
Citation: Wohlfahrt, D.; Peller,

H.F.M.; Müller, S.; Modler, N.;

Mechtcherine, V. Investigation of

Helix-Pultruded CFRP Rebar

Geometry Variants for

Carbon-Reinforced Concrete

Structures. Polymers 2023, 15, 3285.

https://doi.org/10.3390/

polym15153285

Academic Editors: Violetta Kytinou

and Constantin Chalioris

Received: 3 May 2023

Revised: 26 July 2023

Accepted: 27 July 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Investigation of Helix-Pultruded CFRP Rebar Geometry
Variants for Carbon-Reinforced Concrete Structures
Daniel Wohlfahrt 1, Hannes Franz Maria Peller 1,*, Steffen Müller 2 , Niels Modler 1 and Viktor Mechtcherine 2

1 Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden,
Holbeinstraße 3, 01307 Dresden, Germany; daniel.wohlfahrt@tu-dresden.de (D.W.);
niels.modler@tu-dresden.de (N.M.)

2 Institute of Construction Materials, Technische Universität Dresden, Georg-Schumann-Straße 7,
01187 Dresden, Germany; steffen.mueller@tu-dresden.de (S.M.); mechtcherine@tu-dresden.de (V.M.)

* Correspondence: hannes.peller@tu-dresden.de; Tel.: +49-351-463-42492

Abstract: Carbon concrete is a new, promising class of materials in the construction industry. This
corrosion-resistant reinforcement material leads to a reduction in the concrete cover required for
medial shielding. This enables lean construction and the conservation of concrete and energy-
intensive cement manufacturing. Bar-type reinforcement is essential for heavily loaded structures.
The newly developed helix pultrusion is the first process capable of producing carbon fiber-reinforced
polymer (CFRP) reinforcement bars with a topological surface in a single pultrusion process step,
with fiber orientation tailored to the specific loads. The manufacturing feasibility and load-bearing
capacity were thoroughly tested and compared with other design and process variants. Approaches
to increase stiffness and strength while maintaining good concrete anchorage have been presented
and fabricated. Tensile testing of the helical rebar variants with a 7.2 mm lead-bearing cross-section
was conducted using adapted wedge grips with a 300 mm restraint length. The new helix geometry
variants achieved, on average, 40% higher strengths and almost reached the values of the base
material. Concrete pull-out tests were carried out to evaluate the bond properties. The helix contour
design caused the bar to twist out of the concrete test specimen. Utilizing the Rilem beam test setup,
the helical contour bars could also be tested. Compared with the original helix variant, the pull-out
forces could be increased from 8.5 kN to up to 22.4 kN, i.e., by a factor of 2.5. It was thus possible to
derive a preferred solution that is optimally suited for use in carbon concrete.

Keywords: carbon–concrete composites; pultrusion; helix rebar; tensile test; pull-out test

1. Introduction

The increasing significance of sustainable materials and technologies in construction,
driven by climate change concerns, is evident in the European Union’s goal to achieve a
climate-neutral and sustainable European Economic Area by 2050. The target is to reduce
CO2 emissions by at least 55% compared to 1990 levels by 2030 [1]. Concrete production
contributes substantial CO2 emissions due to the burning of limestone and the chemical
conversion process, resulting in approximately 2.7 billion tons of CO2 emissions annually,
equivalent to roughly 7% of global anthropogenic CO2 emissions [2–9]. Furthermore,
this exacerbates the environmental impact through the extraction of sand from riverbeds
or the seafloor, leading to coastal erosion and harm to ocean fauna [10–13]. Despite
concrete’s brittleness and low tensile strength, its flexible application possibilities and
high compressive strength do make it a popular building material. To compensate for
those disadvantages, concrete structures are reinforced with so-called rebar structures [14].
Conventional rebar structures are made of steel and require a protective environment to
suppress corrosion processes. In this context, the use of carbon concrete and carbon fiber-
reinforced polymer (CFRP) reinforcement structures is becoming increasingly important,
as this technology has the potential to conserve resources and significantly reduce CO2
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emissions. Its excellent mechanical and physical behavior such as high tensile strength,
stiffness, and chemical resistance, make it a good alternative as a reinforcing material for
concrete structures [15]. Compared to conventional reinforced concrete, carbon concrete
has the advantage that its reinforcement structures are chemically inert and therefore
not corrosive. This leads to the fact that carbon–concrete structures do not require a
high concrete covering to protect the reinforcement structures from corrosion [3,16–18].
Depending on the shape structure, roughly up to 40% of concrete can be saved by using
CFRP concrete reinforcement [19]. Furthermore, carbon concrete has a longer service life
compared to conventional reinforced concrete. The combination of material savings and
increased service life can significantly reduce the ecological footprint when using carbon
concrete [20–22].

