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Abstract: Self-vibrating systems based on active materials have been widely developed, but most of
the existing self-oscillating systems are complex and difficult to control. To fulfill the requirements
of different functions and applications, it is necessary to construct more self-vibrating systems that
are easy to control, simple in material preparation and fast in response. This paper proposes a
liquid crystal elastomer (LCE) string–mass structure capable of continuous vibration under steady
illumination. Based on the linear elastic model and the dynamic LCE model, the dynamic governing
equations of the LCE string–mass system are established. Through numerical calculation, two regimes
of the LCE string–mass system, namely the static regime and the self-vibration regime, are obtained.
In addition, the light intensity, contraction coefficient and elastic coefficient of the LCE can increase
the amplitude and frequency of the self-vibration, while the damping coefficient suppresses the
self-oscillation. The LCE string—mass system proposed in this paper has the advantages of simple
structure, easy control and customizable size, which has a wide application prospect in the fields of
energy harvesting, autonomous robots, bionic instruments and medical equipment.

Keywords: self-vibration; liquid crystal elastomer; light-driven; string

1. Introduction

Self-vibration exists widely in nature and engineering [1–7]. It is a non-attenuating vi-
bration in which the process of vibration is accompanied by some periodically varying force
by which the vibrating system can be replenished with energy to maintain the vibration.
A self-vibration system usually includes vibration elements, steady energy sources and
feedback mechanisms. Unlike forced vibration [8], self-vibration can independently obtain
energy from the external steady environment to maintain its continuous vibration without
additional periodic excitation. As a representative of nonlinear systems, self-vibration deep-
ens the understanding of nonequilibrium dynamical processes [9,10], and also has guiding
significance for constructing synchronous systems [11–13] and chaotic systems [14–16].
Self-vibration has autonomy, which is helpful to the design of autonomous components
such as autonomous robots [17] and actuators [18,19]. Furthermore, self-vibration has
significant application value in energy harvesting [20,21], soft robots [22,23], sensors [24],
medical equipment [25,26] and other fields.

In recent years, many efforts have been made to construct self-vibration systems,
among which a self-vibration system based on active materials has attracted extensive re-
search interest. Active materials are kinds of material that can change their shapes or motion
states when they are stimulated by external stimuli such as light [27,28], heat [29,30], elec-
tricity [31], magnetism [32,33] and so on. Common active materials include hydrogels [34],
ionic gels [35,36], photoresponsive or thermal responsive polymers [37–43], dielectric elas-
tomers [44], shape memory polymers [45] etc. Based on the response of active materials
to external steady stimuli, people have built a variety of self-vibration modes, such as
bending [46,47], swinging [48], rolling [49,50], twisting [51], vibrating [52], floating [53],
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buckling [54,55], jumping [56], stretching [57], shuttling [58], spinning [59] and curling [60].
In addition, some ingenious feedback mechanisms have been carefully designed, such as
the self-shading mechanism [61], coupling mechanism of large deformation and chemical
reaction [36], coupling mechanism of liquid volatilization and deformation [62] and pho-
tothermal surface tension gradient [63,64] to break the balance of the system, which leads to
a stable and sustained response of the active material and further generates self-vibration.

Among these active materials that can be used to construct self-vibration systems,
liquid crystal elastomers (LCEs) are widely considered because of their unique advantages.
LCE is a unique material that is a liquid crystal polymer with a network structure formed
after moderate cross-linking mesogens [65]. Its unique properties combine the characteris-
tics of liquid crystals and elastomers, and it is capable of demonstrating an amazing ability
to change shape. LCE presents a host of advantages, including substantial and reversible
deformability [66,67], rapid deformation and straightforward controllability, which have
garnered significant attention among researchers. Due to the rotation or phase transitions
of liquid crystal monomer, liquid crystal elastomers can show reversible morphological
changes when subjected to external stimuli, such as light [27,28], heat [29,30], electric-
ity [31], magnetism [32,33] etc., displaying a variety of shapes and structures. Among these
external stimuli, light stands out due to its fast response, environmental friendliness, easy
accessibility, noiselessness [15,68,69] and precise control [70]. Considering the advantages
of light, a rich variety of self-vibration systems based on light-driven LCE have been de-
veloped, such as bending [46,47], buckling [54,55], jumping [56], swimming [48] and other
self-vibration systems. These self-vibration systems based on light-driven LCE have broad
application prospects in bionic instruments [71], energy harvesting [20,21], actuators [19],
soft robots [22,23] and other fields.

