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Abstract: Novel effluent treatment solutions for dangerous organic pollutants are crucial worldwide.
In recent years, chemical reduction using noble metal-based nanocatalysts and NaBH4, a reducing
agent, has become common practice for eliminating organic contaminants from aquatic environments.
We suggest a straightforward approach to synthesizing magnetic cellulose nanocrystals (CNCs) modi-
fied with magnetite (Fe3O4) and silver nanoparticles (Ag NPs) as a catalyst for organic contamination
removal. Significantly, the CNC surface was decorated with Ag NPs without using any reducing
agents or stabilizers. PXRD, FE-SEM, TEM, EDX, VSM, BET, and zeta potential tests characterized the
Ag/Fe3O4/CNC nanocomposite. The nanocomposite’s catalytic activity was tested by eliminating
4-nitrophenol (4-NP) and the organic dyes methylene blue (MB) and methyl orange (MO) in an
aqueous solution at 25 ◦C. The Ag/Fe3O4/CNC nanocomposite reduced 4-NP and decolored these
hazardous organic dyes in a short time (2 to 5 min) using a tiny amount of catalyst (2.5 mg for 4-NP
and 15 mg for MO and MB). The magnetic catalyst was removed and reused three times without
losing catalytic activity. This work shows that the Ag/Fe3O4/CNC nanocomposite can chemically
reduce harmful pollutants in effluent for environmental applications.

Keywords: catalytic dye reduction; cellulose nanocrystals; magnetic nanocomposite; 4-nitrophenol;
wastewater treatment

1. Introduction

Environmental pollution has become a global and grave threat to human health
despite the exponential development of modern industries over the past few decades. In
recent years, the contamination of water bodies by releasing untreated water containing
inorganic and organic species has garnered significant attention among the various types
of environmental pollution [1–3]. Notably, it is believed that the uncontrolled discharge of
azo dyes, widely used in the leather, fabric, plastic, personal care products, ink, paper, and
food industries, causes significant damage to aquatic ecosystems [4,5]. Due to their photo-,
thermal-, and biodegradation-resistance, organic dyes can endure for an extended period
in the environment. The existence and stability of these oxygen-sequestering species in
water systems have been reported to diminish light penetration and hinder photosynthesis
in aquatic vegetation [6]. Before they can be discharged safely into the natural environment,
industrial effluents carrying harmful organic dyes must be degraded and decolored.

In addition to organic azo pigments, the United States Environmental Protection
Agency (U.S. EPA) considers phenolic compounds, such as the well-known nitrophe-
nol derivatives, to be priority pollutants that directly affect the environment and human
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health [7]. Known refractory 4-nitrophenol (4-NP) sources in water bodies include petro-
chemical, pesticide, pharmaceutical, preservative, explosive, pigment, and wood indus-
tries [8,9]. Before releasing them into the environment, developing efficient techniques for
extracting them from industrial effluent is critical. The catalytic conversion of 4-NP to its
amino counterpart, 4-aminophenol (4-AP), has generated significant interest in environmen-
tal cleanup. The essential roles amino acids perform in pharmaceutical and photographic
applications are well known [10]. 4-AP is a critical intermediate in synthesizing numerous
antipyretic and analgesic pharmaceuticals, while its strong reducing properties are utilized
in photographic development. Therefore, developing high-performance materials for pig-
ment degradation and 4-NP reduction can significantly reduce environmental pollution. In
recent years, nano-sized metals with controlled morphology and texture have been favored
over their bulk counterparts because of their enhanced catalytic, magnetic, electronic, and
optical properties [11–13]. Notably, noble metal nanoparticles exhibit dense packing, un-
constrained electrons in the valence band, and a high surface-to-volume ratio [14]. Due to
their desirable physical and chemical properties [15,16], using inexpensive silver nanopar-
ticles (Ag NPs) in catalysis, sensors, cosmetics, and the disinfection of medical devices is
becoming increasingly investigated. Controlled growth, particle size, morphology, and
long-term stability play significant roles in the performance activity of Ag NPs.

Nevertheless, metal nanoparticles with desirable morphological properties as catalysts
have disadvantages, such as (i) a tendency to aggregate, resulting in decreased efficiency
due to their more incredible surface energy and (ii) difficult recovery from the medium of
reaction for reuse due to their nanoscale size [17,18]. To address these problems, scientists
have devised new ways to fix metal nanoparticles on solid supports to make hybrid
nanomaterials. Interestingly, the direct immobilization of Ag NPs on other active materials,
such as Fe3O4, makes them ideally suited for use as a catalyst; unfortunately, the repulsive
forces between them must be surmounted to ensure their stability. Introducing a buffer
(organic) layer between the two active materials can alleviate the issue of repulsive forces
and bring about strong synergy in the hybrid structure for efficient catalytic activity [19–22].