In order to support concrete structures under tensile stress, the installed reinforcement
structures must have undercuts in the axial direction. This functionalization helps to
transfer the tensile stresses acting on the concrete structures to the inner cross-sectional
areas of the reinforcement structures [14]. In previous work, design principles for fiber-
reinforced polymer reinforcement bars resulting from mechanical stresses were derived
based on defined design guidelines. For this purpose, implementation options were
systematically developed at various levels. These include not only design variations of the
profile cross-section of different cross-sectional designs (Level 0) but also approaches for
the global functionalization of bars through axially progressive profile modifications at a
global level (Level 1) and local functionalization (Level 2) at the smallest element level. The
various design approaches can be seen in Figure 1 [19,23].
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Figure 1. Design and manufacturing options for CFRP rebars with different geometry profiles [19].

Selected functionalization variants were exemplarily implemented in production for
a large-scale use of novel carbon reinforcement bars. These were subsequently validated
experimentally, further developed geometrically, and the technological and economic
implementation was investigated [19,23]. The focus was particularly on achieving neces-
sary characteristic values in construction. An overview of the developed functionalized
reinforcement bar variants can be found in Table 1.
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Table 1. Overview of manufactured demonstrators of functionalized rods [19].

Functionalization Abbreviation Design Example

Reference
(no functionalization) RefNoFuc
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In terms of these properties, the variants FormPres, ContMill, and HelixPul showed
particular advantages among the investigated options. The ThermPin variant allows
direct force introduction into the cross-section of the bar through additional elements as a
special case. However, these elements significantly reduce the load-bearing cross-section
and thus the load capacity. The connection in the WindForm variant is unfavorable for
optimal bonding effectiveness due to the short rib width and a fiber orientation almost
perpendicular to the loading direction in the functionalization. In comparison, the ContMill
variant with sufficient rib width and axial fiber orientation exhibited good load-bearing
behavior even in combination with concrete.

The evaluation of tensile tests, damage patterns, and potential economic feasibility
of each production technology formed the basis for selecting the optimization variant for
load-appropriate rod functionalizations with a thermoplastic matrix for rod-reinforcement
structures. The unique design possibility of the helix contour (HelixPul), as the first CFRP
rebar design to be based on an economic single-step pultrusion process, showed high
potential for further development and effective use in construction and was thus selected
as the preferred option for further investigation [19,23,24].

The application of pultruded fiber-reinforced polymers (FRPs) in the construction
sector has a well-established history. Vedernikov et al. [25] reviewed present areas where
elements manufactured through pultrusion processes are utilized, with an emphasis on
identifying potential avenues for future research.

Zhu et al. [26] experimentally investigated the mechanical performance of glass fiber-
reinforced polymer (GFRP) and CFRP rebars by performing uniaxial tensile tests and using
a non-contact three-dimensional digital image correlation (3D-DIC) technique for strain
measurements, considering the spiral curved surface of the rebars. They found a linear
relationship between stress and strain without a yielding stage during the tensile process
for both GFRP and CFRP specimens. Additionally, they described the advantages of using
3D-DIC over a clip-on extensometer.

Yun et al. [15] characterized sand-coated CFRP rebars in terms of tensile strength,
compressive strength, shear strength, and Young’s modulus. The sand coating is applied to
enhance the adhesion between the CFRP rebars and the concrete matrix. It was reported
that the tensile strength of the rebars is dependent on their diameter due to the shear
lag effect.

Benmokrane et al. [27], inter alia, examined the bond strength between FRP rods and
cement grout, as well as their pull-out behavior. It was discovered that, in addition to the
properties of the filling grout and the stiffness of the host medium, the surface geometry of
the rebars also influences their pull-out behavior.

To further investigate the influence of the rebars’ surface geometry on their mechanical
properties and the bond strength between the rebars and the concrete matrix, selected
parameters of helix-pultruded carbon-reinforced rebars, such as the pitch of the helix
contour and their number, have been varied. The structures were then investigated by
performing tensile testing and extraction tests.