Although self-vibrating systems based on LCE have been widely developed, the
design and construction of LCE self-vibration systems still have great limitations, such as
complex structure, difficulty to control and difficulty to prepare. Therefore, it is necessary to
construct more LCE self-vibration structures with simple structures and that are controllable
and convenient. The tension string system has been widely studied as a classical self-
vibration system. In this paper, we creatively propose a new self-vibrating system that is
different from the previous self-vibration systems, which consists of two LCE strings and a
mass block, and which can obtain sustained and stable vibration under steady illumination.
Compared with existing self-oscillating systems [52,53], the system proposed by us has a
simpler structure and is easier to implement. Our goal is to construct novel self-oscillating
systems based on active materials that are simple in structure, easy to control, customizable
in size and easy to prepare. Also, the effect of system parameters on self-oscillation is
discussed to provide guidance for regulating this system. Depending on its excellent
properties, the self-oscillating LCE string–mass system has significant application value in
autonomous actuators, energy collectors, bionic instruments and other fields.

The paper is as follows. Firstly, in Section 2, based on the LCE dynamic model, a
theoretical model of the LCE string system is established and the corresponding governing
equations are derived. Then, in Section 3, two motion regimes of the LCE string system
are described and the mechanism of self-vibration is explained in detail. In Section 4, the
effects of system parameters on the amplitude and frequency of self-vibration are further
discussed quantitatively. Finally, in Section 5, the results of this paper are summarized.

2. Theoretical Model and Formulation

In this section, firstly, a novelty light-driven self-vibration system consisting of two
LCE strings and a mass block is described. Secondly, we derive the governing equations of
the self-vibration system based on the dynamic LCE model, vibration theory and Newton’s
second law. Finally, the governing equation is dimensionless and the numerical calculation
method is introduced.



Polymers 2023, 15, 3483 3 of 16

2.1. Dynamics of Self-Vibration of LCE Strings

Figure 1 shows the physical model of the system of light-driven LCE self-vibration.
The system, which can vibrate continuously and steadily under a given initial speed and
designed illumination condition, consists of two LCE strings and a mass block, as shown in
Figure 1a. One end of each LCE string is fixed to a horizontal rigid base, and the other end
is attached to the mass block with a mass of m. The original length of each LCE string in
the unstressed state is L0. Considering that the gravity mg on the mass block is much less
than the elastic force on it, the gravity is ignored. We take the initial position of the mass
block as the origin of the coordinate system, with the horizontal direction as the x-axis and
the vertical direction as the y-axis, as shown in Figure 1a. Since the two LCE strings are
exactly the same, the tension of the two LCE strings is exactly the same, and the tension
generated by the two strings in the vertical direction cancels each other, so the mass block
only vibrates in the horizontal direction, and its displacement is x.
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Figure 1. Diagram of self-vibration system of LCE strings: (a) Reference state; (b) Initial state;
(c) Current state; (d) Force analysis. The mass block is subjected to the tension FL of the LCE strings
and the air damping force FD. The LCE string–mass system can vibrate continuously and periodically
under steady illumination.

As shown in Figure 1b,c, the yellow area represents the illumination zone and the
gray rhomboid area represents the shading (non-illumination zone); the distance from the
right end of the shading zone to the origin is δ. Due to the action of the initial velocity, the
mass block continues to move to the right until it reaches the illuminated zone. UV light
radiation can change the photochromic liquid crystal molecules in the material from straight
trans configuration to bent cis configuration [65]. Thus, under continuous illumination,
the chromophores (azobenzene) in the LCE fibers absorb light energy, followed by a
continuous cycle of cis–trans isomerization. This process results in the transformation of
the chromophores from the trans state to the cis state, thereby inducing the contraction of
the LCE fibers. With the contraction and stretching of the LCE strings in the illuminated
zone, the elastic potential energy of the system reaches its peak when the mass block
reaches the maximum distance. The next moment, under the action of the tension of
the LCE strings, the mass block moves in the opposite direction. When moving into the
non-illumination zone, the light-driven contraction of the LCE strings resumes, at which
point the tension of the LCE strings decreases until it reaches the illuminated zone on the
other side, accumulating elastic potential energy, and then repeating the process. The LCE
string–mass system can maintain continuous and stable self-vibration through the choice
of proper system parameters and initial conditions.