In recent years, biomass has attracted concern regarding the design of nanostructure
catalysts based on a porous structure and numerous active sites for fixing metal nanopar-
ticles [23–26]. Specifically, cellulose is the overall biomass most extensively studied to
produce stable metal nanoparticles [27–31]. By functionalizing polydopamine-containing
porous cellulose acetate microspheres, Li et al. generated substrates to synthesize Ag-Fe3O4
nanoparticles [27]. The Fe–Cu alloy nanocatalyst is immobilized in cellulose microcrystals.
These compounds are coupled with NaBH4 in water to convert nitroarene to arylamine. The
reaction takes 5 to 14 min and is effective [32]. Moreover, cellulose can be transformed into
various polymorphs using an environmentally friendly mixture of NaOH and urea [33–35],
and through hydrolysis, cellulose nanocrystals (CNCs) with high physical properties can
be obtained.

In this research, a simple and environmentally friendly hydrothermal method for
preparing Ag/Fe3O4/CNC nanocomposites was developed. The Ag/Fe3O4/CNC nanocom-
posite’s phase structure, morphology, magnetic property, and thermal stability were in-
vestigated in detail. In addition, catalytic reduction experiments were conducted, and the
results demonstrated that the as-prepared Ag/Fe3O4/CNC nanocomposites had a high
catalytic performance for the reduction of 4-NP, MO, and MB in the presence of sodium
borohydride (NaBH4) as an electron donor. Compared to previous works, the current
work possesses many advantages. First, neutral deionized water was used as the system’s
solvent. Second, the green and inexpensive synthetic route requires no chemical-reducing
agents. In addition, CNCs were produced by acid-hydrolysis cellulose, which was isolated
from the by-product fibers of coconut husk. It is one of the most effective methods for
creating economic materials from agricultural by-products, which are nearly abundant
in Vietnam.
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2. Materials and Methods
2.1. Materials

Coconut husk fiber was collected from Mo Cay Nam district, Ben Tre province. Af-
ter the coconuts were picked, the insides were separated from the shells. Then, the co-
conuts were crushed and dried and the weakened fiber was removed from the coconut
shells. Finally, the coconuts were split into coconut fiber. Coconut fiber is 10–20 cm long,
yellowish-brown in color, and twisted together, which was crushed into powder. Formic
acid (HCOOH, 90%), hydroperoxide (H2O2, 30%), sodium hydroxide (NaOH, 96%), hy-
drochloric acid (HCl, 37%), urea ((NH2)2CO, ≥99%), ethylene glycol (HOCH2CH2OH,
≥99%), ethanol (C2H5OH, 99,5%), and two precursors of Fe and Ag (iron(III) chloride
hexahydrate (FeCl3.6H2O, 97%) and silver nitrate (AgNO3, 99%)) were purchased from
XiLong, China. MO (C14H14N3NaO3S, ≥95%), MB (C16H18N3SCl, ≥95%), sodium boro-
hydride (NaBH4, ≥99%), and 4-NP (≥99%) were purchased from Sigma-Aldrich. All the
chemicals and reagents were used as received without further purification.

2.2. Isolation of Cellulose from Coconut Fiber and Hydrolysis to Generate CNCs

The isolation of cellulose from coconut fiber using the formic/peroxyformic acid
process was conducted as described in our previous work [36]. There are three major steps
to isolate cellulose: treatment with formic acid (HCOOH), treatment with peroxyformic
acid (PFA-HCOOH + H2O2 + H2O mixture), and bleach with NaOH and H2O2 solution.
First, coconut fiber powder was stirred with distilled water at 90 ◦C for 2 h following a
ratio of 1:20 (coconut fiber weight:volume of water). Next, the sample was filtered, washed
in distilled water, and dried at 60 ◦C. Then, the coconut fiber was stirred with a reflux
condenser in acid HCOOH 90% under the coconut fiber weight:HCOOH volume of 1:10
at 90 ◦C for 2 h. After HCOOH treatment, the mixture was filtered and washed with
distilled water to remove the excess acid. The sample was dried at 60 ◦C. The coconut fiber
was continuously treated with a PFA mixture (90% HCOOH 90%, 4% H2O2 30%, and 6%
distilled water) under a 1:20 ratio (fiber weight:PFA volume). The system was mechanically
stirred with reflux at 100 ◦C for 2 h. Finally, the fiber was bleached to achieve pure cellulose.
Precisely, 6.0 g of PFA-treated fiber was placed in a 500 mL three-neck round bottom flask,
followed by a solution of 180 mL distilled water and 12 mL NaOH 1M, and the system was
heated to 70 ◦C. After that, 16 mL H2O2 30% was slowly poured into the system (all H2O2
was poured within 15 min). The system was kept at a stable heat at 80 ◦C. The mixture was
then filtered and washed in distilled water. The sample obtained was cellulose, which was
dried at 80 ◦C.