2. Materials and Methods
2.1. Helix-Pultruded Rebars
2.1.1. Carbon Tape Workpiece

Tape-shaped workpieces (SGL-CF-PA6-Tape) from the manufacturer SGL TECH-
NOLOGIES GmbH, Meitingen, Germany were used for the production of the helically
pultruded CFRP-reinforced rebars. These consist of a thermoplastic polyamide 6 matrix,
reinforced with SIGRAFIL R C T50-4.0/240-T140 carbon fibers from the same manufacturer,
and have a fiber volume content of 45%. They were characterized by tensile tests, and the
determined values were compared with the partially available characteristic values from
the manufacturer’s datasheets (see Table 2). It was found that the tensile modulus is at a
similar level, but the measured tensile strength appears to be lower than the theoretical
values in the datasheet.
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Table 2. Material characterization of unidirectional CF-PA6-Tape with Fiber-Volume-Ratio (FVR) of
0.45 and data sheet values [28,29].

Property Measured Values
(FVR = 0.45)

Data Sheet SGL
CF-PA6_Tape *

(FVR = 0.5)

Mixing Rule with Fiber
Properties by SGL **

(FVR = 0.45)

Tensile Modulus E1 102 GPa 115 GPa 108 GPa
Tensile Strength Ftu;1 1290 MPa 1800 MPa 1800 MPa

Elongation at Break A1 1.17% 1.48% ---
Tensile Modulus E2 101.6 GPa --- ---

Tensile Strength Ftu;2 1290 MPa --- ---
Elongation at Break A2 3.05% --- ---

Compressive Strength Rs;1 403 MPa --- ---
Compressive Strength Rs;2 114.2 MPa --- ---

Shear Strength S12 64.2 MPa --- ---

(*) SGL TECHNOLOGIES GmbH—Datasheet: Unidirectional carbon fiber tape with thermoplastic matrix, status
08/2015; (**) SGL TECHNOLOGIES GmbH—Datasheet: SIGRAFIL Carbon-Endlosfasern, Status 02/2016.

2.1.2. Helix-Pultruded Rebar Geometry Variants

In order to further develop functionalized HelixPul rod structures, various geometric
parameters were defined, which were analyzed and evaluated in terms of production and
experimental considerations through parameter investigations. The following parameters
were varied for the investigations:

• Number of helix ribs n;
• Pitch P;
• Circumferential diameter Dp;
• Equivalent diameter De;
• Projected flank area Af;
• Af/Ai.

The area Ai corresponds to the area of the inner circle with diameter Di, and the
projected flank area Af is obtained from:

A f =
π

4

(
D2

p − D2
i

)
(1)

The corresponding diameters Di, De, DP, and the pitch P are graphically illustrated for
the HelixPul variant H81 in Figure 3.
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The necessary geometry of the rod functionalization for the composite effect between
the reinforcing structure and the concrete matrix requires a strong undulation, especially of
the outer fiber layers, which extends into the center of the cross-section of the reinforcing
bars and decreases in intensity from the outside to the inside. This relationship is schemat-
ically illustrated in Figure 4. These undulations in the load-bearing cross-section reduce
the load-bearing capacity and stiffness in the ideal axial direction accordingly. It had to be
taken into account that a significant profiling of the reinforcing bars is necessary for the
composite effect with the concrete matrix for force transmission. To ensure the good tensile
properties of the bars, a nearly undulation-free straight fiber layer is necessary.
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The focus of the further development of the reinforcement bars was therefore on
creating a balanced ratio between the outer bar profiling and inner straight layers, in
order to achieve a compromise between good bond behavior with the concrete matrix
and high stiffness. Carbon reinforcement bars were therefore investigated and further
developed not only with respect to their tensile properties but also their bond behavior.
Due to manufacturing constraints, the realization of the geometry parameters can only be
indirectly achieved through external shaping. Therefore, the control of the inner fiber layers
is only possible indirectly through the outer contour design and the pultrusion process.