The mass block is subjected to the tension of the LCE strings and the air damping
force, as shown in Figure 1d. In the horizontal direction, the governing equation of mass
block can be described as:

m
..
x(t) = −2FLsgn(x) sin θ − FD, (1)
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where
..
x represents the acceleration of the mass block, FL indicates the tension of the LCE

strings, θ is the angle between the LCE strings and the y-axis, the sign function sgn(x) is a
function that returns the sign of a real number x, and FD denotes the air damping force.

It can be obtained by geometric relations that sin θ = x√
L2

0+x2
. where L0 is the original

length of each LCE string in the unstressed state and x indicates the horizontal displacement
of mass block.

The tension of the LCE strings is proportional to its elongation, with the formula being:

FL = K(
√

L2
0 + x(t)2 − L0 − L0εI(t)), (2)

where K denotes the elastic coefficient of the LCE and εI refers to the light-driven contraction
strain of the LCE strings.

The damping force is assumed to be linearly proportional to the velocity of the mass
block and can be expressed as:

FD = β
.
x(t), (3)

where β represents the air damping coefficient and
.
x denotes the velocity of the mass block.

Substituting Equations (2) and (3) into Equation (1), we can obtain:

m
..
x(t) = −2K(

√
L2

0 + x(t)2 − L0 − L0εI(t)) · sin θ − β
.
x(t). (4)

2.2. Dynamic LCE Model

This section mainly deduces the strain equation of the LCE strings under illumination and
non-illumination conditions. A linear model is adopted to describe the relationship between
the cis number fraction φ(t) in LCE and the light-driven contraction of the LCE, namely:

εI = −Cφ(t), (5)

where C indicates the contraction coefficient of the LCE.
The light-driven contraction strain of the LCE strings depends on the cis number

fraction φ(t) in the LCE. UV light radiation can change the photochromic liquid crystal
molecules (azobenzene) in the material from straight trans configuration to bent cis config-
uration, which is often accompanied with the contraction of a monodomain LCE along the
mesogen aligning direction [65]. For simplicity, the LC cis–trans switching is assumed to be
strain-independent. Furthermore, according to Nagele et al. [72], the cis number fraction
depends on the thermal excitation from trans to cis, the thermal drive relaxation from cis to
trans and the light-driven trans to cis isomerization. Assuming that the thermal excitation
from trans to cis can be ignored, the governing equation for the evolution of the number
fraction can be expressed as:

∂φ

∂t
= η0 I(1− φ)− φ

T0
, (6)

where η0 represents the light absorption constant, T0 represents the thermally driven
relaxation time from the cis to trans and I indicates the light intensity.

By solving Equation (6), we can get:

φ(t) =
η0T0 I

η0T0 I + 1
+ (φ0 −

η0T0 I
η0T0 I + 1

) exp
[
− t

T0
(η0T0 I + 1)

]
, (7)

where φ0 denotes the initial cis number fraction in non-illumination zone.
In the illumination zone, the initial number fraction φ0 = 0, so Equation (7) can be

simplified as:

φ(t) =
η0T0 I

η0T0 I + 1

{
1− exp

[
− t

T0
(1 + η0T0 I)

]}
. (8)
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In the non-illumination zone, by setting the light intensity I = 0, we can obtain:

φ(t) = φ0 exp
(
− t

T0

)
. (9)

In this case, φ0 can be chosen as the maximum value of φ0 in Equation (8) under
continuous illumination. Then we can obtain:

φ(t) =
η0T0 I

η0T0 I + 1
exp

(
− t

T0

)
. (10)

2.3. Nondimensionalization

For ease of calculation, we define the following dimensionless quantities: x = x/L0,
.
x =

.
xT0/L0,

..
x =

..
xT2

0 /L0, t = t/T0, δ = δ/L0, I = IT0η0, β = βT0/m and K = KT2
0 /m. So,

the dimensionless form of governing equation can be written as:

..
x(t) = −2K(

√
1 + x(t)2 − 1− εI(t))

x√
1 + x(t)2

− β
.
x(t). (11)

In the illuminated state, Equation (8) can be rewritten as:

φ(t) = 1− exp
[
−t(I + 1)

]
. (12)

In the non-illumination zone, we can obtain:

φ(t) = exp(−t). (13)

Obviously, Equation (11) is a second-order nonlinear differential equation, and it
is difficult to find the analytical solution of this kind of equation. Therefore, we use
Matlab software (version R2018b) and the four-order Runge–Kutta method for numerical
calculation. By adjusting the parameters within the program, for example I, C, K, v0, β and
δ, we can obtain the displacement, velocity, elastic force, damping force and light-driven
contraction strain of the self-vibration of the LCE string–mass system at each moment.

