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Abstract: A new type of self-oscillating system has been developed with the potential to expand
its applications in fields such as biomedical engineering, advanced robotics, rescue operations, and
military industries. This system is capable of sustaining its own motion by absorbing energy from the
stable external environment without the need for an additional controller. The existing self-sustained
oscillatory systems are relatively complex in structure and difficult to fabricate and control, thus
limited in their implementation in practical and complex scenarios. In this paper, we creatively
propose a novel light-powered liquid crystal elastomer (LCE) fiber-cantilever system that can perform
self-sustained oscillation under steady illumination. Considering the well-established LCE dynamic
model, beam theory, and deflection formula, the control equations for the self-oscillating system are
derived to theoretically study the dynamics of self-vibration. The LCE fiber-cantilever system under
steady illumination is found to exhibit two motion regimes, namely, the static and self-vibration
regimes. The positive work done by the tension of the light-powered LCE fiber provides some
compensation against the structural resistance from cantilever and the air damping. In addition, the
influences of system parameters on self-vibration amplitude and frequency are also studied. The
newly constructed light-powered LCE fiber-cantilever system in this paper has a simple structure,
easy assembly/disassembly, easy preparation, and strong expandability as a one-dimensional fiber-
based system. It is expected to meet the application requirements of practical complex scenarios and
has important application value in fields such as autonomous robots, energy harvesters, autonomous
separators, sensors, mechanical logic devices, and biomimetic design.

Keywords: self-vibration; liquid crystal elastomer; light-powered; fiber-cantilever

1. Introduction

Self-excited oscillation refers to a recurring oscillatory phenomenon that arises from
external steady excitations. Conventional mechanical oscillation is usually subjected to peri-
odic external stimulus that generates periodic forced motion in time and space. In contrast
to forced oscillation, self-oscillation can actively adjust its own motion, provide feedback in
response to steady external stimulus, and obtain regular energy to maintain its periodic
motion [1–4]. Self-oscillation can not only obtain energy directly and independently from
the external environment to maintain its own motion mode, but also its vibration frequency
and amplitude depend only on the inherent parameters of the structure. It does not require
other complex controllers to achieve periodic oscillation [5,6], so from the perspective of
dynamics theory, self-oscillation is of great significance for understanding new behaviors
such as bifurcation, chaos, synchronization, and other non-equilibrium dynamics in non-
linear systems. It is a typical non-equilibrium dynamical process in nonlinear systems [7].
Self-oscillating systems have broad application prospects and revolutionary impact on
autonomous robots [8–12], energy harvesters [13,14], independent separators, sensors [15],
mechanical logic devices [16], and biomimetic design.

In recent years, active materials such as hydrogels [17,18], dielectric elastomers [19],
ion gels [20], and thermally responsive polymer materials [21] have exhibited different
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responses under different stimulus conditions. These responses generally change the
morphology and motion state of the active materials themselves. People have estab-
lished various self-oscillating systems and multiple self-sustained motion modes using the
properties of active materials, including bending [22–24], swimming [25], swinging [26],
rolling [2,9,10,27], rotating [28,29], twisting [30,31], vibration [6], and even synchronized
motion of several coupled self-oscillators [32,33]. In general, in all dynamic systems, there
is energy dissipation [34], and in practical environments, the vibrations tend to approach
an equilibrium state. Therefore, designing different types of self-oscillating systems is
a challenging process. In a constant environment, how to enable the system to absorb
energy autonomously, compensate for the damping dissipation, and maintain periodic
motion is the key to realize self-oscillation. A large number of self-excited oscillatory
systems have been established based on various feedback mechanisms. These different
feedback mechanisms typically lead to different self-sustained motion modes, such as
self-shadowing [35–37], coupling of liquid evaporation and membrane deformation [38],
coupling mechanism of air expansion and liquid column motion [39], and coupling of plate
bending and chemical reaction [40], all of which can cause self-excited oscillations.

The advantages of light in various stimuli are its sustainability, accuracy, controllability [41,42],
and non-contact. Optically-responsive materials that can convert near-infrared and visible
light into thermal energy, such as carbon nanotubes, graphene, and liquid crystal elas-
tomers (LCEs) [43–48] have good photomechanical effects [49–54]. Among them, LCEs are
important optically responsive materials, synthesized from anisotropic rod-shaped liquid
crystal molecules and stretchable long-chain polymers. When liquid crystal monomers are
subjected to external stimuli such as light, heat, electricity, and magnetism, they will rotate
or undergo phase transitions, thereby changing their configuration and generating macro-
scopic deformation [55,56]. LCEs typically offer advantages of large deformation, fast de-
formation response, recoverable deformation, low noise, easy remote control, and easy ma-
nipulation. Based on LCEs, photomechanical effects have been utilized to build various self-
sustained oscillatory systems, including but not limited to shuttling [57], bending [58], rota-
tion [29,30,55], spinning [59], curling [60], oscillating [61,62], buckling [63–65], rolling [28],
floating [66], twisting [67], vibration [68], swimming [25], chaos [69], and even several
synchronous motions coupled with self-excited oscillations [2,27,34]. These LCE-based
self-sustained oscillatory systems have attracted much attention in both fundamental and
applied research [55,70–72].