In order to ensure good comparability in terms of assessing the load-bearing capacity
of the reinforcement structures, the supporting continuous and undisturbed cross-section
of the design variant H81 was adopted as a reference value for all other rebar variants,
and an inner diameter Di of 7.3 mm was defined. Due to the rotational manufacturing
technology of the helix-pultrusion process, a circular basic structure of the reinforcement
bars is given, around which the functionalization winds spirally in the form of rib-like
attachments. The variations of the geometry parameters are summarized in Table 3 along
with a graphical representation of the resulting structures.
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The variation in the number of ribs over a defined length was influenced by the pitch
of the helix, which also affects the orientation of the ribs. The smaller the pitch, the larger
the angle of inclination of the ribs. However, since increasing the number of ribs over a
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defined length reduces the load-bearing potential of the individual ribs in the composite,
narrowing the ribs does not necessarily represent an improvement. Therefore, for the
design variant H82, the pitch P was increased. Insights from preliminary tests showed that
the rib height could be lower for a lower fiber undulation and that the undercuts were still
sufficiently formed for force transmission in the carbon–concrete composite. In variant H83,
the rib height was therefore halved compared to variant H81. This change simultaneously
affects the circumferential diameter Dp, the projected flank area Af, and the ratio of Af/Ai,
thus affecting three parameters at the same time. The variation in the number of ribs also
leads to a change in rib height, as the ribs must be geometrically narrower. If the rib flank
angle is kept constant, a lower rib height automatically results. Therefore, in variant H84,
the number of ribs was increased to six, resulting in the most delicate rib structure of all
variants. Conversely, when reducing the number of ribs from three to two, as in variant
H85, there is also an adjustment possibility with respect to rib width. Compared to a
narrow rib, a wider rib can significantly better support itself under load. Due to the greatest
potential for improvement and influence, variants H83, H84, and H85 were selected and
implemented for manufacturing, material, and composite investigations in addition to
variant H81, to test the bar geometries of helix-pultruded carbon reinforcement bars.

2.2. Tensile Testing of Helix-Pultruded Rebar Elements

The material characterization using tensile testing was performed on the developed
and manufactured HelixPul variants H81, H83, H84, and H85. The test was carried out
according to the standards for conventional reinforcement systems: EN ISO 15630-1, DIN
EN ISO 7500-1, and DIN EN ISO 6892-1 [30–32]. Due to the functionalization and the
resulting non-uniform surface geometries of the reinforcement bars, the challenge mainly
consisted of developing a clamping mechanism that enables the fast and efficient clamping
of bar specimens with geometrically free-shaped surfaces without having to make separate
preparations for each bar geometry. However, the aforementioned standards only generally
describe that the clamping devices must be suitable for testing, and, except for the proposal
of different clamping methods, no specification is provided.

After conceptualizing and evaluating various reinforcement-bar clamping devices, a
clamping mechanism based on a wedge clamping system was developed (see Figure 5).
The clamping forces can be increased as needed by screw clamping elements. For optimal
load introduction, the largest possible clamping range was realized, characterized by a
high overlap angle between clamping and cylindrical test specimens. At the same time, the
largest possible clamping diameter range was implemented.

The larger the prism opening angle, the larger the clamping diameter of the bar.
According to DIN 2214 for the execution of test prisms, cutting angles of 90◦ and 108◦ are
suggested. A cutting angle of 108◦ forms a good compromise for clamping the reference
bars and covering different bar diameters and was therefore chosen for the construction of
the clamping device.

For optimal clamping and load introduction, as well as for the protection of the test
specimen from excessively high local clamping forces, prismatic clamping elements are
equipped with a compensating layer made of elastomer for testing. The elastomer used
is a nitrile rubber from the manufacturer Misumi, designated NB270n-10-300-300. The
intermediate layer strips used had the dimensions of 2 mm × 12 mm × 300 mm. Due to
the high stress on the compensating material, it cannot be reused multiple times.

All tests were carried out at a standard test climate of 23 ◦C ambient temperature and
50% relative humidity. The testing machine used was a Zwick Z250 with a testing speed of
2 mm/min. Furthermore, the tensile forces occurring during the test were measured and
recorded using a 250 kN force transducer, and the resulting deformations were measured
using a contact macro extensometer.