3. Two Motion Regimes and Mechanism of Self-Vibration

In this section, firstly, two typical motion regimes of the LCE string–mass system are
described, namely the static regime and the self-vibration regime. Secondly, the correspond-
ing mechanism of the self-vibration is elaborated in detail.

3.1. Two Motion Regimes

To study the self-vibration of the LCE string–mass system, it is necessary to calculate
the typical values of the dimensionless system parameters. According to the existing
experimental [72–75] and research results, the actual values of each system parameter are
summarized in Table 1, and the corresponding dimensionless system parameters are listed
in Table 2.

Table 1. Material properties and geometric parameters.

Parameter Definition Value Unit

I light intensity 0~100 kW/m2

C contraction coefficient 0~0.5 /
K elastic coefficient 1~50 N/m
T0 thermally driven relaxation time 0.01~0.5 s
η0 light absorption constant 0.00022 m2/s·W
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Table 1. Cont.

Parameter Definition Value Unit

m mass 0~2 kg
β damping coefficient 0~0.5 kg/s
v0 initial velocity 0~0.4 m/s
δ width of shade 0~0.1 m

L0 original length of LCE 0.01~0.2 m

Table 2. Dimensionless parameters.

Parameter I C K v0 β δ

Value 0~1 0~0.5 0~10 0~1 0~0.2 0~0.5

Through the numerical solution of Equation (11), the time history curve vibration
and phase trajectory diagram of the LCE string–mass system can be obtained, as shown
in Figure 2. In this case, the other system parameters in the numerical calculation are set
as C = 0.25, K = 2, v0 = 0.2, β = 0.1 and δ = 0.2. As can be seen from Figure 2, the
system of the LCE strings has two different regimes, namely the static regime and the
self-vibration regime. Figure 2a,b depict the static regime, where the vibration of the system
finally stops and the corresponding phase trajectory diagram terminates at a point. In
contrast, Figure 2c,d plot the self-vibration regime, in which the vibration of the system
tends to stabilize after a period of time and maintains a fixed amplitude and period, and
a limit cycle representing a single periodic motion appears in the corresponding phase
trajectory diagram. The reason for the self-vibration phenomenon is that the system obtains
enough light energy to compensate for the damping dissipation, so as to maintain its
self-sustained vibration. The emergence of the phenomenon of self-vibration proves the
rationality and feasibility of our constructed system. In the next section, we will elaborate
on the mechanism of the self-vibration phenomenon.
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3.2. Mechanism of Self-Vibration