Although a large number of self-sustained oscillatory systems have been constructed,
these systems generally have complex structures, are difficult to manufacture and control,
and may not meet the requirements of complex practical applications. In this article, we
propose a novel and simple LCE fiber-cantilever system that exhibits self-sustained oscil-
lation under steady illumination and essentially functions as a “self-shadowing” system.
Compared to previous self-oscillating systems such as balls [66] and tubes [42], the structure
of one-dimensional fiber is relatively simple, making it easy to assemble and disassem-
ble. It should also be noted that the proposed LCE fiber-cantilever system may exhibit a
dependence on the angle of illumination in practice. Furthermore, the system is highly
extensible, holding potential for constructing more complex LCE fiber-based systems to
achieve advanced self-sustained motions. The objective of this research is to build the
LCE fiber-cantilever system and investigate its self-oscillation characteristics under stable
illumination. Meanwhile, we discuss the underlying mechanisms of self-oscillation and
systematically explore the impacts of various physical and geometric parameters on the
system’s amplitude and frequency.

The organization of this paper is as follows. First, in Section 2, considering the dynamic
LCE model and beam theory, the theoretical model and control equations for the LCE fiber-
cantilever system are established. Then, in Section 3, two motion regimes of the LCE
fiber-cantilever system are obtained by numerical calculations, and the mechanism of its
self-vibration is explained in detail. Next, in Section 4, the influences of various system



Polymers 2023, 15, 3397 3 of 18

parameters on the amplitude and frequency of self-vibration are discussed in detail. Finally,
the results are summarized.

2. Theoretical Model and Formulation

In this section, we first propose a light-powered self-oscillation system containing an
LCE fiber, an oblique bending cantilever, and a mass block. Then, we present a theoretical
model for the self-oscillation system based on the dynamic LCE model [8] and beam
theory [73]. The dynamic control equations of the system, the evolution law of the cis
number fraction in LCE, and the nondimensionalization of the system parameters are then
given in turn.

2.1. Dynamics of System

Figure 1 schematically describes the proposed LCE fiber-cantilever system, in which
an LCE fiber, a lightweight cantilever beam and a mass block are included. The lightweight
cantilever of length LB at an angle θ from the horizontal, is fixed on a vertical rigid base.
The mass block with mass m at the cantilever end is connected by the LCE fiber fixed on
another vertical rigid base to form a tension string system. The bending effect of gravity on
the cantilever can be ignored as it is much smaller than other forces. Both the torsion and
displacement of the cantilever along the length are small, so the mass block is assumed to
move in a plane. We take the initial position of the mass block as the origin of the coordinate
system and establish the coordinate axis along the direction of cantilever deflection. The
initial length of LCE fiber is L0. In addition, the masses of the LCE fiber and the cantilever
are much less than the mass m, so they are neglected.
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Figure 1. Schematic of an LCE fiber-cantilever system containing an LCE fiber, a lightweight cantilever
beam, and a mass block: (a) Reference state; (b) Current state; (c) Force analysis. FL denotes the
tension of the LCE fiber, FB represents the force exerted by the beam on the mass block, FD represents
the air damping force, γ is the angle between the cantilever deflection and the horizontal direction,
and θ is the inclined angle of cantilever.

The system is placed under steady illumination as shown in Figure 1b, with the yellow
region representing the illumination zone with a height of δ. Generally, chromophores
in the LCE fiber upon illumination undergo series of trans-cis-trans isomerization cycles
ending up in the change of the orientation of the trans-isomer long axis [74]. In case of
non-polarized light illumination, the long axes orient towards the illumination direction,
while in case of illumination with polarized light, the long axes orient perpendicular to
the light polarization, because of the direction-dependent absorption of the chromophore.
These changes can change the order parameter of the LCE and lead in some geometries to
contraction of the fiber. As the LCE fiber contracts, the cantilever bends further into the
dark zone. When the LCE fiber is in the dark, the azobenzene molecules in it switch from cis
to trans, causing the light-driven contraction of the LCE fiber to recover. Subsequently, the
tension of the LCE fiber decreases andthe cantilever returns to the illumination zone due
to the structural resistance. Through the proper adjustment of the system parameters and
initial conditions, the LCE fiber-cantilever system can maintain continuous self-oscillation.

The mass block is subjected to the tension of LCE fiber, the structural resistance form
cantilever, and the air damping force, as depicted in Figure 1c. In the deflection direction,
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the control equation for the nonlinear dynamics model of mass block can be expressed
as follows:

m
..
w = FL · cos γ− FB − FD (1)

where
..
w refers to the acceleration of the mass block, FL denotes the tension of the LCE fiber,

FB represents the force exerted by the beam on the mass block, FD represents the air damp-
ing force, and γ is the angle between the cantilever deflection and the horizontal direction.

Through the beam deflection theory, the moment of inertia formula, and the trigono-
metric function, it can be calculated γ = arctan[r2 tan θ]− θ, where r refers to the ratio of
cantilever height to width.

The tension of LCE fiber is related to its elongation and cross-sectional area, which can
be described as

FL =
EL AL · ∆L

L
=

EL AL{[L0 + 2w(t) · cos γ]− L0[1 + εL(t)]}
L0[1 + εL(t)]

(2)

where FL refers to the elastic modulus of the LCE fiber, AL refers to the cross-sectional area
of the LCE fiber, L0 is the original length of LCE fiber, w(t) represents the cantilever-end
deflection, i.e., the displacement of the mass block, and εL(t) represents the light-driven
contraction strain of LCE fiber.

