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Abstract: Currently, wastewater containing high urea levels poses a significant risk to human health.
Else, electrocatalytic methodologies have the potential to transform urea present in urea-rich wastew-
ater into hydrogen, thereby contributing towards environmental conservation and facilitating the
production of sustainable energy. The characterization of the NiCo2O4@chitosan catalyst was per-
formed by various analytical techniques, including scanning electron microscopy (SEM) and X-ray
photoelectron spectroscopy (XPS). Furthermore, the activity of electrodes toward urea removal was
investigated by several electrochemical techniques. As a function of current density, the performance
of the modified NiCo2O4@chitosan surface was employed to remove urea using electrochemical
oxidation. Consequently, the current density measurement was 43 mA cm−2 in a solution of 1.0 M
urea and 1.0 M KOH. Different kinetic characteristics were investigated, including charge transfer
coefficient (α), Tafel slope (29 mV dec−1), diffusion coefficient (1.87 × 10−5 cm2 s−1), and surface
coverage 4.29 × 10−9 mol cm−2. The electrode showed high stability whereas it lost 10.4% of its
initial current after 5 h of urea oxidation.

Keywords: urea removal; spinel oxide: electrochemical oxidation; nickel cobaltite

1. Introduction

The oxidation of urea, also known as UOR, presents a promising solution to address
energy, environmental, and healthcare challenges. This is attributed to its eco-friendly, cost-
effective, and sustainable processing methods [1–3]. In conjunction with electrocatalysts,
electrochemical methods can potentially enhance molecular conversion on the electrode
surface. This process can be facilitated by renewable electricity and can serve the purpose
of achieving various objectives such as energy storage and conversion, environmental
remediation, and electroanalysis [4–6]. Specifically, sewage containing urea has the po-
tential to be transformed into gaseous byproducts using UOR technologies in alkaline
environments and producing energy through a well-planned design [7]. Nevertheless,
it was observed that urea experienced decomposition primarily into N2 and CO2 when
subjected to an acidic environment using an applied potential exceeding 1.7 V relative
to the normal hydrogen electrode (NHE) [3]. When the electrolyte maintains a neutral
state, the decomposition of urea primarily yields nitrite and nitrate ions, leading to the
generation of CO2 [2].

Electrochemical systems have been employed in diverse contexts with distinct ar-
rangements and objectives, leading to heterogeneous urea conversion patterns. Although
the electrochemical treatment process is currently in its early stages of development, its
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exceptional characteristics present encouraging prospects for advancement in energy, en-
vironment, and healthcare [8–12]. Thus, the electrochemical oxidation of urea can be
employed for both urea removal application (wastewater treatment) [13], and fuel cell
(energy conversion application) [14].

The surfaces composed of nickel were subject to a significant modification to improve
their electronic properties, physical characteristics, and electrochemical activity. As a result,
various bimetallic electrocatalysts based on nickel have been documented in the literature
as Ni-Mo [15,16], Ni-Co [17,18], Ni-Rh [19], Ni-Mn [20,21], and Ni-Cu [22–24].

AB2O4 spinel oxides, characterized by a basic structure, have been found to possess
remarkable chemical and thermal stability, rendering them highly suitable for diverse
catalytic applications. The metallic cations A and B are integral components of this class
of compounds. Transition metal oxides with a spinel phase are considered the most
appealing anodic materials for electrochemical applications [25]. NiCo2O4, a type of
nickel-based spinel oxide, has gained significant attention in various applications such
as fuel cells, oxygen evolution reactions, electrochemical sensors, Li-ion batteries, and
supercapacitors [26–30].

Chitosan, a derivative of chitin, is frequently employed in diverse applications. There-
fore, it is an option for the creation of new chitosan products. These advancements in
fermentation technology have allowed the production of chitosan with unique physio-
chemical characteristics that differ from those found in waste materials. As a result, this
presents a promising opportunity to develop innovative chitosan-based products. An
alternative to the traditional sources, such as crab shells, is being considered. Chitosan
is a frequently utilized material for immobilization purposes owing to its favorable envi-
ronmental properties, high absorption capacity, notable layer-forming abilities, superior
permeability, increased thermal stability, sturdy mechanical strength, biocompatibility, and
ease of accessibility [31].