This section aims to explain the mechanism of self-vibration, that is, the energy com-
pensation mechanism of the LCE string–mass system. To better understand the energy
compensation mechanism, it is necessary to plot the change curves of some key physical
quantities in the process of self-vibration, as shown in Figure 3. In this case, the dimension-
less parameters of the system are selected as I = 0.5, C = 0.25, K = 2, v0 = 0.2, β = 0.1 and
δ = 0.2. Figure 3a shows the curve of the mass block horizontal displacement over time,
where the yellow area indicates the LCE strings are illuminated. It can be easily found that
the LCE string–mass system at this time maintains a stable amplitude and period, and the
mass block shuttles in the illumination zone on both sides. Figure 3b plots that when the
displacement of the mass block is greater than the width of shade δ, the LCE strings are in
the illumination zone, and the number fraction in the LCE gradually increases and tends
to a limit value. When the displacement of the mass block is less than the width of shade
δ, the LCE strings are in the non-illumination zone, and the number fraction in the LCE
rapidly decreases to zero. As the mass block regularly enters and exits the illumination
zone, the number fraction in the LCE strings also changes periodically. In addition, Figure 4
illustrates several characteristic snapshots for the self-vibration of the LCE string–mass
system during one cycle under steady illumination.
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Figure 3. The mechanism of self-vibration of the LCE string–mass system. (a) Time history curve
of the displacement. (b) Time history curve of the number fraction. (c) Variation of the tension
of LCE strings with time. (d) Dependence of the tension of LCE strings on the displacement.
(e) Variation of the damping force with time. (f) Dependence of the damping force on the displace-
ment. The work done by the elastic force can compensate the damping dissipation, so the system can
maintain stable vibration.
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In order to understand the energy source and consumption of the LCE string–mass
system, we plot the elastic force and damping force of the LCE with time and with dis-
placement, as shown in Figure 3c–f. Figure 3c shows the variation of tension of the LCE
strings over time. With the periodic vibration of the LCE string–mass system, the variation
of tension of the LCE strings is also periodic. When the LCE strings enter the illumination
zone, the tension of the LCE strings increases due to the light-driven contraction of the LCE
strings. When the LCE strings leave the illumination zone, the light-driven contraction
of the LCE strings recovers and the tension of the LCE strings decreases, as shown in
Figure 3c. Figure 3d shows the hysteresis loop of the tension of the LCE string, the area
of which represents the net work done by the tension of the LCE strings in one cycle of
vibration, which is numerically calculated to be 0.018. Similarly to the tension of the LCE
strings, Figure 3e plots the periodic change of damping force with time. Figure 3e shows the
relationship between the damping force and displacement, and the hysteresis loop enclosed
represents the work done by the damping force in one cycle of vibration, that is, the system
damping dissipation. Through calculation, the area of the hysteresis loop in Figure 3f
is also 0.018, which means that the energy lost by air damping during the self-vibration
is compensated for by the work done by the tension of the LCE strings. Therefore, the
self-vibration of the LCE string–mass system can be sustained.

4. Parametric Study

In this section, we quantitatively investigate the effects of system parameters such as
light intensity, contraction coefficient, elastic coefficient, initial velocity, damping coefficient
and width of shade on the amplitude A and frequency F of the self-vibration of the LCE
string–mass system.

4.1. Effect of the Light Intensity

The light intensity influencing the self-vibration of the LCE string–mass system is
investigated in this section. In this case, the values of the other parameters are C = 0.25,
K = 2, v0 = 0.2, β = 0.1 and δ = 0.2. Figure 5a plots the limit cycles of self-vibration
for I = 0.4, I = 0.5 and I = 0.6. The horizontal width of the limit cycle represents the
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amplitude of the self-vibration, and the vertical height of the limit cycle indicates the
velocity of the self-vibration. It can be seen from Figure 5a that the limit cycle is the largest
for I = 0.6, which indicates that the amplitude and kinetic energy of the self-vibration
are largest in this case. Figure 5b shows the effect of the light intensity on amplitude and
frequency. When the light intensity is below 0.396, the LCE strings cannot absorb enough
light energy to offset the damping dissipation, and therefore cannot maintain continuous
motion, thus entering a static state. When the light intensity is higher than 0.396, the LCE
strings are able to absorb enough light energy to offset the damping dissipation and thus
maintain a continuous stable vibration, i.e., the self-vibration regime. In the regime of
self-vibration, the amplitude and frequency increase with the increase in light intensity.
This is because the higher the light intensity, the greater the contraction and the greater the
tension of the string. The greater tension is able to do more work on the system, producing
more kinetic energy and thus a greater amplitude. The above results show that increasing
the light intensity can make the light-driven system absorb more energy to achieve a larger
amplitude, which is consistent with the current findings [3].
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Figure 5. The effect of light intensity on the self-vibration. (a) Limit cycles with I = 0.4, I = 0.5 and
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4.2. Effect of the Contraction Coefficient of LCE