It is assumed that the cantilever beam is always in a state of small deformation, while
the theory of linear elasticity is applied, thus the structural resistance from cantilever is
proportional to the displacement, that is

FB =
3EB IB

L3
B
· w(t) (3)

where LB is the cantilever length, EB IB is the bending stiffness of the cantilever.
The damping force is assumed to be linearly proportional to the velocity of the mass

block, with the formula being
FD = β · .

w(t) (4)

where β denotes the air damping coefficient and
.

w is the velocity of the mass block.
Thus far, substituting Equations (2)–(4) into Equation (1), we have

m
d2w(t)

dt2 = EL AL · cos γ · {[L0 + 2w(t) · cos γ]− L0[1 + εL(t)]}
L0[1 + εL(t)]

. (5)

2.2. Dynamic LCE Model

This section mainly describes the dynamic model of the light-driven contraction in
LCE fiber. The fiber radius is assumed to be much smaller than the penetration depth of
light, and no absorption gradient within the fiber is considered. The LCE fiber-cantilever
system uses a linear model, which is adopted to describe the relationship between the cis
number fraction ϕ(t) in LCE and the light-driven contraction of LCE, that is

εL = −C0 · ϕ(t) (6)

where C0 is the contraction coefficient.
The light-driven contraction in LCE depend on the cis number fraction ϕ(t) [75,76].

The study by Yu et al. found that the trans-to-cis isomerization of LCE could be induced by
UV or laser with wavelength less than 400 nm [77]. In this study, a ‘push-pull’ mechanism
is considered to calculate the cis number fraction [76]. The number fraction ϕ(t) of the cis-
isomer depends on the thermal excitation from trans to cis, the thermally driven relaxation
from cis to trans, and the light driven relaxation from trans to cis. Supposing that the thermal



Polymers 2023, 15, 3397 5 of 18

excitation from trans to cis can be ignored, the governing equation for the evolution of the
cis number fraction can be formulated as

∂ϕ

∂t
= η0 I0(1− ϕ)− ϕ

T0
(7)

where T0 refers to the thermally driven relaxation time from the cis to trans, I0 denotes
the light intensity, and η0 is the light absorption constant. By solving Equation (7), the cis
number fraction can be described as

ϕ(t) =
η0T0 I0

η0T0 I0 + 1
+ (ϕ0 −

η0T0 I0

η0T0 I0 + 1
) exp[− t

T0
(η0T0 I0 + 1)] (8)

where ϕ0 represents the initial cis number fraction at t = 0.
In illuminated state, for initially zero-number fraction, i.e., ϕ0 = 0, Equation (8) can be

simplified as

ϕ(t) =
η0T0 I0

η0T0 I0 + 1
{1− exp[− t

T0
(η0T0 I0 + 1)]} (9)

In non-illuminated state, namely I0 = 0, Equation (8) can be simplified as

ϕ(t) = ϕ0 exp(− t
T0

) (10)

where the undetermined ϕ0 can be set to be the maximum value of ϕ(t) in Equation (9),
namely, ϕ0 = η0T0 I0

η0T0 I0+1 . Then Equation (10) can be rewritten as

ϕ(t) =
η0T0 I0

η0T0 I0 + 1
exp(− t

T0
) (11)

2.3. Nondimensionalization

We introduce the following dimensionless quantities by defining: w = w
L0

, initial

velocity
.

w0 = T0
.

w0
L0

, t = t
T0

, spring constant KL =
EL AT2

0
mL0

, flexural stiffness KB =
3EB IBT2

0
mL3

B
,

β = βT0
m , I0 = η0T0 I0, δ = δ

L0
, and ϕ = ϕ(η0T0 I0+1)

η0T0 I0
, to simplify the governing equations

Equations (5) and (9)–(11).
The dimensionless form of Equation (5) can be expressed as

..
w(t) = KL · cos γ · [ 1

1− C0 · ϕ(t)
+

w(t) · cos γ

1− C0 · ϕ(t)
− 1]− KB · w(t)− β · .

w(t) (12)

In illuminated state, Equation (9) can be rewritten as

ϕ = 1− exp[−t(I0 + 1)] (13)

and in non-illuminated state, Equation (11) becomes

ϕ = exp(−t) (14)

Equations (12)–(14) are utilized to regulate the self-vibration of the LCE fiber-cantilever
system in the presence of steady illumination. These equations involve a time-varying
fractional quantity associated with the cis isomer and closely linked to the light intensity.
To solve these intricate linear equations, the fourth-order Runge–Kutta method is employed
for numerical computations using the Matlab software. Moreover, Equations (13) and (14)
are employed to determine the cis number fraction ϕ and time length t, enabling the
calculation of tension FL, air damping force FD, and structural resistance FB of the LCE
fiber. By iterating calculation with given parameters

.
w0, KL, KB, β, I0, C0, θ, r, and δ, the

dynamics of the LCE fiber-cantilever system can be obtained.
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3. Two Motion Regimes and Mechanism of Self-Vibration

In this section, through solving the control equation Equation (12), we first propose two
typical motion regimes of the LCE fiber-cantilever system, which are distinguished as static
regime and self-vibration regime. Next, the corresponding mechanism of self-vibration is
elaborated in detail.

3.1. Two Motion Regimes

In order to further study the self-vibration behavior of the LCE fiber-cantilever system,
we first need to determine the typical values for the dimensionless system parameters.
Based on the existing experiments and information [78–80], Table 1 gathers the typical val-
ues of the system parameters required in current paper. The corresponding dimensionless
parameters are listed in Table 2. In the following section, these values of parameters are
used to study the self-vibration of the LCE fiber-cantilever system under steady illumina-
tion. It is worth noting that the small deformation hypothesis can be verified under these
given parameters.

Table 1. Material properties and geometric parameters.