Chitosan has special structural and functional qualities, such as non-toxicity, hy-
drophilicity, excellent adhesion, biocompatibility, environmental sustainability, antibacte-
rial and antimicrobial characteristics, and non-carcinogenicity. These characteristics make
it a very adaptable and widely used chemical in numerous fields [32–36].

Herein, chitosan is employed to boost the activity of nickel cobalt spinel oxide toward
urea electrooxidation. The facile synthesis of nickel cobaltite-based composite was used for
electrode fabrication. Comparative studies were performed between NiCo2O4@Chitosan
and unmodified NiCo2O4. The modified electrode was employed as an efficient electrode
for electrochemical urea removal. Thus, different electrochemical techniques were used
to judge the electrode performance. Additionally, kinetic parameters were calculated to
well-understand the electrochemical oxidation process.

2. Experimental
2.1. Synthesis of NiCo2O4

The NiCo2O4 was synthesized by hydrothermal technique. A mixture comprising
CoCl2.6H2O (6 mmol), NiCl2.6H2O (3 mmol), urea (8 mmol), NH4F (25 mmol), and DI
water (40 mL) was subjected to magnetic stirring for 30 min after its mixing in a beaker. The
solution was introduced into a 50 mL stainless steel reactor with a polytetrafluoroethylene
(PTFE) lining. The mixture was subjected to a consistent temperature of 130 ◦C for 8 h.
Following the natural cooling of the reactor to ambient temperature, the sample containing
precursors underwent a 30-min ultrasonic cleaning process with deionized water to elimi-
nate any ionic impurities and loose deposition. The crystalline particles of NiCo2O4 were
ultimately acquired through annealing at a temperature of 400 ◦C in an air environment for
2 h, with a heating rate of 2 ◦C per minute.

2.2. Synthesis of NiCo2O4 Supported Chitosan

The nickel cobaltite chitosan composite was synthesized by combining a chitosan
solution with NiCo2O4 nanoparticles. 1.5 g of chitosan was introduced to 60 mL of absolute
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ethanol in a beaker. Subsequently, the mixture was subjected to gentle stirring while gradu-
ally increasing the temperature. A quantity of 1.5 g of nickel cobaltite nanoparticles was
introduced into the mixture. The temperature of the solution was reduced to the ambient
temperature of the surrounding environment. Introducing NiCo2O4 into the chitosan
solution resulted in crosslinking and subsequent encapsulation of NiCo2O4 nanoparticles.
The polyelectrolytic nature of chitosan in acidic environments is attributed to the protona-
tion of its –NH2 functional groups. The consequential equilibrium reaction delineates the
ionization state.

Consequently, approximately 3 mL of 10% acetic acid was added to the mixture and
agitated until the solution exhibited a thick consistency. After ten minutes, the mixture was
subjected to filtration and subsequently washed with distilled water. The final composite
was dried in an oven, which was maintained at a temperature of 80 ◦C for 3 h.

2.3. Electrode Fabrication

The working electrode was a glassy carbon electrode with a 0.0707 cm2 surface area. A
gentle emery paper polish was applied after it had been cleansed with ethanol and double-
distilled water. The cast solution was then created by ultrasonically dispersing 10 mg of
the catalyst powder (NiCo2O4 or NiCo2O4@Chitosan) in 0.75 mL of ethanol and 0.25 mL of
5 wt% Nafion for 1 h. The modified electrodes (NiCo2O4 or NiCo2O4@Chitosan) were cre-
ated as follows: 30 µL of catalyst solution was sprayed onto the electrode’s surface and left
to dry for 6 h at 60 ◦C. The Autolab PGSTAT128N was used to conduct all electrochemical
experiments. NOVA (Version 2.1, Metrohm Autolab, Utrecht, The Netherlands), an electro-
chemistry application, fits the impedance spectrum. The counter and reference electrodes
were Pt wire and Ag/AgCl/KCl (sat.); respectively. However, NiCo and NiCo@Chit were
used to represent the modified electrodes NiCo2O4 or NiCo2O4@Chitosan; respectively,
and used as working electrodes for urea electrochemical elimination in alkaline medium
applications.