The cellulose was hydrolyzed with hydrochloric acid (HCl, 6M) under a 1:25 (cellulose
weight:HCl volume) ratio. The system was stirred at a stable temperature of 90 ◦C for
3 h. When the reaction finished, the mixture was put into a beaker that contained 1000 mL
distilled water and the obtained suspension. The suspension was deposited, the water was
changed a few times, and the sample was centrifuged at a rate of 6000 rpm for 10 min and
then dried at 80 ◦C. The final sample obtained was CNCs.

2.3. Preparation of Fe3O4 Nanoparticles by Solvothermal Method

The manufacture of Fe3O4 nanoparticles using the solvothermal technique is depicted
in Figure 1. First, 42.0 mL of ethylene glycol and 1.5 mL of distilled water were combined
with 0.43 g FeCl3·6H2O and 0.90 g (NH2)2CO to generate an orange solution. This mixture
was then ultrasonically processed for 30 min. The combined solution was then put into
a Teflon-lined stainless-steel autoclave, sealed for six hours, and heated to 220 ◦C before
being cooled to ambient temperature. After obtaining black precipitation of Fe3O4, the
sample was centrifuged five to six times with ethanol. The Fe3O4 nanoparticles were made
after washing and vacuum drying at 60 ◦C for 9 h.
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Figure 1. The synthesis process of Fe3O4 nanoparticles.

2.4. Preparation of Ag/Fe3O4/CNC Nanocomposite by Hydrothermal Method

The experimental procedure involved subjecting a mixture comprising 10 mL of CNCs
(10 mg·mL−1), 10 mL of Fe3O4 (2 mg·mL−1), and 10 mL of AgNO3 (17 mg·mL−1) to
ultrasonic treatment for 30 min. Subsequently, the mixture was transferred into a Teflon-
lined stainless-steel autoclave and subjected to hydrothermal treatment at a temperature
of 80 ◦C for 3, 4, and 5 h. When the hydrothermal process finished, a suspension of
Ag/Fe3O4/CNC nanocomposite was obtained and then centrifuged and washed with DI
water several times and ethanol three times before drying at 70 ◦C for 3 h. The obtained
products were labeled FAC3, FAC4, and FAC5, corresponding to the hydrothermal times.
In addition, for comparative purposes, Ag/Fe3O4 (FA) samples were synthesized without
CNCs at three separate times: 3 h, 4 h, and 5 h under the same conditions. Like the
FAC materials, the FA samples were labeled FA3, FA4, and FA5, corresponding to the
hydrothermal times.

2.5. Characterization

The crystal structure was characterized by powder X-ray diffraction (PXRD), which
was implemented on a Bruker D2 Phaser PXRD (Berlin, Germany) instrument with Cu Kα
(target) radiation (λ = 1.5418 Å) at a scan rate (2θ) of 0.02◦ min−1 and a scan range of 10◦ to
80◦. The samples were ground into a fine powder and placed into a groove on a glass slide.
After being compacted, the slide with the powder was used for PXRD experiments. The
morphology was characterized using a field emission scanning electron microscope (FE-
SEM, S4800, Hitachi, Japan) equipped with an energy-dispersive X-ray (EDX) spectrometer
for elemental analysis using accelerating voltages of 5 kV and 10 kV. A sample patch was
adhered to a specimen stage by conductive adhesive tapes. Before observation, the sample
was sputtered with gold for electrical conduction. Transmission electron microscopy (TEM)
was performed with a JEM-1400 F (JEOL Ltd., Akishima, Japan) with a field emission gun
operating at 100 kV. The sample was suspended in ethanol and was prepared by being
drop-cast onto a carbon-coated 200-mesh copper grid and subsequently dried at room
temperature. The magnetic properties of the obtained materials were measured with a
vibrating sample magnetometer (VSM, LakeShore 7073, Westerville, OH, USA) at 25 ◦C,
and the hysteresis loop was measured in a magnetic field from −12,000 to +12,000 Oe.
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Thermogravimetric (TG) analysis was performed with a synchronous thermal analyzer
(SDTQ600, New Castle, DE, USA) under a nitrogen atmosphere from room temperature to
800 ◦C at a heating rate of 10 ◦C·min−1.