Parameter Definition Value Unit

I0 Light intensity 0~10 kW/m2

C0 Contraction coefficient 0~0.5 /

KL Spring constant 0.1~1 N/m

KB Flexural stiffness 0.3~3 N/m

β Damping coefficient 0~0.001 kg/s

w0 Initial velocity 0~0.5 mm/s

δ Height of illumination zone 0~0.1 m

r Ratio of cantilever height to width 1~20 /

θ Inclined angle of cantilever 0~1.2 rad

T0 Cis- to trans- thermal relaxation time 1~100 ms

η0 Light-absorption constant 0.001 m2/(s·W)

Table 2. Dimensionless parameters.

Parameter I0 C0 KL KB β
.

w0 δ r θ

Value 0~1 0~0.5 0~1.2 0~1 0~0.2 0~5 0~0.1 1~20 0~ π
2

By solving Equations (12)–(14), the time histories and phase trajectories for the LCE
fiber-cantilever system can be obtained, with examples for I0 = 0.25 and I0 = 0.5 shown
in Figure 2. The other parameters used in the calculation are set as C0 = 0.25, KL = 0.2,
KB = 0.7, β = 0.02,

.
w0 = 0, δ = 0.03, r = 2 and θ = π

4 . In Figure 2a,b, the amplitude of the
cantilever-end deflection gradually decreases with time due to the damping dissipation,
and the system eventually reaches a stationary position at equilibrium, which is referred
to as the static regime. In contrast, Figure 2c,d show that the system initially vibrates
from a static equilibrium position and then progressively increases in vibration amplitude
over time until it remains constant. On exposure to steady illumination, the LCE fiber-
cantilever system eventually presents a continuous periodic vibration, which we refer to as
the self-vibration regime.
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Figure 2. Two typical motion regimes of the LCE fiber-cantilever system under steady illumination:
static regime and self-vibration regime. (a) Time-history curve of the displacement with I0 = 0.25;
(b) Phase trajectory diagram with I0 = 0.25; (c) Time-history curve of the displacement with I0 = 0.5
and (d) Phase trajectory diagram with I0 = 0.5.

3.2. Mechanism of the Self-Vibration

In this section, the mechanism of self-vibration will be explained in detail. To better
understand the energy compensation mechanism of the LCE fiber-cantilever system, we
plot the relationship curves for some key physical quantities in the self-vibration process.
In this case, the system parameters are selected as I0 = 0.5, C0 = 0.25, KL = 0.25, KB = 0.7,
β = 0.02,

.
w0 = 0, δ = 0.03, r = 2, and θ = π

4 . Figure 3a illustrates the cantilever-end
deflection over time, with the yellow area indicating that the LCE fiber is in the illumination
zone. As the system vibrates continuously, the LCE fiber also oscillates back and forth
between the illumination and dark zones, and the change in the cis number fraction ϕ
over time is drawn in Figure 3b. It is clearly observed that as the illumination condition
changes, the cis number fraction changes rapidly at first and then slowly approaches a
critical value determined by the contraction coefficient C0. In addition, Figure 4 illustrates
several characteristic snapshots for the self-vibration of the LCE fiber-cantilever system
during one cycle under steady illumination.

Figure 3c presents the periodic time variation of the tension of the LCE fiber. The
tension decreases first and then increases in the illumination zone, while the opposite
is true in the dark zone. The hysteresis loop shown in Figure 3d indicates that the LCE
fiber-cantilever system maintains its oscillation as the LCE fiber absorbs light energy and
does work. The area enclosed by the loop represents the net work done by the tension
of the LCE fiber in one cycle, with a value of approximately 0.0029. Like the tension of
the LCE fiber, it is clear from Figure 3e that the damping force also presents a periodic
time variation. Figure 3f plots the dependence of the damping force on the cantilever-end
deflection, which also forms a closed loop representing the damping dissipation, with a
value being calculated to be about 0.0029. The net work done by the tension of LCE fiber is
exactly equal to the damping dissipation, implying that the energy consumed by the system
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motion is compensated by the light energy absorbed by the LCE fiber, thus maintaining
the self-vibration.
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cantilever-end deflection. (b) Time variation of the light-driven contraction of LCE fiber. (c) Time
variation of the tension of LCE fiber. (d) Dependence of the tension of LCE fiber on the cantilever-end
deflection. (e) Time variation of the damping force. (f) Dependence of the damping force on the
cantilever-end deflection.
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4. Parametric Study

In the mechanical model of the self-vibration for the LCE fiber-cantilever system
described above, there are nine dimensionless system parameters: I0, C0, KL, KB, β,

.
w0,

δ, r, and θ. In this section, we investigate in detail the effects of these system parameters
on the self-vibration of the LCE fiber-cantilever system, including its frequency and am-
plitude. The dimensionless self-vibration frequency and amplitude are denoted by f and
A, respectively.

4.1. Effect of Light Intensity

The effect of light intensity on the self-vibration is discussed in current subsection. In
this case, the values of the other parameters are, C0 = 0.25, KL = 0.25, KB = 0.7, β = 0.02,
.

w0 = 0, δ = 0.03, r = 2, and θ = π
4 . The limit cycles of the self-vibration are depicted in

Figure 5a, where I0 = 0.39 is the critical value of light intensity between the static and
self-vibration regimes. When the light intensity is below 0.39, the system is in static regime,
while above 0.39, the system is in self-vibration regime. When the light intensity is relatively
small, the LCE fiber does not absorb enough light energy to offset the damping dissipation,
thus it cannot maintain its continuous motion and comes to rest. Conversely, when the
light intensity is large enough, the light energy absorbed by the system can compensate
for the damping dissipation, so as to maintain its own motion. Figure 5b describes the
effect of light intensity on the self-vibration amplitude and frequency. With the increasing
light intensity, the amplitude increases, while the frequency remains essentially constant.
Larger light intensity allows the system to absorb more light energy, thereby maintaining
oscillation with higher amplitude. These results suggest that increasing the light intensity
is crucial for improving the energy utilization efficiency of the LCE fiber-cantilever system.
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4.2. Effect of Contraction Coefficient