3. Result and Discussion
3.1. Characterizations of Morphology, Microstructure, and Composition

Figure 1a displays the Ni 2p spectrum, which manifests multiple prominent peaks.
These peaks are subjected to fitting procedures, which involve the identification of the 2p3/2
and 2p1/2 peaks and the satellite peaks. The spectral peaks observed at 854.3 and 873.4 eV
are attributed to the Ni2+ component, whereas the peaks detected at 856.1 and 873.2 eV are
associated with the Ni3+ component in NiCo, as reported by Hao et al. [37]. The spectral
features observed at 863.1 and 879.4 eV are identified as satellite peaks. The spectrum
of Co 2p comprises two doublets resulting from spin-orbit coupling and two satellite
peaks, as depicted in Figure 1b. The distinctive doublet peaks indicate the presence of
the Co3+ component observed at 781.2 and 795.2 eV. The characteristic doublet peaks can
identify the Co2+ component observed at 782.1 and 797.6 eV. The satellite peak observed at
788.6 and 804.2 eV can be attributed to the Co3+ and Co2+/Co3+ components, respectively,
as reported by Marco et al. [38]. The spectrum of O1s (as depicted in Figure 1c) can be
effectively modeled by three distinct peaks at 530.2, 531.1, and 533.18 eV; respectively. These
peaks indicate metal-oxygen bonds, and oxygen defects [39–41]. The XPS spectrum of
C1s (see Figure 1d), three peaks can be observed at binding energy of 287.1, 286.6, 285.2 eV
attributed for C-O, C-N, and C-C; respectively [42,43].
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NiCo2O4 powder. Thus, several peak observed at 2θ equaled to 31, 37, 44, 58, 65 and 76 
that attributed to the reference card of (JCPDS #20-0781) [44]. For the chitosan-based sam-
ple, the intensity of the peak decreased because of embedding the nanoparticles in chi-
tosan sheets. The interaction between chitosan and NiCo2O4 lead to change in lattice struc-
ture [45–47]. 
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Figure 1. XPS of NiCo nanoparticles (a) Ni2p, (b) Co2p, (c) O1s, (d) C1s.

The chemical structures of as-prepared NiCo and NiCo@Chit were confirmed using
powder X-Ray diffraction technique. Figure 2 shows the XRD chart of as-prepared NiCo2O4
powder. Thus, several peak observed at 2θ equaled to 31, 37, 44, 58, 65 and 76 that attributed
to the reference card of (JCPDS #20-0781) [44]. For the chitosan-based sample, the intensity
of the peak decreased because of embedding the nanoparticles in chitosan sheets. The
interaction between chitosan and NiCo2O4 lead to change in lattice structure [45–47].
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The morphological characteristics of the NiCo nanostructures in their initial state were
examined utilizing scanning electron microscopy (SEM), as illustrated in Figure 3a. The
particles ranged in size 35~80 nm. The small particle size of NiCo indicates the higher
activity of the prepared materials. Figure 3b shows the NiCo incorporated into the chitosan
sheets. The well-distribution of the NiCo on chitosan sheets can explain the electrode’s
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high electrochemical activity toward urea electrochemical removal. Presence of chitosan
can promote urea adsorption.
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The conventional method for determining the dimensions of NiCo nanoparticles
was the utilization of Transmission Electron Microscopy (TEM). The average particle size
of NiCo was approximately ~60 nanometers. Figure 3c shows the TEM of NiCo@Chit.
Thus, the nanosphere of NiCo was observed to be attached to the chitosan sheets. The
corresponding TEM diffraction patterns are used to confirm the formation of NiCo on the
chitosan sheet. As represented in Figure 3d, d-spacing was used to find the Miller indices
(hkl) using ImageJ software. However, the observed rings can be attributed to planes
of (400), (311), (220), and (111); respectively. The elemental analysis of NiCo@Chit was
estimated by EDX. As a result, EDX indicates that Ni, Co, O, C, and N are present. Figure 3e
displays the elemental compositions of the NiCo@Chit sample. As a result, the elemental
percentages displayed in the inset figure match the target structure of NiCo, which has a
Ni/Co ratio of 1 to 2.