This section presents a discussion on the effect of the contraction coefficient on the
self-vibration of the LCE strings. Here, the values of the other parameters are I = 0.5, K = 2,
v0 = 0.2, β = 0.1 and δ = 0.2. Figure 6a plots the limit cycles of the self-vibration of the LCE
string–mass system with different contraction coefficients. It can be observed from Figure 6a
that the limit cycle with a larger contraction coefficient completely wraps the limit cycle
with a smaller contraction coefficient, indicating that the larger the contraction coefficient,
the larger the energy of the LCE string–mass system, and thus the larger the amplitude
and kinetic energy. It can be seen from Figure 6b that the amplitude and frequency of the
self-vibration change with the change of the contraction coefficient. When the contraction
coefficient is less than 0.212, the system is in the static regime. On the contrary, when
the contraction coefficient is greater than 0.212, the system is in the self-vibration regime.
With the increase in the contraction coefficient, the amplitude and frequency also increase.
The reason for this phenomenon is similar to the reason for the effect of light intensity on
self-vibration: when the contraction coefficient is small, the LCE strings absorb insufficient
light energy when they are in the illumination zone, and cannot obtain enough energy to
compensate for the damping dissipation, so that the system eventually moves to the static
regime. When the contraction coefficient is large, the LCE strings absorb enough energy in
the illumination zone and have enough energy to compensate for the damping dissipation
of the system, so as to maintain the self-vibration. As the contraction coefficient continues
to increase, the light energy absorbed by the LCE strings further increases, and so does
the amplitude.
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4.3. Effect of the Elastic Coefficient of LCE

This section provides the influence of the elastic coefficient of the LCE strings on the
self-vibration for I = 0.5, C = 0.25, v0 = 0.2, β = 0.1 and δ = 0.2. Figure 7a shows the
limit cycle for different elastic coefficients of the LCE strings. When the elastic coefficient is
less than 1.627, the phase trajectory diagram of the self-vibration is a fixed point, which
indicates that the system is in the static regime. This is because when the elastic coefficient
is small, the tension generated by the LCE strings in the illumination zone is small, which
cannot provide enough elastic potential energy to compensate for the damping dissipation
of the system, so the system finally reaches a static state. It can be seen from Figure 7b
that the elastic coefficient has a significant influence on the amplitude and frequency of the
self-vibration. With the increase in the elastic coefficient, the amplitude and frequency of
the self-vibration increase. This is because as the elastic coefficient increases, the elastic force
generated by the LCE strings increases, the elastic potential energy that the system is able
to convert into kinetic energy increases, and therefore the amplitude of the self-vibration
increases. Therefore, in the design of a tension system based on LCEs, it is key to select the
appropriate elastic coefficient to obtain better performance.
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Figure 7. The effect of elastic coefficient on the self-vibration. (a) Limit cycles with K = 2, K = 3 and
K = 4 (b) Variations of amplitude and frequency with different elastic coefficients. The larger the
elastic coefficient, the larger the amplitude and frequency of self-vibration.

4.4. Effect of the Initial Velocity

This section mainly focuses on the effect of initial velocity on the self-vibration of the
LCE string–mass system, with parameters I = 0.5, C = 0.25, K = 2, β = 0.1 and δ = 0.2.
It can be observed from Figure 8a that the self-vibration can be successfully triggered at
v0 = 0.1, v0 = 0.2 and v0 = 0.3. It is worth mentioning that the limit cycles at different
velocities coincide completely. Figure 8b plots the relationship between the initial velocity
and the amplitude and frequency of the self-vibration. It can be seen from Figure 8b that
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when the initial velocity is less than 0.066, the system is in the static regime, because the
low initial velocity cannot allow the LCE strings to reach the illumination zone to absorb
enough light energy, and it finally reaches the static regime. When the initial velocity is
greater than 0.066, the system is in the self-vibration regime and the final amplitude and
frequency are not affected. This is because the amplitude of the self-vibration depends
on the energy conversion between the work done by the LCE strings and the damping
dissipation, which belongs to the internal characteristics of the system, and the initial
velocity does not affect the energy conversion of the system, so the amplitude does not
change. Compared with other parameters, the initial velocity is more like a switch that
triggers the self-vibration, which is responsible only for activating the system and does not
affect the inherent characteristics of the system such as amplitude and frequency, which is
in agreement with the results of existing studies [59].
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Figure 8. The effect of initial velocity on the self-vibration. (a) Limit cycles with v0 = 0.1, v0 = 0.2
and v0 = 0.3. (b) Variations of amplitude and frequency with different initial velocities. The initial
velocity has no effect on the amplitude and frequency of self-vibration.