This subsection mainly discusses the effect of contraction coefficient on the self-
vibration. Here, the values of the other parameters are I0 = 0.5, KL = 0.25, KB = 0.7,
β = 0.02,

.
w0 = 0, δ = 0.03, r = 2, and θ = π

4 . Figure 6a plots the limit cycles for different
contraction coefficients. Obviously, there exists a critical value for contraction coefficient to
trigger the self-vibration, which is numerically determined to be 0.207. A small contraction
coefficient means a low light energy input, and there is not enough energy to compensate
for the damping dissipation. For C0 = 0.25, C0 = 0.35, and C0 = 0.45, the self-vibration
can be triggered. Figure 6b presents the dependencies of the self-vibration amplitude and
frequency on the contraction coefficient. The larger the contraction coefficient, the higher
the amplitude. As the contraction coefficient increases, the LCE fiber makes more efficient
use of the illumination, absorbs more light energy, and shifts the system from a static regime
to a self-vibration regime, resulting in an increase in the amplitude. The result implies that
increasing the contraction coefficient of LCE material can improve the efficient conversion
of light energy to mechanical energy.
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4.3. Effect of Spring Constant

This subsection mainly focuses on the effect of spring constant on the self-vibration.
In this case, the values of the other parameters are I0 = 0.5, C0 = 0.25, KB = 0.7, β = 0.02,
.

w0 = 0, δ = 0.03, r = 2, and θ = π
4 . Figure 7a displays the limit cycles for different spring

constants, among which two critical spring constants exist for triggering the self-vibration.
It is clear to see that the system is in the static regime when the spring constant is below
0.214 or above 0.951. This can be explained by the relationship between the spring constant
and the tension of the LCE fiber. When the spring constant is small, the tension of the LCE
fiber is small, which is not enough to force the system to remain in oscillation. When the
spring constant is large, the tension of the LCE fiber can be equal to the structural resistance,
thus allowing the whole system to equilibrate the forces and reach a static regime. Figure 7b
illustrates that the spring constant has a significant effect on the amplitude and frequency
of the self-vibration. As the spring constant increases, the amplitude increases, while the
frequency decreases. This is because the spring constant determines the driving force of
the system, which in turn affects the oscillatory behavior of the system. Therefore, when
we design the LCE fiber-cantilever system, the adjustment of the spring constant can be
used to control its amplitude and frequency to achieve better performance. For example,
in some robotic applications, the LCE fiber-cantilever system is required to realize stable
motion or grasp an object, we can select the appropriate spring constant according to the
desired motion mode and the weight of the object, so as to keep the system stable and have
good accuracy during operation. In addition, when designing suspended structures or
other oscillatory systems, the amplitude and frequency can also be controlled according to
the variation of the spring constant to achieve better performance.
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4.4. Effect of Flexural Stiffness

The influence of flexural stiffness on the self-vibration is provided for I0 = 0.5,
C0 = 0.25, KL = 0.25, β = 0.02,

.
w0 = 0, δ = 0.03, r = 2, and θ = π

4 . The limit
cycles for different flexural stiffnesses are drawn in Figure 8a. The flexural stiffness has
two critical values for the transition between the static and self-vibration regimes, which
are numerically calculated to be around 0.19 and 0.81. When the flexural stiffness is
small, the structural resistance of the cantilever is small, and the net work done by the
tension of the LCE fiber is not sufficient to maintain the self-vibration. When the flexural
stiffness is large, the structural resistance from the cantilever is so great that the tension
of the LCE fiber cannot drive the system to oscillate. Figure 8b plots the variations of
self-vibration amplitude and frequency with different flexural stiffnesses. As the flexural
stiffness increases, the amplitude decreases, while the frequency increases. This can be
explained by the beam theory, where the greater the flexural stiffness of the beam, the
greater the recovery force on the beam, thus preventing further bending of the beam. As a
result, the amplitude decreases. Therefore, to improve the system stability, it is a good way
to choose the appropriate flexural stiffness of the beam.
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4.5. Effect of Damping Coefficient

Figure 9 presents the influence of damping coefficient on the self-vibration, with
parameters I0 = 0.5, C0 = 0.25, KL = 0.25, KB = 0.7,

.
w0 = 0, δ = 0.03, r = 2, and

θ = π
4 . The limit cycles for different damping coefficients can be observed in Figure 9a. It

is not difficult to find that the variation of damping coefficient does not affect the motion
regime of the LCE fiber-cantilever system. For different damping coefficients, the system
is always in a self-vibration regime. The dependencies of the self-vibration amplitude
and frequency on the damping coefficient are depicted in Figure 9b. With the increase
of damping coefficient, the amplitude decreases sharply and then slowly, presenting the
characteristics of an exponential function. In contrast, changes in the damping coefficient
have little effect on the frequency. This suggests that the damping coefficient plays an
important role in influencing the amplitude and energy level of self-vibration systems.
Proper adjustment of the damping coefficient can control the vibration amplitude and
energy level of the system to ensure the system stability. Moreover, as the damping
coefficient has little effect on the frequency, the damping coefficient and frequency need to
be considered comprehensively during the system design process to obtain the optimal
scheme. These research results not only provide important application value in the field
of engineering design and manufacture, but also provide new ideas and methods for the
in-depth understanding of complex systems.
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4.6. Effect of Initial Velocity

The effect of initial velocity
.