The specimens used in the study had an overall length of 80 cm, consisting of a free
length of 20 cm and an anchoring length of two times 30 cm. The anchored length of the
specimens was further secured using screws to fasten the prismatic clamping elements. The
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screws were tightened progressively from the outside to the inside with stepped torque,
beginning at 60 Nm and decreasing by 5 Nm for each subsequent screw to minimize stiffness
fluctuations. Afterwards, the rebars were subjected to a load of 20 kN, and subsequently,
the screws were retightened. The external screws were tightened up to 80 Nm, while the
internal ones were tightened with 2 Nm less each. In case the specimens slipped at higher
loads, the test was paused, and the screws were retightened following the specified scheme.
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The testing setup used can be seen in Figure 6. The determined characteristic values are
the fracture force Fmax, fracture strain εmax, and fracture stress σmax, which are obtained from:

σmax =
FBruch

S0
(2)

where S0 is the cross-sectional area of the bar in the direction of tension. Six specimens
were tested for each bar configuration to obtain valid results.
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2.3. Pull-Out Testing of Helix-Pultruded Rebar Elements

In addition to the evaluation of the pure strength and durability parameters, the
reinforcement elements should also exhibit sufficient bond strength to the surrounding clay
matrix. This is determined in pull-out tests. A specimen shape was selected that allows
measurement results in the direct test procedure. Based on the experience according to [33],
it is based on the recommendations of RILEM/ FIB/ CEB [34] and the specimen shape
according to REHM [35]. Both of these specimens allow measurements in an undisturbed
area of the specimen, unaffected by the support. Furthermore, the bond length was reduced
to ensure a constant stress distribution over the bar length to be tested (see also Figure 7).
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The selected test specimen allows the adaptation of different bond lengths. In order to
map a representative range of composite properties, the bond length had to capture the
bar geometry peculiarities (e.g., a rotation of the helix in the bar) at least one time. The
HelixPul test specimens investigated have the same pitch and thus the same bond length.
Testing of the bond properties was carried out on a self-compacting concrete with 5 mm
crushed granite grit as the largest aggregate. Accompanying compressive strength and
flexural tensile tests showed a compressive strength of approx. 100 MPa and a flexural
tensile strength of approx. 5 MPa for this formulation.

The present HelixPul bar geometry provides a significant input of torsional energy
into the concrete body. Due to this high torsional force input, the RILEM RC5 test was
applied as an established test method with more massive component measurements. The
test is basically a four-point bending test with a fixed pivot point. The latter absorbs
the resulting compressive forces, whereas the embedded bar has to absorb the tensile
components. In this case, an equal tensile force is generated on both sides of the bar and a
pull-out will occur on the side of the weaker composite. The basic setup of the test is shown
in Figure 8.



Polymers 2023, 15, 3285 10 of 19

Polymers 2023, 15, x FOR PEER REVIEW 10 of 19 
 

 

crushed granite grit as the largest aggregate. Accompanying compressive strength and 
flexural tensile tests showed a compressive strength of approx. 100 MPa and a flexural 
tensile strength of approx. 5 MPa for this formulation.  

The present HelixPul bar geometry provides a significant input of torsional energy 
into the concrete body. Due to this high torsional force input, the RILEM RC5 test was 
applied as an established test method with more massive component measurements. The 
test is basically a four-point bending test with a fixed pivot point. The latter absorbs the 
resulting compressive forces, whereas the embedded bar has to absorb the tensile compo-
nents. In this case, an equal tensile force is generated on both sides of the bar and a pull-
out will occur on the side of the weaker composite. The basic setup of the test is shown in 
Figure 8. 

 
Figure 8. Beam test (test setup according to RILEM) [36]. 

Since the carbon rods have a radially lower stiffness than comparable steel rods, a 
larger-volume Styrofoam insert replaced the recommended plastic sheathing to allow 
greater bending freedom. Figure 9 shows the production, specimen, and test details of the 
composite specimens. 

 

Figure 9. Details of the RILEM-RC5 beam test: (a) Prepared formwork with polystyrene decou-
pling elements; (b) Specimen out of the formwork; (c) Specimen in the testing machine; (d) Detail 
of pull-out receptor. 

Figure 8. Beam test (test setup according to RILEM) [36].

Since the carbon rods have a radially lower stiffness than comparable steel rods, a
larger-volume Styrofoam insert replaced the recommended plastic sheathing to allow
greater bending freedom. Figure 9 shows the production, specimen, and test details of the
composite specimens.
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For specimen fabrication, the rebar elements were inserted into the Styrofoam elements
and positioned in the formwork. In addition, the auxiliary joint was also positioned in
the formwork at the intended location to realize a defined pivot point. The formwork was
filled with concrete, and the finished specimen was demolded after concrete consolidation.
The rebar ends overhanging from the concrete were fitted with an inductive displacement
transducer, and the specimens were positioned as a unit in the test fixture.
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3. Results
3.1. Tensile Tests

The results of the tensile tests conducted on the tested HelixPul geometry variants

H81, H83, H84, and H85 are summarized in Table 4. In addition to the mean value
−
x of the

results, the standard deviation s, and the relative standard deviation ν are also given.