3.2. Urea Electrooxidation

The modified GC/NiCo and GC/NiCo@Chit activity was investigated by cyclic
voltammetry in a solution of 1.0 M urea and 1.0 M KOH. Activating electrodes com-
posed of nickel is a pivotal stage in the electrochemical oxidation of urea, therefore the
electrode performance was enhanced by an activation process; firstly. The outcome of this
process is the creation of a Ni-form that exhibits a high degree of electrocatalytic activity,
specifically NiOOH. The activation process was executed through cyclic voltammetry
(CV) with a scan rate of 100 mV s−1 for 150 cycles, utilizing a solution containing 1.0 M
KOH(see Figure 4) [48]. The phenomenon of NiOOH formation leads to an increase in
current during successive cycles. With an increase in the number of potential sweeps, there
is a corresponding increase in the thickness of NiOOH layer. This can be attributed to the
presence of OH− ions, which facilitate the rate of conversion between Ni(OH)2 and NiOOH
according to the following Equation (1) [49–52]:

6 Ni(OH)2 + 6 OH− ↔ 6 NiOOH + 6 H2O + 6 e− (1)
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The generated NiOOH species is mainly used for the electrochemical oxidation of urea
depending on the following Equation (2):

6 NiOOH+ CO(NH2)2 + H2O↔ 6 Ni(OH)2 + N2 + CO2 (2)
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Figure 5a shows CVs of the modified NiCo and NiCo@Chit in 1.0 M KOH. One redox
peak can be observed at a potential range of 0.3 to 0.45 V for conversion of Ni(OH)2 and
NiOOH. Additionally, the urea oxidation can be represented in Figure 5b. Thus, strong
oxidation peaks at potential ~0.5 V are attributed to the conversion of urea. However, a
sample of NiCo@Chit utilized high activity compared to the unmodified NiCo sample. The
presence of chitosan could enhance the activity toward urea electrochemical oxidation in
the alkaline medium. The reason for higher activity toward urea electrochemical oxidation
may be explained by the ability of chitosan to adsorb urea along with the extended surface
area and enhancement of mechanical and chemical stability of chitosan-based samples
compared with the unmodified NiCo samples [53–55]. Comparative studies between
chitosan-based and unmodified NiCo were performed using several approaches. Table 1
summarizes some of the results of the NiCo and NiCo@Chit surfaces.
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Table 1. Electrochemical parameters for NiCo and NiCo@Chit electrodes.

Electrode
Anodic
Current

(mA cm−2)

Onset
Potential

(V)
Epa (V) Tafel Slope

mV dec−1

Diffusion
Coefficient
(cm2 s−1)

Surface
Coverage

(Γ)/(mol cm−2)

NiCo 27 0.35 0.5 44 5.98 × 10−6 9.34 × 10−10

NiCo@Chit 43 0.32 0.49 29 1.87 × 10−5 4.29 × 10−9

Furthermore, an investigation was conducted on the electrooxidation of urea across a
range of concentrations that extend from 0.05 to 1.0 M. Surface saturation was not observed
within the concentration range under investigation, as depicted in Figure 6a,b. The specific
anodic peak current of the electrooxidation of urea exhibits a positive correlation with the
urea concentration (see Figure 6c,d. The results of this study suggest that the electrode
under investigation may be suitable for use in applications involving high concentrations of
urea, such as in wastewater treatment and direct urea fuel cells (DUFCs). The comparison
between the modified NiCo@Chit electrode and others reported in the literature is listed in
Table 2.
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Table 2. Comparison between different surfaces for urea electrochemical oxidation in an alkaline
medium.

Electrode
Fuel

Concentration
(M)

Electrolyte
Concentration

(M)

Scan Rate
(mV s−1)

Oxidation
Current

(mA cm−2)
References

NiCo2O4@Chitosan 1.0 1.0 20 43 This work

Ni0.85Se/rGO 0.5 1.0 50 10 [56]

Ni0.9Cu0.1 0.3 0.5 20 32 [23]

IN738 supper alloy 1.0 1.0 20 12 [57]

NiO-MnOx/Polyaniline 0.3 0.5 20 16 [58]

Ni(OH)2 meshes 0.3 1.0 50 20 [59]

3.3. Urea Oxidation Kinetics

To achieve an in-depth understanding of urea electrochemical oxidation, kinetic pa-
rameters were estimated for the oxidation of nitrite over the modified electrodes.
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Additionally, various scan rates were used with the modified electrodes NiCo and
NiCo@Chit in a solution of 1.0 M KOH as represented in Figure 7a,b. The following
Equation (3) was used to estimate the surface coverage:

i = (n2F2/4RT) A ν Γ* (3)
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Where A is surface area, ν scan rate, and Γ* surface coverage, n is the number of elec-
trons, F is the Faraday constant, R is the universal gas constant, and T is the measurement
temperature.