w0 on the self-vibration is displayed in Figure 10, with
other parameters being I0 = 0.5, C0 = 0.25, KL = 0.25, KB = 0.7, β = 0.02, δ = 0.03, r = 2,
and θ = π

4 .
.

w0 = 0,
.

w0 = 0.5, and
.

w0 = 1 are found to successfully trigger the self-vibration,
and the limit cycles are plotted in Figure 10a. It is worth mentioning that the limit cycles
for these three initial velocities overlap. As can be seen in Figure 10b, the variation of
the initial velocity does not affect the amplitude and frequency of the system. Since the
self-vibration results from the energy conversion between the damping dissipation and the
network done by the tension of the LCE fiber, the self-vibration amplitude and frequency
are determined by the internal properties of the system, which is consistent with other
self-vibration systems. The initial velocity therefore has no effect on the final amplitude of
the system.
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w0 = 1. (b) Variations of amplitude and frequency with different initial velocities.

4.7. Effect of Illumination Zone Height

This subsection presents a discussion on the effect of illumination zone height on the
self-vibration. In the calculation, we set other parameters as I0 = 0.5, C0 = 0.25, KL = 0.25,
KB = 0.7, β = 0.02,

.
w0 = 0, r = 2, and θ = π

4 .As observed from Figure 11a, for the
phase transition between the static and self-vibration regimes, two critical illumination
zone heights exist with values of 0.001 and 0.037, respectively. When the illumination
zone height is less than 0.001 or greater than 0.037, the system is in astatic regime. When
the illumination zone height is within the interval of 0.001 and 0.037, the system is in
a self-vibration regime. The effect of illumination zone height on the amplitude and
frequency is shown in the Figure 11b. Obviously, the amplitude and frequency do not
vary with increasing the illumination zone height. This is contributed to the fact that as
the illumination zone expands, the tension of the LCE fiber increases, and the structural
resistance from cantilever also increases accordingly. Consequently, the system encounters
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greater resistance during self-vibration, resulting in a drop in amplitude. In conclusion,
adjusting the appropriate range of the illumination zone can be more effective in improving
the efficiency of light utilization.
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4.8. Effect of Ratio of Cantilever Height to Width

This subsection mainly discusses how the ratio of cantilever height to width affects
the self-vibration. In this case, the other dimensionless parameters are selected as I0 = 0.5,
C0 = 0.25, KL = 0.25, KB = 0.7, β = 0.02,

.
w0 = 0, δ = 0.03, and θ = π

4 . Figure 12a
shows the three limit cycles for ratios of cantilever height to width of r = 2, r = 4, and
r = 6. The system is in the static regime when the ratio is below 1.48, while it is in the
self-vibration regime when the ratio exceeds 1.48. This is due to the small deflection angle
of the cantilever end when the ratio of cantilever height to width is small. The longitudinal
deflection of the cantilever end is too small for the system to leave the illumination zone, so
the system becomes static. Figure 12b depicts how the ratio of cantilever height to width
affects the self-vibration amplitude and frequency. As the ratio of cantilever height to width
increases, the self-vibration amplitude will first decrease rapidly, and then a marginal effect
occurs, slowing down the reduction rate. At the same time, the self-vibration frequency
will first increase rapidly, and then a marginal effect appears, slowing down its increase.
These findings underscore the significance of meticulous selection of the ratio of cantilever
height to width and suggest that opting for an appropriate ratio can effectively enhance the
efficiency of converting light energy into mechanical energy.
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4.9. Effect of Inclined Angle of Cantilever

The inclined angle of cantilever affecting the self-vibration is investigated in this
subsection, where the other dimensionless parameters are chosen as I0 = 0.5, C0 = 0.25,
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KL = 0.25, KB = 0.7, β = 0.02,
.

w0 = 0, δ = 0.03, and r = 2. Figure 13a illustrates the
limit cycles for different inclined angles, in which θ = 2π

45 and θ = 123π
360 are the two critical

inclined angles for the phase transition between the static and the self-vibration regimes.
The self-vibration can be triggered with inclined angles of θ = π

6 , θ = π
4 , and θ = π

3 ,
while the system is in the static regime with θ < 2π

45 and θ > 123π
360 . Clearly observed from

Figure 13b that as the inclined angle of cantilever increases, the self-vibration frequency
first increases and then decreases, and conversely the amplitude first decreases and then
increases, indicating that there is an optimal inclined angle for the self-excited oscillation. In
summary, setting an appropriate inclined angle of cantilever can promote the self-vibration.
Too large- or too small- inclined angle of cantilever is not conducive to the self-vibration of
the system.

Polymers 2023, 15, x FOR PEER REVIEW 16 of 19 
 

 

the self-vibration. Too large- or too small- inclined angle of cantilever is not conducive to 
the self-vibration of the system. 

 

Figure 13. Effect of inclined angle of cantilever on the self-vibration. (a) Limit cycles with 
6
πθ = , 

4
πθ = , and 

3
πθ = . (b) Variations of amplitude and frequency with different inclined angles of 

cantilever. 

5. Conclusions 
Self-excited oscillatory systems can maintain continuous motion by absorbing energy 

from the stable external environment, and possess potential applications in biomedicine, 
advanced robotics, rescue operations, military industry, and other fields. In order to over-
come the disadvantages of existing self-sustained oscillatory systems that are relatively 
complex in structure and difficult to fabricate and control, we creatively propose a novel 
light-powered LCE fiber-cantilever system composed of an LCE fiber, a lightweight can-
tilever beam, and a mass block under steady illumination. The dynamic control equations 
for the LCE fiber-cantilever system are derived based on the established LCE dynamic 
model, beam theory, and deflection formula. The solutions of the nonlinear control equa-
tions are obtained using the Runge–Kutta numerical calculation method with MATLAB 
software. The results show that the LCE fiber-cantilever system evolves into two motion 
regimes, namely the static and self-vibration regimes. We have described these two mo-
tion regimes specifically and also revealed the energy compensation mechanism of the 
system. In a constant illumination, the positive work done by the tension of the LCE fiber 
is used to compensate for the structural resistance from the cantilever and the air damp-
ing, resulting in the contraction and relaxation. 