The specific surface areas of the FA5 and FAC5 were measured using a Quantachrome
Nova 2200 (Boynton Beach, FL, USA) BET analyzer and the Brunauer–Emmett–Teller (BET)
method based on low-temperature N2 adsorption–desorption. The Barrett–Joyner–Halanda
(BJH) method was used to calculate the pore size distributions from the adsorption isotherms.
The diluted FAC5 suspension was sonicated before DLS analysis. The material was placed in
the cuvette to be measured by a zeta analyzer (Nano ZS90, Zetasizer, Malvern, UK).

2.6. Catalytic Study
2.6.1. Catalytic Reduction of 4-NP

The conversion of 4-NP to 4-AP served as a model for evaluating the catalytic activity
of the FAC5 nanocomposite. In a typical process, 2.5 mg of FAC5 catalyst was added to a
25 mL aqueous 4-NP (1 × 10−4 M) while the solution was agitated at 25 ◦C. Next, a 2.5 mL
aqueous solution of NaBH4 (1 × 10−4 M) was slowly added to the previously described
reaction mixture. A sudden change from light yellow to a deeper yellow was observed.
Changes in the absorbance at 400 nm for 4-NP and 300 nm for the newly created 4-AP were
used to monitor the progression of the -NO2 conversion at predetermined intervals. Within
10 min of reaction time, the pigment changed from rich yellow to colorless.

2.6.2. Catalytic Reduction of MO and MB Dyes

In this study, MO and MB were chosen as models for reduction and degradation by
FAC5 in the presence of NaBH4. In a typical decomposition procedure, 15 mg of FAC5
was added to 30 mL of an aqueous dye solution with a concentration of 1 × 10−4 M.
The reaction was stirred at 25 ◦C while adding 1 mL of freshly prepared NaBH4 solution
(1 × 10−1 M). The supernatant’s catalytic activity was determined using UV–vis absorption
spectra (λmax: 464 nm for MO; λmax: 662 nm for MB) at predetermined time intervals.

3. Results and Discussion
3.1. Characterization

The PXRD patterns depicted the crystal structure of the Fe3O4 and Fe3O4/Ag NPs
in Figure 2a. The diffraction peaks at 2θ values of 30.1, 35.5, 43.1, 56.9, and 62.6◦, which
were assigned to the (220), (311), (400), (511), and (440) planes of the face-centered cubic
structure of Fe3O4 (JCPDS card no. 79-0418), confirm the synthesis of Fe3O4 NPs [37,38].
The peaks of the Fe3O4/Ag NPs prepared at three different hydrothermal times can be
observed at 38.2, 44.6, 64.5◦, and 77.5◦ corresponding to the reflections of the (111), (200),
(220), and (311) crystal planes of Ag (JCPDS card no. 87-0720), indicating the face-centered
cubic structure of the Ag NPs [39].

Figure 2b depicts the PXRD patterns of the CNCs, Fe3O4, and three FAC materials. A
comparison of the PXRD patterns of the three FAC samples reveals that the characteristic
Fe3O4 and CNC diffraction peaks at the 2θ positions are nearly unchanged. However, in
the PXRD diffractograms of FAC3 and FAC4, the intensity of the remaining characteristic
peaks is comparatively low, except for the silver (111) lattice peak at 2θ = 38.2◦. In addition,
there are impressive peaks at positions 2θ = 27.7◦ and 32.1◦; the intensity of these peaks
diminished gradually from the 3 h hydrothermal sample to the 4 h hydrothermal sample
and disappeared by the 5 h hydrothermal sample. More time may have been required for
the CNCs to convert Ag+ ions to Ag, resulting in the appearance of these unfamiliar peaks.
The reduction reaction had yet to occur fully. When the reaction time is increased to 5 h, the
CNCs have sufficient time to convert all the Ag+ ions to Ag, resulting in the disappearance
of these peaks and an increase in the intensity of the diffraction peaks that characterize the
Ag crystal structure.
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Figure 2. The PXRD patterns of (a) Fe3O4 and FA materials and (b) CNC and FAC materials.