Table 4. Tensile test results of the HelixPul CFRP rebar variants H81, H83, H84 and H85.

Variant Fmax (kN) σmax (MPa) εmax* (%)

H81
n = 6

−
x 36.3 867.2 0.932
s 1.6 38.4 0.134

ν [%] 4.43 4.42 14.36

H83
n = 6

−
x 46.5 1111.8 0.912
s 3.1 73.5 0.294

ν [%] 6.63 6.61 32.21

H84
n = 6

−
x 53.2 1270.8 1.068
s 1.6 38.1 0.163

ν [%] 3 3 15.27

H85
n = 6

−
x 52.1 1245.2 1.19
s 2.6 63.1 0.106

ν [%] 5.06 5.07 8.94
(*) Strain measurements not valid due to measuring issues.

After testing, the characterized reinforcing bars exhibited a valid failure pattern in
the area of the free length. This rules out the possibility that clamping effects, such as
transverse forces from clamping, were the cause of damage and thus had a reducing effect
on the mechanical properties.

All experiments also showed a failure behavior typical for axially reinforced plastics.
This is characterized by axial splintering or delamination in combination with uneven
failure in the direction of tension. In the manufacturing process, the fibers are pressed into
shape slightly under tension, as the matrix material solidifies quickly. This freezes residual
stresses, which become visible in the failure shown in Figure 10.
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Due to the different jacket geometries of the reinforcing bars, the contact macro
extensometer occasionally slipped during testing, leading to distortions of the strain mea-
surements, which are evident as jumps in the measurement curves (Figure 11).
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3.2. Pull-Out Tests

In the pull-out test, the bar variants of HelixPul H81, H83 and H84 were tested. The
measured maximum pull-out force Fmax is related to the respective applied bond length,
and thus the characteristic value bond flux kmax (N/mm) is generated. The results of the
pull-out test are shown in Table 5.
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Table 5. Pull-out test results of HelixPul CFRP rebar variants H81, H83 and H84 in concrete.

Variant Fmax (kN) kmax (N/mm)

H81
n = 3

−
x 3.98 179.02
s 1.09 24.05

ν (%) 27.46 13.43

H83
n = 4

−
x 9.28 325.57
S 0.76 26.82

ν (%) 8.22 8.33

H84
n = 3

−
x 7.00 237.19
s 0.38 14.30

ν (%) 5.49 6.03

As already described in Section 2.3, the tests showed that the HelixPul bar geometry
leads to a considerable input of torsional energy into the concrete body. Thus, the pull-out
test of HelixPul H85 was deliberately omitted, and alternative test options were selected.

The RILEM test method described in Section 2.3 was used as the RC5 beam test variant
seemed suitable for this purpose. Details of the test procedure are shown in Figure 12.
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Figure 12. Test details of the RILEM-RC5 beam test: (a) Test and significant deflection; (b) Failed specimen.

The individual results with the maximum force Fmax, deformation ∆lmax and deflection
fmax from the beam tests are summarized in Table 6. During all tests, the force builds up
uniformly until the bars are completely detached from the concrete, and the bars begin to
move into the middle area of the specimens. The influence of the different Helix variants
can be clearly seen. For HelixPul H81, for example, low bond forces are built up. The
HelixPul H83 and H85 variants in particular generate significantly higher bond forces. The
test setup also confirmed a significantly lower torsional tendency of the reinforcing bars
due to the helix contour compared to the single-sided pull-out specimens. However, the
bending test specimens require a significantly higher handling effort and material input
compared to the pull-out test specimens.
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Table 6. Results of the RILEM-RC5 beam test of HelixPul CFRP rebar variants H81, H83, H84
and H85.