Further numerical calculations show that the light intensity, contraction coefficient, 
spring constant, flexural stiffness, damping coefficient, ratio of cantilever height to width, 
and the inclined angle of the cantilever have a considerable effect on the self-vibration 
amplitude of the system. The spring constant of the LCE fiber and the flexural stiffness of 
the cantilever beam significantly affect the self-vibration frequency of the system. The il-
lumination zone height has little effect on the amplitude and frequency, and the amplitude 
and frequency are not affected by the initial velocity. The LCE fiber-cantilever system con-
structed in this paper is a simple, easy-to-assemble and disassemble, easy-to-prepare, and 
highly expandable one-dimensional fiber-based system. It is expected to meet the appli-
cation requirements of practical complex scenarios and has important application value 
in the fields of autonomous robotics, energy harvesters, autonomous separators, sensors, 
mechanical logic devices, and bionic design. 

Author Contributions: The contribution of the authors are as follows: Data curation, Visualization, 
Validation, Methodology, Software, K.L.; Validation, Methodology, Software, Writing-Original 

Figure 13. Effect of inclined angle of cantilever on the self-vibration. (a) Limit cycles with θ = π
6 ,

θ = π
4 , and θ = π

3 . (b) Variations of amplitude and frequency with different inclined angles
of cantilever.

5. Conclusions

Self-excited oscillatory systems can maintain continuous motion by absorbing energy
from the stable external environment, and possess potential applications in biomedicine,
advanced robotics, rescue operations, military industry, and other fields. In order to over-
come the disadvantages of existing self-sustained oscillatory systems that are relatively
complex in structure and difficult to fabricate and control, we creatively propose a novel
light-powered LCE fiber-cantilever system composed of an LCE fiber, a lightweight can-
tilever beam, and a mass block under steady illumination. The dynamic control equations
for the LCE fiber-cantilever system are derived based on the established LCE dynamic
model, beam theory, and deflection formula. The solutions of the nonlinear control equa-
tions are obtained using the Runge–Kutta numerical calculation method with MATLAB
software. The results show that the LCE fiber-cantilever system evolves into two motion
regimes, namely the static and self-vibration regimes. We have described these two motion
regimes specifically and also revealed the energy compensation mechanism of the system.
In a constant illumination, the positive work done by the tension of the LCE fiber is used to
compensate for the structural resistance from the cantilever and the air damping, resulting
in the contraction and relaxation.

Further numerical calculations show that the light intensity, contraction coefficient,
spring constant, flexural stiffness, damping coefficient, ratio of cantilever height to width,
and the inclined angle of the cantilever have a considerable effect on the self-vibration
amplitude of the system. The spring constant of the LCE fiber and the flexural stiffness
of the cantilever beam significantly affect the self-vibration frequency of the system. The
illumination zone height has little effect on the amplitude and frequency, and the amplitude
and frequency are not affected by the initial velocity. The LCE fiber-cantilever system
constructed in this paper is a simple, easy-to-assemble and disassemble, easy-to-prepare,
and highly expandable one-dimensional fiber-based system. It is expected to meet the
application requirements of practical complex scenarios and has important application
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value in the fields of autonomous robotics, energy harvesters, autonomous separators,
sensors, mechanical logic devices, and bionic design.
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29. Bazir, A.; Baumann, A.; Ziebert, F.; Kulić, I.M. Dynamics of fiberboids, Soft. Matter 2020, 16, 5210–5223.
30. Hu, Z.; Li, Y.; Lv, J. Phototunable self-oscillating system driven by a self-winding fiber actuator. Nat. Commun. 2021, 12, 3211.

[CrossRef]
31. Zhao, Y.; Chi, Y.; Hong, Y.; Li, Y.; Yang, S.; Yin, J. Twisting for soft intelligent autonomous robot in unstructured environments.

Proc. Natl. Acad. Sci. USA 2022, 119, e2200265119. [CrossRef]
32. Ghislaine, V.; Lars, C.M.E.; Anne, H.G.; Meijer, E.W.; Alexander, Y.P.; Henk, N.; Dirk, J.B. Coupled liquid crystalline oscillators in

Huygens’ synchrony. Nat. Mater. 2021, 20, 1702–1706.
33. O’Keeffe, K.P.; Hong, H.; Strogatz, S.H. Oscillators that sync and swarm. Nat. Commun. 2017, 8, 1504. [CrossRef] [PubMed]
34. Li, K.; Zhang, B.; Cheng, Q.; Dai, Y.; Yu, Y. Light-Fueled Synchronization of Two Coupled Liquid Crystal Elastomer Self-Oscillators.