The FE-SEM image of Fe3O4 (Figure 3a) reveals that the solvothermal-fabricated Fe3O4
has a spherical shape with an average diameter of approximately 300 nm. Figure 3b depicts
the EDX spectrum of Fe3O4, which confirms this material has high purity when only Fe
and O elements are present, with no other impurities. At three different time intervals,
the hydrothermal treatment of Fe3O4 in the AgNO3 solution produced FA materials with
remarkably similar morphology. In contrast to Fe3O4, the formation and attachment of Ag
to the surface of Fe3O4 during the hydrothermal process gives the FA spherical particles
an uneven surface (Figure 4). The FAC material indicates that Fe3O4, Ag, or Ag/Fe3O4
particles form on the CNC surface in the presence of CNCs. The FE-SEM imaging results
indicate that the average particle size in the hydrothermal sample after 3 h is approximately
180 nm; after 4 h, is approximately 150 nm; and after 5 h, is approximately 70–100 nm
(Figure 4). When the hydrothermal durations are between 3 and 4 h, the nanoparticles
are unevenly distributed and tend to clump together. When the hydrothermal time is
sufficiently extended (5 h), the particle density becomes more remarkable than that of
the two preceding samples. The 5 h nanoparticles disperse uniformly on the surface
of crystalline cellulose and are less susceptible to agglomeration. As the hydrothermal
duration increases, the particle density on the CNC surface increases, the particle size
decreases, and the particles disperse more effectively.

The results of the TEM image analysis (shown in Figure 5) make the composition of
the FAC composites quite evident. The Ag NPs and the Fe3O4 NPs are interconnected
and dispersed across the surface of the CNC bearing. The amount of time spent in the hy-
drothermal process causes the particle size of the Fe3O4 to decrease gradually. Additionally,
the particles become more densely packed and uniformly distributed.
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Figure 6 shows the EDX spectra of the samples FA5 and FAC5. The EDX spectra
of both the FA5 and FAC5 materials revealed the presence of O, Fe, and Ag peaks. In
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addition, the EDX spectrum of FAC5 shows a prominent signal peak at 0.27 keV, which is
characteristic of the C element of the CNCs in the material.
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The magnetic property of our materials was investigated using a vibrating sample
magnetometer (VSM). All of our magnetic hysteresis is depicted in Figure 7. The saturation
magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) values of seven
samples are displayed in Table 1 based on the results of the VSM; from Fe3O4 to FA to FAC,
the Ms of the samples decreased. The saturation magnetization of Fe3O4 reduces when
Ag nanoparticles are present on the Fe3O4 surface and reduces more with the presence of
CNCs. This result is consistent with previous research [40–42].
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Table 1. The Ms, Mr, and Hc values of seven samples.

No. Sample Ms (emu/g) Mr (emu/g) Hc (Oe)

1 Fe3O4 78.5 6.5 61.6

2 FA3 61.1 7.7 102.6

3 FA4 56.4 5.9 75.2

4 FA5 47.7 5.9 82.1

5 FAC3 10.6 0.1 6.8

6 FAC4 12.4 0.2 15.9

7 FAC5 26.6 0.4 6.8

In contrast to the FA materials, the Ms value of the FAC materials increases with
increasing hydrothermal duration in the presence of CNCs. The phase composition of the
materials may cause this result. As mentioned in the PXRD results, the FAC3 and FAC4
samples have low Ms due to impurity phases with diffraction peaks at 2θ = 27.7◦ and 32.1◦.
These peaks disappeared in the FAC5 sample after 5 h of hydrothermal treatment, so FAC5
has a higher Ms than the FAC3 and FAC4 samples. Even though the magnetism of FAC5 is
significantly diminished compared to that of pure Fe3O4, it can be readily separated from
the solution by applying an external magnetic field (Figure 7). This magnetic behavior
not only makes the FAC5 catalyst economically viable for recovery and reuse but it also
precludes the production of secondary sources of pollution, which are generated by catalyst
residues that are not recovered after processing.

Figure 8 depicts the TGA and DTG of the CNCs and FAC5. According to Alvarez
and Va1zquez, the decomposition temperature of cellulose is approximately 360 ◦C, where
high-weight macromolecules are broken down into small-weight glucose units [43]. The
DTG curves (Figure 8b) reveal that the CNCs have the highest decomposition temperature
at 357.0 ◦C, and the initial decomposition temperature is relatively high at 315.0 ◦C. Upon
hydrolysis by HCl acid, the hydroxyl groups on the cellulose surface tend to interact to
form densely packed hydrogen bonding networks around nano cellulose, resulting in a
higher decomposition temperature [44].
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The TGA results (Figure 8a) indicate that after Ag and Fe3O4 are bonded to the CNC
template, the material decomposes at approximately 284.0 ◦C and reaches its maximal
temperature of 297.1 ◦C. It can explain that when the metal and metal oxide form on
the CNC surface, the metal decomposes faster than the initial CNCs due to its high heat
conductivity. In addition, a significant amount of FAC5 decomposes at 343 ◦C, with the
highest decomposition temperature occurring at 364.6 ◦C. It is the thermal degradation
region of cellulose, where the weight loss is relatively high, and the charred residue exceeds
the initial CNCs (13.7%). According to FAC5, metals, and metal oxides have high heat
resistance, and they remain in the structure after cellulose decomposes completely, resulting
in the sample’s thermal stability. Therefore, FAC5 has a reduced decomposition rate and
more char residue than the CNCs.