As shown in Figure 7c, the relationship between the scan rate and the anodic peak
current will reveal the surface coverage. The surface coverage of the modified electrodes,
NiCo and NiCo@Chit, was 9.34 × 10−10 mol cm−2 and 4.29 × 10−9 mol cm−2; respectively.
The larger surface coverage can be observed due to the NiCo@Chit sample’s increased
surface activity when urea conversion is compared to unmodified NiCo.

The following relation (Equation (4)) was utilized to confirm that the active sites are
evenly dispersed on the surface of the chitosan support electrochemically [60]:

q = q∞+a ν−0.5 (4)
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Where q∞ is the maximum quantity of the charge related to the “outer” surface of
active material in Coulombs, q is the charge calculated in Coulombs for various potential
scan rates in CV, a is constant (slope of the relation), and ν is the potential scan rate (mV s−1)
(see Figure 7d).

The intercept value of NiCo@Chit exhibits a significantly higher magnitude than that
of pristine NiCo. According to the results, it can be observed that the NiCo@Chit composite
possesses active sites that are 1.65 times greater than those of pristine NiCo, thus implying
a higher efficiency for urea electrochemical removal. The catalytic reaction is expected to
experience significant acceleration on the surface of NiCo@Chit, owing to the abundant
active sites of the catalyst that are uniformly distributed and highly effective.

The CVs of the NiCo and NiCo@Chit modifications were presented in Figure 8a,b;
respectively. The measurements were utilized in a solution of 1.0 M urea and 1.0 M KOH,
with a scan rate ranging from 5 to 400 mV s−1 (vs. Ag/AgCl).
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Thus, Randles-Sevcik equation can be employed to calculate the diffusion coefficient
(D) for irreversible processes, according to Equation (5) [20,61]:

Ip = 2.99 × 105 n A Co [(1 − α) no D ν]0.5 (5)
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The equation mentioned above denotes the relationship between various parameters,
namely the urea oxidation current(i), the number of electrons represented by (n), the surface
area of the electrode denoted by (A), the analyte diffusion coefficient represented by (D),
the analyte concentration denoted by (Co), and the scan rate represented by (ν).

The Randles-Sevick method was employed to estimate the diffusion coefficient. This
was achieved by establishing a linear correlation between the current of nitrite oxidation
and the square root of the scan rate, as illustrated in Figure 8c. The diffusion coefficients
for NiCo and NiCo@Chit electrodes are reported as 5.98 × 10−6 and 1.87 × 10−5 cm2 s−1;
respectively. The enhanced diffusion coefficient observed for a surface based on chitosan
can be attributed to the increased capacity of chitosan to adsorb urea.

Figure 8d illustrates a linear correlation between the peak potential and the logarithm
of the scan rate across various modified surfaces. The confirmation of reversibility can
be established through the positive shift of the Ep with an increase in the scan rate. The
Laviron Equation (6) for irreversible reactions was utilized to observe a change in the
location of the peak potential through an increase in the scan rate values [62,63]:

Epa(V) = E◦ − RT
∝ nF

ln
RTks

∝ nF
+

RT
∝ nF

ln v (6)

The previously mentioned variables, namely Epa denoting peak potential, R represent-
ing the universal gas constant, E◦ signifying formal potential, T indicating temperature,
n denoting the number of electrons, v representing scanning rate, and F representing the
Faraday constant, are of significance in the academic context.

The transfer coefficient (α) is a kinetic parameter that indicates the propensity of
a reaction to proceed in the oxidation/reduction direction. A preference for oxidation
direction is observed when the value of (α) is less than 0.5. The transfer coefficients were
computed for NiCo and NiCo@Chit using Laviron relation, which involved determining
the linear correlation between Log (ν) and Epa. The resulting transfer coefficients were 0.46
and 0.53 for NiCo and NiCo@Chit; respectively. The symmetry factor and charge transfer
coefficient (α) suggest that urea oxidation on NiCo@Chit has a better reputation than NiCo.
However, linear correlation indicates the adsorption of urea onto electrode surfaces.