4.5. Effect of the Damping Coefficient

This section mainly studies the damping coefficient on the self-vibration of the LCE
string–mass system. In the calculation, we set I = 0.5, C = 0.25, K = 2, v0 = 0.2 and
δ = 0.2. The damping coefficient has a significant effect on the regime and amplitude of the
system, as shown in Figure 9. Figure 9a draws the limit cycles for β = 0.06, β = 0.08 and
β = 0.1. It can be seen from Figure 9a that the smaller the damping coefficient is, the larger
the limit cycle is. It can be seen from Figure 9b that there is a critical value between the
static regime and the self-vibration regime. The system is in the static regime for β > 0.113,
while the system is in the self-vibration regime for β < 0.113. In addition, it can be seen
from Figure 9b that the smaller the damping coefficient is, the larger the amplitude and
frequency of the self-vibration are. This can be explained in terms of energy compensation.
The greater the damping coefficient, the greater the damping force of the system, which
hinders the movement of the system and makes the LCE strings unable to reach the
illuminated zone to absorb light energy. The energy of the system decreases continuously
due to damping dissipation, so the system eventually reaches a static state. On the contrary,
the smaller the damping coefficient, the smaller the damping dissipation of the system and
the larger the converted kinetic energy, and thus the amplitude increases. Therefore, how
to reduce the damping dissipation of the system through reasonable structural design is an
important challenge.
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Figure 9. The effect of the damping coefficient on the self-vibration. (a) Limit cycles with β = 0.06,
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4.6. Effect of the Width of Shade

The effect of the width of shade on the self-vibration is discussed in the current section.
In this case, the other dimensionless parameters are selected as I = 0.5, C = 0.25, K = 2,
v0 = 0.2 and β = 0.1. It is not difficult to find that the width of shade affects the motion
regime of the system. Figure 10a plots the limit cycle with different widths of shade. It
can be seen from Figure 10b that there is a critical value between the static regime and the
self-vibration regime. When the width of shade is greater than 0.272, the system cannot
reach the illumination zone to absorb light energy, the initial kinetic energy is constantly
consumed and finally the system reaches the static state. When the shadow width is less
than 0.272, the system can reach the illumination to absorb light energy to compensate
for the damping dissipation, so it can continue stable vibration, namely, the self-vibration
regime. Figure 10b shows that, in the self-vibration regime, the amplitude of the system
increases with the increase in the width of shade. This is because when the width of shade
is small, the LCE strings soon enter the illumination zone, the elastic force of the LCE
strings rapidly increases and inhibits the further displacement of the mass block, and thus
the amplitude of the self-vibration is small. On the other hand, when the width of shade is
large, there is larger displacement before the LCE strings enter the illumination zone, so
that the whole amplitude of the self-vibration is larger.
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5. Conclusions

The self-vibration system can directly absorb energy from the steady external envi-
ronment to maintain its continuous motion without external periodic stimuli, which has
great application prospects in the fields of autonomous robotics, energy harvesting and
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bionic devices. Traditional self-vibration systems have the defects of complex structure,
difficult manufacturing and poor controllability, so there is a great necessity to construct
new self-vibration systems. In this paper, we construct a new self-vibration system, which
consists of two LCE strings and a mass block, and it can achieve continuous and stable
vibration under steady illumination. Based on the dynamic LCE model and linear elastic
model, the theoretical model of self-vibration of the LCE string–mass system is established
and the corresponding governing equations are derived. Based on the results of numerical
simulations, two motion regimes of the LCE string–mass system, namely the static regime
and self-vibration regime, are described, and the energy compensation mechanism of the
self-vibration is revealed. In addition, the effects of the system parameters on the amplitude
and frequency of the self-vibration are quantitatively discussed. The results show that
the amplitude and frequency of the system increase with the increase in light intensity,
contraction coefficient and elastic coefficient. By adjusting these coefficients, it is expected
that faster, more powerful active machines can be realized. The damping coefficient inhibits
the amplitude and frequency of the self-vibration, while the initial velocity does not affect
the amplitude and frequency of the self-vibration regimes. Meanwhile, the values of the
parameters can also determine the motion modes of the system, and there are critical values
between the self-vibrating and static modes. In addition, future goals are to increase the
credibility of our findings through experiments, as well as to build more active machines
based on active materials and to realize their applications in fields such as energy harvest-
ing, artificial muscles and autonomous robotics. The research in this paper deepens the
understanding of self-vibration systems and helps to design new self-vibration systems.
Meanwhile, the LCE string–mass system proposed in this paper has the advantages of
simple structure, easy control and customizable size, and has the prospect of application in
the field of autonomous robots and bionic instruments.
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