3.2. Catalytic Reduction of 4-NP

The reduction of 4-NP in excess NaBH4 was selected as a model reaction to evaluate
the catalytic activity of the prepared FAC5 nanocomposite. UV–vis absorption spectroscopy
was used to track the progression of the catalytic reduction. During the experiment, the
peak UV absorption of an aqueous solution of 4-NP moved with increasing intensity
from 318 to 400 nm after adding freshly generated NaBH4 solution. The production of
4-nitrophenolate ions with a more vital -conjugated donor-acceptor characteristic is proba-
bly responsible for the initial color change (mild to intense yellow) followed by a red shift
when NaBH4 solution is added [45]. After a delay, the UV absorption peak of 4-NP at
400 nm, and its brilliant yellow color, disappeared upon adding the FAC5 catalyst. The
development and progressive strengthening of a new peak at 300 nm confirms the progres-
sion of the reaction due to the production of 4-AP. Figure 9 depicts the absorption spectrum
of 4-NP as a function of time for the catalysts FA5 and FAC5. In the presence of 2.5 mg
FAC5, 4-NP was nearly completely reduced within 10 min, accompanied by a change in
color from vibrant yellow to colorless. Ct and C0 were the absorbance values of 4-NP in the
presence of NaBH4 at time t = t and t = 0, respectively, and were plotted against time (t) in
Figure 9 in the presence of the FA5 and FAC5 catalysts. FAC5 has higher catalytic activity
than FA5. After 60 min, the absorption peak of 4-NP at 400 nm in NaBH4 and without the
catalyst is almost unchanged.

Similarly, 4-NP reduction proceeded very slowly when it occurred in the presence of
a catalyst but without NaBH4 as a reducer. These occurrences indicate that the reaction
requires both the catalyst and a reducing agent (NaBH4). In addition, the potential catalytic
activity of the CNCs and the Fe3O4 adsorbent was examined in the presence and absence
of NaBH4 under conditions analogous to those stated for FAC5. After 60 min of reaction,
however, the absorption peak intensity at 400 nm remained unchanged relative to that of
the initial 4-NP, indicating that the Ag NPs played a crucial role in the conversion of -NO2.

3.3. Removal of MO and MB via Adsorption Process and Catalytic Reduction

At ambient temperature, the adsorption of two water-soluble organic dyes (MB and
MO) was tested using CNC, FA5, and FAC5. In total, 15.0 mg of each substance was
added to a 30 mL beaker containing a 1.0 × 10−4 M aqueous dye solution. The mix-
ture was agitated at 300 rounds per min. The experiments were evaluated by measur-
ing the absorbance of the dye solution at intervals and then determining the MB con-
centration using the dye calibration curve. The dye removal was calculated using the
following formula:

Dye removal = Ct/C0 × 100 (1)

where Ct is the dye concentration at time t, and C0 is the initial dye concentration.
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Figure 9. Changes in UV–vis absorption spectra for the reduction of 4-NP by NaBH4 over time in
the presence of (a) FA5 and (b) FAC5 catalysts; (c) the corresponding plot of (Ct/C0) versus reaction
time (t).