The endurance of the electrode in the face of uninterrupted electrooxidation is the
most important in the context of urea elimination. Chronoamperometry was utilized to
investigate the enduring stability of the electrode for the electrooxidation of urea. Figure 9
depicts the chronoamperogram of the NiCo and NiCo@Chit-modified electrodes in a
solution containing 1.0 M urea and 1.0 M KOH while maintaining a constant oxidation
potential of 0.5 V (vs. Ag/AgCl). After 5 h, the electrodes’ oxidation current density
exhibited a decrease of 12.3 and 10.4% for NiCo and NiCo@Chit; respectively. The present
reduction is attributed to the electrocatalyst surface’s mechanical corrosion, incompletely
oxidized urea accumulation, and metal carbonate formation due to the adsorption of the
generated carbon monoxide [64]. Nevertheless, minor variations in the oxidation current
indicate the enhanced durability of the electrodes to the electrochemical oxidation of urea
over an extended period.

Electrochemical impedance spectroscopy was employed to ascertain the charge trans-
fer resistance across various electrode surfaces. Figure 10a depicts Nyquist plots of various
modified electrodes (GC/NiCo and GC/NiCo@Chit) in a solution containing 1.0 M urea
and 1.0 M KOH at 0.5 V (vs. Ag/AgCl). The observation of the double semi-circuit suggests
that the process of two-charge transfer warrants consideration. The equivalent fitting
circuit corresponding to the statement has been presented in the inset of Figure 10a. The
constant phase element (CPE) is employed instead of the capacitive element to account for
the non-homogeneity of the electrode surfaces. The resistance values denoted by Rs, R1,
R2, Q1, and Q2 pertain to the outer and inner layers’ solution resistance, charge transfer
resistance, and constant phase element (CPE). Table 3 presents the fitting parameters that
were computed. The NiCo@Chit exhibited a charge transfer resistance of 103 Ω cm2 while
NiCo surfaces displayed a resistance of 230 Ω cm2. The enhanced activity of NiCo@Chit in
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urea oxidation compared to unmodified NiCo can be attributed to the lower charge transfer
resistance. However, the EIS data represented in Table 3 confirm the data obtained from
the cyclic voltammetry that the modified chitosan composite has higher activity toward
urea oxidation due to the high surface area and adsorption ability [55,65].
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Table 3. EIS parameters for NiCo and NiCo@Chit electrodes.

Electrode
Rs R1 Q1 R2 Q2

Ω cm2 Ω cm2 Y0 N Ω cm2 Y0 m

NiCo 3.2 6.76 0.0005621 0.5154 230 0.002180 0.8322

NiCo@Chit 2.5 7.56 0.0013547 0.6523 103 0.003715 0.7354
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Figure 10b depicts Tafel analysis employed to investigate the electrochemical kinetics
of urea removal by utilizing the Tafel equation. The Tafel slopes computed for the GC/NiCo
and GC/NiCo@Chit electrodes are 44 and 29 mV dec−1; respectively. The NiCo@Chit
sample exhibits a lower Tafel slope, suggesting that the oxidation of urea over the surfaces
modified by chitosan is more favorable than the unmodified NiCo surface. The calculated
Tafel slopes are comparable with other reported catalysts for urea removal like 22 mV dec−1,
21.5 mV dec−1, and 26.4 mV dec−1 for Ni-MOF, LaNiO3, and FeOOH; respectively [11,50,66].

4. Conclusions

The present study reports the successful preparation of a Nickel-based spinel oxide
(NiCo2O4) by hydrothermal techniques. The synthesized materials were supported on
chitosan sheets to enhance the efficiency of the spinel oxide to electrochemical urea removal.

A comparative analysis was utilized between the performances of pristine NiCo2O4
versus NiCo2O4@Chit surfaces. Including functionalized carbon materials in NiCo oxides
enhances structural stability, thereby mitigating surface poisoning and ensuring compati-
bility between the electrocatalyst and glassy carbon surface.

The extended surface area of nickel-containing chitosan enhances its efficacy in fa-
cilitating urea removal. NiCo2O4@Chitosan has been identified as a highly promising
material due to its exceptional electrochemical properties. The lower Tafel slopes for
chitosan-modified surface indicates the higher thermodynamic favorability.
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