Polymers 2023, 15, 2886. [CrossRef]
35. Vick, D.; Friedrich, L.J.; Dew, S.K.; Brett, M.J.; Robbie, K.; Seto, M.; Smy, T. Self-shadowing and surface diffusion effects in

obliquely deposited thin films. Thin Solid Film. 1999, 339, 88–94. [CrossRef]
36. Kuenstler, A.; Chen, Y.; Bui, P.; Kim, H.; DeSimone, A.; Jin, L.; Hayward, R. Blueprinting photothermal shape-morphing of liquid

crystal elastomers. Adv. Mater. 2020, 32, 2000609. [CrossRef]
37. Liu, X.; Liu, Y. Spontaneous photo-buckling of a liquid crystal elastomer membrane. Int. J. Mech. Sci. 2021, 201, 106473. [CrossRef]
38. Chakrabarti, A.; Choi, G.P.T.; Mahadevan, L. Self-excited motions of volatile drops on swellable sheets. Phys. Rev. Lett. 2020,

124, 258002. [CrossRef] [PubMed]
39. Lv, X.; Yu, M.; Wang, W.; Yu, H. Photothermal pneumatic wheel with high loadbearing capacity. Comp. Comm. 2021, 24, 100651.

[CrossRef]
40. Wang, Y.; Liu, J.; Yang, S. Multi-functional liquid crystal elastomer composites. Appl. Phys. Rev. 2022, 9, 011301. [CrossRef]
41. Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434, 879–882. [CrossRef]
42. Yu, Y.; Li, L.; Liu, E.; Han, X.; Wang, J.; Xie, Y.; Lu, C. Light-driven core-shell fiber actuator based on carbon nanotubes/liquid

crystal elastomer for artificial muscle and phototropic locomotion. Carbon 2022, 187, 97–107. [CrossRef]
43. Ge, F.; Yang, R.; Tong, X.; Camerel, F.; Zhao, Y. A multifunctional dye-doped liquid crystal polymer actuator: Light-guided

transportation, turning in locomotion, and autonomous motion. Angew. Chem. Int. Ed. 2018, 57, 11758–11763. [CrossRef]
[PubMed]

44. Bubnov, A.; Domenici, V.; Hamplová, V.; Kašpar, M.; Zalar, B. First liquid single crystal elastomer containing lactic acid derivative
as chiral co-monomer: Synthesis and properties. Polymers 2011, 52, 4490–4497. [CrossRef]
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46. Rešetič, A.; Milavec, J.; Domenici, V.; Zupančič, B.; Bubnov, A.; Zalar, B. Stress-strain and thermomechanical characterization
of nematic to smectic A transition in a strongly-crosslinked bimesogenic liquid crystal elastomer. Polymers 2018, 158, 96–102.
[CrossRef]

47. Wang, Y.; Yin, R.; Jin, L.; Liu, M.; Gao, Y.; Raney, J.; Yang, S. 3D-Printed Photoresponsive Liquid Crystal Elastomer Composites for
Free-Form Actuation. Adv. Funct. Mater. 2023, 33, 2210614. [CrossRef]

https://doi.org/10.1002/adma.202170356
https://doi.org/10.1039/c0cp01653e
https://doi.org/10.1038/srep24462
https://doi.org/10.1002/anie.202108058
https://www.ncbi.nlm.nih.gov/pubmed/34272927
https://doi.org/10.1002/adfm.202103311
https://doi.org/10.1073/pnas.2022987118
https://www.ncbi.nlm.nih.gov/pubmed/33723069
https://doi.org/10.1126/scirobotics.abi4523
https://doi.org/10.1038/s41467-019-13077-6
https://doi.org/10.1038/s41586-019-1737-7
https://www.ncbi.nlm.nih.gov/pubmed/31686057
https://doi.org/10.1002/adma.202107840
https://www.ncbi.nlm.nih.gov/pubmed/34933404
https://doi.org/10.1038/s41467-021-23562-6
https://doi.org/10.1073/pnas.2200265119
https://doi.org/10.1038/s41467-017-01190-3
https://www.ncbi.nlm.nih.gov/pubmed/29138413
https://doi.org/10.3390/polym15132886
https://doi.org/10.1016/S0040-6090(98)01154-7
https://doi.org/10.1002/adma.202000609
https://doi.org/10.1016/j.ijmecsci.2021.106473
https://doi.org/10.1103/PhysRevLett.124.258002
https://www.ncbi.nlm.nih.gov/pubmed/32639784
https://doi.org/10.1016/j.coco.2021.100651
https://doi.org/10.1063/5.0075471
https://doi.org/10.1038/nature03496
https://doi.org/10.1016/j.carbon.2021.10.071
https://doi.org/10.1002/anie.201807495
https://www.ncbi.nlm.nih.gov/pubmed/30025194
https://doi.org/10.1016/j.polymer.2011.07.046
https://doi.org/10.1039/C5CP06207A
https://doi.org/10.1016/j.polymer.2018.10.049
https://doi.org/10.1002/adfm.202210614


Polymers 2023, 15, 3397 17 of 18

48. Wang, Y.; Dang, A.; Zhang, Z.; Yin, R.; Gao, Y.; Feng, L.; Yang, S. Repeatable and Reprogrammable Shape Morphing from
Photoresponsive Gold Nanorod/Liquid Crystal Elastomers. Adv. Mater. 2020, 32, 2004270. [CrossRef]

49. Ula, S.W.; Traugutt, N.A.; Volpe, R.H.; Patel, R.R.; Yu, K.; Yakacki, C.M. Liquid crystal elastomers, an introduction and review of
emerging technologies. Liq. Cryst. Rev. 2018, 6, 78–107. [CrossRef]

50. Warner, M.; Terentjev, E.M. Liquid Crystal Elastomers; Oxford University Press: Oxford, UK, 2007.
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53. Milavec, J.; Rešetič, A.; Bubnov, A.; Zalar, B.; Domenici, V. Dynamic investigations of liquid crystalline elastomers and their
constituents by 2H NMR spectroscopy. Liq. Cryst. 2018, 45, 2158–2173. [CrossRef]
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