Figure 10a,c depict the (Ct/C0) versus time profiles for determining the remaining MB
and MO after using CNC, FA5, and FAC5 adsorbents. All materials generally possess MB
adsorption, and the equivalence is reached in 10 min. Due to the electrostatic interaction
between the negatively charged hydroxyl groups on the surface of the CNCs and the
positively charged cation MB dye, the CNCs exhibit excellent MB adsorption. Twenty-five
percent of the MB remained after a 30-min test on the CNCs. FA5’s adsorption MB is
significantly lower than that of the CNCs. After 30 min of MB adsorption, the remaining
MB concentration in FA5 was 48.3%. Upon the appearance of Ag/Fe3O4 on the CNC
surface, the MB dye’s absorption increased dramatically compared to Ag/Fe3O4. The FAC5
material exhibited the highest adsorption efficacy, as shown in Figure 10a. After 30 min,
the remaining concentration of MB was 10.5%. The presence of CNCs in the hydrothermal
process facilitates the uniform dispersion of Ag/Fe3O4 on the CNC surface, increasing the
surface area of FAC5 relative to FA5. The results shown in Figure 11a provide information
regarding the two samples’ BET surface area (SBET). According to the International Union
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of Pure and Applied Chemistry (IUPAC) classification, the evaluated materials exhibited
type IV patterns with hysteresis loops. Two samples exhibited narrow H3-type hysteresis
loops (parallel plate-shaped apertures) based on the hysteresis loop patterns. In addition,
the zeta potential values of the FAC5 suspension obtained through DLS analysis were
–27.2 ± 1.1 mV negative (Figure 11b). This also facilitates enhanced cationic MB dye
adsorption. MO, as opposed to MB, is a negative anion dye. Thus, CNCs hardly absorb
MO. FA5 and FAC5 adsorption on MO also occurred and reached equilibrium after 10 min
of agitating both substances in the MO solution. Due to its greater surface area, FAC5 has a
higher MO adsorption capacity than FA5.
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Figure 10. Graphs of (Ct/C0) vs. time (t) for (a) MB and (c) MO; UV–vis absorption spectrum changes
for the reduction of (b) MB and (d) MO by NaBH4 at different time intervals in the presence of
FAC5 catalyst.
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Figure 11. (a) Nitrogen adsorption and desorption isotherms of FA5 and FAC5 materials; (b) zeta
potential distribution of FAC5 material.

Given the outstanding adsorption behavior of the FAC5 nanocomposite for MB, our
next objective was to investigate its performance in degrading hazardous organic dyes
using NaBH4 as a reducing agent, and monitoring the variation in the intensity of the UV
absorption peak at λmax = 664 nm [46,47] allowed for an evaluation of the MB catalytic
degradation process. Figure 10b also depicts the time-dependent change in the modification
in the MB absorption spectrum. Within 10 min, the MB dye solution completely lost its color,
from an intense blue color (MB) to colorless leucomethylene blue (LMB). In addition, the
reduction of MO was comparable to that of MB. Figure 10d depicts the UV–vis absorption
maximum variation at λmax = 464 nm for MO [48,49] at various time intervals. As the
reduction progressed, it was observed that the characteristic peak intensity decreased
significantly and nearly disappeared within 10 min. There was no significant change in
the distinct absorption peaks of MB and MO after 60 min of exposure without a catalyst or
a reductant.

Figure 12 depicts a potential mechanism for reducing 4-NP and organic dyes using
the FAC5 catalyst with NaBH4 based on the above experimental results. In addition, the
experimental results indicate that the reduction rate is significantly accelerated in the
presence of Ag metal on the catalyst’s surface compared to NaBH4 alone. Figure 12 shows
that the hydrolysis of borohydride ions in an aqueous solution generates H2 gas and
BO2

− [50–52]. As the hydrogen mediator for the reduction of 4-NP, 4-NP is deposited onto
the surface of the Ag NPs to produce a silver hydride complex. The Ag NPs serve as redox
catalysts for dye reduction by conveying electrons between donor species (BO2

−) and
acceptor molecules (MO or MB) [53–56]. The MB experiment observed that the colorless
(reduced) form of MB (LMB) underwent sluggish aerial oxidation in an open atmosphere
after 3–4 h. However, the characteristic blue color dissipated upon shaking, as the excess
NaBH4 in the solution once again diminished it. Similar observations, called “clock”
reactions, have been reported in the past [57]. In contrast, the reduced MO solution did not
change color, even after several days, indicating no subsequent re-oxidation. As shown
in Figure 12, the MO decolorization products were N, N-dimethyl-benzene-1,4-diamine,
and 4-aminobenzenesulfonate, formed via hydrogenation and subsequent -NH-NH- bond
dissociation [58].
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Figure 12. A possible way for 4-NP and organic dyes (MO and MB) to be broken down by
FAC5 nanocomposite.

