calculated using the partial charge
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calculation methods (a,c) AM1-BCC and (b,d) HF/6-31G* (RESP). Figure S3. Time dependence of the
nematic order parameter SN for (a) BPDA-P3, (b) R-BAPB, and (c) ULTEMTM polyimides. Figure S4.
Mass density of the BPDA-P3, R-BAPB, and ULTEMTM polyimides as a function of temperature for
the samples when the partial charges were calculated using the (a) AM1-BCC and (b) HF/6-31G*
(RESP) methods. Table S1. The glass transition temperatures (Tg) of the studied PIs when electrostatic
calculation were parameterized using two different partial charge calculation methods, AM1-BCC
and HF/6-31G* (RESP). Figure S5. Coefficient of thermal expansion (CTE) of the BPDA-P3, R-BAPB,
and ULTEMTM polyimides as a function of temperature for the samples when partial charges were
calculated by (a) AM1-BCC or (b) HF/6-31G* (RESP) partial charge calculation methods. Table S2.
CTE values of the PIs calculated for the systems when partial charges were computed using the two
partial charge calculation methods, AM1-BCC or HF/6-31G* (RESP). Figure S6. Thermal conductivity
coefficients κ of undeformed BPDA-P3, R-BAPB, and ULTEMTM at different temperatures (290, 600,
and 800 K). Figure S7. Phonon vibrational density of states (VDOS) of an undeformed sample of
BPDA-P3, R-BAPB, and ULTEMTM atoms at T = 290 K. Figure S8. Mass density ρ of the unordered,
deformed and self-ordered during a 30 µs long simulation samples of polyimide BPDA-P3 as a
function of temperature when cooling is performed from T = 800 K to T = 290 K or from T = 600 K to
T = 290 K.
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