Variant Fmax (kN) ∆lmax (mm) fmax (mm)

H81
n = 3

−
x 8.5 1.81 10.6
s 1.38 1.14 4.89

H83
n = 4

−
x 21.9 2.14 13.4
S 0.63 0.44 0.94

H84
n = 4

−
x 17.7 2.66 11.9
s 1.49 0.2 0.77

H85
n = 2

−
x 22.4 1.04 12.6
s 4.63 0.36 3.1

4. Discussion

The test results obtained in Section 3.1 are based on the clamping device developed
and presented in Section 2.2. This device is intended to facilitate direct tensile testing
without the need for the special preparation of the test specimens or the fixture. Addi-
tionally, it enables the loading of the bars to tensile failure in the free test length without
initiating failure through the clamping area. This achievement was implemented through
the design measures described in Section 2.2. Furthermore, tests were conducted to ex-
amine the compression-shear behavior of selected elastic clamping materials, including
nitrile rubber (NBR), fluororubber (FPM), natural rubber (NR), chloroprene rubber (CR),
polyurethane rubber (PUR), plywood, and leather. Among these materials, NBR showed
the most promising results. Unfortunately, none of the materials exhibited sufficiently high
compression-shear resistance to be suitable for more than one test application.

The tensile tests conducted to characterize the manufactured tension rod variants H81,
H83, H84, and H85 from HelixPul production confirmed the suitability of the restraint
principle for profiled rod geometries. The test specimens could be clamped sufficiently
firmly and without damage. However, settlement effects of the NBR material occurred
in some cases, which could be compensated for by manual re-clamping. For efficient and
partially automated testing, it is recommended to use a controllable clamping device, such
as one that can be realized through hydraulic force application.

Figure 13 depicts the tensile strengths determined, alongside the previous test results.
The initial series of tests represent the strengths of unfunctionalized bars, indicating the
strength of the base material. Notably, all bars exhibit higher strength, meeting the re-
quirements specified by the DIN 488 or EN 10080 standards for steel reinforcements. As a
result, they confirm their suitability as an alternative reinforcement material. During the
first series of tests, it became evident that decreasing strength correlates with increasing
fiber undulation in the reinforcing bar. This correlation was also observed in the new series
of tests on helix-pultruded rebars (HelixPul). Table 7 presents the individual strengths in
relation to the base material, as measured using the reference bar. It is evident that halving
the rib height (as seen in the comparison of HelixPul H81 with HelixPul H83) almost halves
the dropped strength. The variant HelixPul H84, featuring a very low rib height due to
the presence of a large number of ribs, achieves nearly the basic strength. Additionally, the
HelixPul H85 variant achieves only a slightly lower strength than the HelixPul H84 variant
and exhibits a similar strength to the ContMill variant. These findings demonstrate that
load-bearing reinforcing bars can be effectively produced using helix pultrusion.

To assess the composite tests, morphological analyses were also carried out to examine
the failure mechanisms during the pull-out test and the microstructure of the interphase.
These optical observations, in addition to the mechanical parameters, offer insights into the
prevailing damage mechanisms and potential improvement options. The observation levels
can be adjusted as required, ranging from simple visual inspection with the eye/loupe
and extending to more advanced techniques such as light microscopy or scanning electron
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microscopy. During the pull-out tests, the optical findings revealed minimal adhesion of
the concrete matrix to the rebar, and no detectable carbon fiber residues were observed in
the pull-out channel. Consequently, the investigations focused on utilizing high-resolution
photographs and light microscopic images.
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Table 7. Comparison of the average fracture strengths in relation to the base material.

Variant (i) −
x = σmax (MPa) σmax(i)/σmax (Ref)

RefNoFuc 1284.8 100.0%
ContMill 1239.8 96.5%

HelixPul H81 866.1 67.4%
HelixPul H83 1111.8 86.5%
HelixPul H84 1270.9 98.9%
HelixPul H85 1245.2 96.9%

FormPres 895.0 69.7%
WindForm 1163.2 90.5%
ThermPin 753.3 58.6%

The pull-out test specimens of HelixPul H81 showed hardly any adhesion to the
bar and a precise mapping of the bar surface within the concrete matrix. Thus, positive
locking is the dominant force transmission mechanism (compare Figure 14a,b). In contrast,
the pull-out specimens of HelixPul H83 demonstrated concrete adhesion to the rebar
contour and, conversely, also exhibited damage to the CFRP contour due to material tearing
(Figure 14c,d). This suggests the presence of an additional material bond between the
concrete and the CFRP reinforcement.