The recyclability of the FAC5 nanocomposite was an essential factor for more cost-
effective processes, and we examined the sample’s efficiency in repeated reaction cycles.
The FAC5 nanocomposite could be readily separated from the solution by an external
magnetic field due to its strong magnetic properties. The nanocomposite was utilized
for the MB and 4-NP reduction after being washed five times with distilled water. After
three repetitions of this procedure, the FAC5 nanocomposite remained stable and exhibited
a high level of reactive activity, indicating its outstanding recyclability. As depicted in
Figure 13, the FAC5 was effectively reused in three successive 10-minute cycles. It was
observed that the catalyst had not significantly lost activity after three cycles. This result
indicates that the FAC5 nanocomposite developed in the present study is exceptionally
stable and resistant to multiple reuse cycles.

Polymers 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

  
Figure 13. Reusability of FAC5 catalyst over three successive cycles for reduction of (a) MB and (b) 
4-NP. 

4. Conclusions 
Using a straightforward protocol, a magnetic CNC nanocomposite decorated with 

Ag NPs (Ag/Fe3O4/CNC) was synthesized at ambient temperature without adding any 
reducing agent or stabilizer. In this green synthesis method, the CNC matrix was essential 
for reducing the Ag+ precursor and stabilizing newly formed Ag NPs on its surface. PXRD 
and EDX analyses confirmed the formation of Ag NPs on the CNC surface. TEM and FE-
SEM investigations also confirmed that the magnetic nanocomposite’s surface was deco-
rated with Ag NPs, and in the presence of NaBH4, the Ag/Fe3O4/CNC nanocomposite ex-
hibited exceptional catalytic activity for reducing 4-NP to 4-AP. It appeared to be an im-
pressive catalyst for the rapid reduction and decolorization of toxic organic substances 
(both MB and MO) in a few min (2.0–5.0) with a tiny amount of catalyst (2.5 mg for 4-NP 
and 15 mg for MB and MO). The hydrolysis of borohydride ions in an aqueous solution 
resulted in the formation of H2 gas and electron-rich BO2− ions as intermediates for the 
construction of a hydrogen-mediator complex (silver hydride) and an electron relay sys-
tem for the reduction of organic species (4-NP, MO, and MB). Therefore, Ag/Fe3O4/CNC 
is a potentially helpful catalyst for removing organic toxic pollutants from contaminated 
water bodies. 

Author Contributions: A.N.V.: Formal Analysis, Investigation, Writing—Original Draft Preparation, 
H.N.T.L.: Investigation, Writing—Review and Editing, T.B.P.: Investigation, and H.V.L.: Conceptu-
alization, Methodology, Supervision. All authors have read and agreed to the published version of 
the manuscript.  

Funding: This research was funded by Vietnam National University Ho Chi Minh City (VNU-HCM) 
grant number VL2022-18-04. 

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available in this published article. 

Acknowledgments: This research was funded by Vietnam National University Ho Chi Minh City 
(VNU-HCM) grant number VL2022-18-04. The authors are grateful for this financial support. 

Conflicts of Interest: The authors declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work reported in this paper. 

0 5 10 15 20 25 30
0

20

40

60

80

100

Cycle 3Cycle 2

C
t/C

o (
%

)

Time (min)

Cycle 1

a
0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Cycle 3Cycle 2

C
t/C

o

Time (min)

b

Cycle 1

Figure 13. Reusability of FAC5 catalyst over three successive cycles for reduction of (a) MB and
(b) 4-NP.



Polymers 2023, 15, 3373 15 of 17

4. Conclusions

Using a straightforward protocol, a magnetic CNC nanocomposite decorated with
Ag NPs (Ag/Fe3O4/CNC) was synthesized at ambient temperature without adding any
reducing agent or stabilizer. In this green synthesis method, the CNC matrix was essential
for reducing the Ag+ precursor and stabilizing newly formed Ag NPs on its surface.
PXRD and EDX analyses confirmed the formation of Ag NPs on the CNC surface. TEM
and FE-SEM investigations also confirmed that the magnetic nanocomposite’s surface was
decorated with Ag NPs, and in the presence of NaBH4, the Ag/Fe3O4/CNC nanocomposite
exhibited exceptional catalytic activity for reducing 4-NP to 4-AP. It appeared to be an
impressive catalyst for the rapid reduction and decolorization of toxic organic substances
(both MB and MO) in a few min (2.0–5.0) with a tiny amount of catalyst (2.5 mg for 4-NP
and 15 mg for MB and MO). The hydrolysis of borohydride ions in an aqueous solution
resulted in the formation of H2 gas and electron-rich BO2

− ions as intermediates for the
construction of a hydrogen-mediator complex (silver hydride) and an electron relay system
for the reduction of organic species (4-NP, MO, and MB). Therefore, Ag/Fe3O4/CNC is
a potentially helpful catalyst for removing organic toxic pollutants from contaminated
water bodies.
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