In summary, the structural morphological investigations reveal that the majority of
rebar variants transfer forces from the concrete to the reinforcement element primarily
through form closure, rather than material closure. This form closure is primarily attributed
to the geometry features, including the helical rib heights of the bars, the strong interlaminar
shear strength within the bar, and the high surface quality. However, in cases where the bars
exhibit roughness, including micro-roughness, as observed in the manufactured variant
HelixPul H83, mineral crystals can grow into the bar structure. This phenomenon leads
to an additional increase in bonding forces, further enhancing the effectiveness of force
transfer between the concrete and the reinforcing elements.

Variation studies for the design of helix-pultruded bar contours as reinforcement
elements in concrete were carried out for different geometry parameters. This determination
was based on tensile tests and pull-out tests. The results highlight the significant potential
for enhancing the bar´s bearing capacity and minimizing the manufacturing impact of the
unique helix-pultrusion technique on the bar contours. This was determined by tensile
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tests and pull-out tests. Upon comparing the individual values obtained from these tests,
it becomes evident that the HelixPul H85 variant exhibits the most favorable behavior
compared to the other variants, marking it the recommended choice.
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Figure 14. Details of pull-out test specimens: (a) HelixPul H81—split concrete part of the pull-
out test specimen after the pull-out test; (b) HelixPul H81—pulled-out probationary bar without
visible change of the surface; (c) HelixPul H83—adhesions from CFRP of the bar to concrete matrix;
(d) HelixPul H83—damages on the pulled-out bar.

These findings confirm the initial assumption that novel helix pultrusion, as an efficient
manufacturing process for carbon-reinforced bars, can achieve load-adapted and material-
appropriate performance. Furthermore, this high potential can be further augmented
through additional optimization efforts, such as employing higher-fiber volume contents.
Additionally, the use of a thermoplastic matrix system allows for the flexible reshaping of
the rebars, enabling adaption to more intricate structural configurations.

5. Conclusions and Outlook

The novel material—carbon–concrete composite—offers promising possibilities for
applications in civil engineering. As part of the project preparation, the authors developed
a novel production technology called helical pultrusion. This process enables the efficient
and continuous production of surface-topologized rebars in a single process step, which are
suitable for use as CFRP rebars in concrete applications. The presented geometric parameter
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adjustments and the produced rebars aim to enhance the load-bearing properties of the
reinforcement elements and to overcome the current disadvantages of carbon–concrete-
composite technology on the path towards series production:

• Reinforcing bar structures made of fiber composites enables thinner construction
methods. In particular, carbon reinforcements are corrosion-resistant and reduce the
required concrete cover.

• The newly developed helix-pultrusion process enables efficient manufacturing pro-
cesses for fiber-composite reinforcement bar structures. It is characterized by few
process steps and the effective use of materials. During the work, design parame-
ters were varied, and corresponding variants were manufactured to achieve a more
load-oriented material arrangement and utilization.

• The tensile behavior of the reinforcement bar prototypes was tested using a new, effi-
cient tensioning system developed in-house. Compared to unfunctionalized reference
bars, similar bar tensile strength was achieved with the contour adjustments, and
the manufacturing influence of helix pultrusion was almost eliminated. The fracture
strength of the HelixPul rebars was increased by more than 40% on average.

• By employing a more complex test arrangement, it was possible to determine torsional
moment-free and transverse force-free pull-out characteristics, demonstrating good
comparative pull-out behavior. The tensile force transmission in the composite for the
HelixPul rebars was increased by more than a factor of 2.5.

• The determined preferred helix rebar contour, HelixPul H85, proves the suitability of
these reinforcing bars from the novel production technology, due to element tension
tests and concrete pull-out tests.

Through the geometry parameter variation of the HelixPul rebars, the potential and
principle of helical pultrusion were successfully demonstrated. It allows the continuous
production of reinforcing bars in a single-step forming process using carbon fibers with a
thermoplastic matrix through pre-impregnated tapes. The transition to other fiber types and
other thermoplastic matrix systems requires only minor adjustments. However, significant
challenges in process technology and increasing productivity necessitate the integration of
fiber plastic impregnation and in-situ polymerization into the process, along with increasing
process speed. Implementing the manufacturing process with a thermoset matrix system
requires major adaptations and novel semi-finished products. Therefore, further research
is required to enhance the efficiency of the manufacturing process and utilize thermoset
matrix systems for improved thermal resistance.
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