
Citation: Li, L.; Duan, Y. Engineering

Polymer-Based Porous Membrane for

Sustainable Lithium-Ion Battery

Separators. Polymers 2023, 15, 3690.

https://doi.org/10.3390/

polym15183690

Academic Editors: Alexey V. Volkov,

Konstantin V. Pochivalov and Andrey

V. Basko

Received: 31 July 2023

Revised: 3 September 2023

Accepted: 4 September 2023

Published: 7 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Engineering Polymer-Based Porous Membrane for Sustainable
Lithium-Ion Battery Separators
Lei Li 1,* and Yutian Duan 1,2,*

1 SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
2 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
* Correspondence: lil83965.nhgs@sinopec.com (L.L.); ytduan@zju.edu.cn (Y.D.)

Abstract: Due to the growing demand for eco-friendly products, lithium-ion batteries (LIBs) have
gained widespread attention as an energy storage solution. With the global demand for clean and sus-
tainable energy, the social, economic, and environmental significance of LIBs is becoming more widely
recognized. LIBs are composed of cathode and anode electrodes, electrolytes, and separators. Notably,
the separator, a pivotal and indispensable component in LIBs that primarily consists of a porous
membrane material, warrants significant research attention. Researchers have thus endeavored to de-
velop innovative systems that enhance separator performance, fortify security measures, and address
prevailing limitations. Herein, this review aims to furnish researchers with comprehensive content
on battery separator membranes, encompassing performance requirements, functional parameters,
manufacturing protocols, scientific progress, and overall performance evaluations. Specifically, it
investigates the latest breakthroughs in porous membrane design, fabrication, modification, and
optimization that employ various commonly used or emerging polymeric materials. Furthermore,
the article offers insights into the future trajectory of polymer-based composite membranes for LIB
applications and prospective challenges awaiting scientific exploration. The robust and durable
membranes developed have shown superior efficacy across diverse applications. Consequently, these
proposed concepts pave the way for a circular economy that curtails waste materials, lowers process
costs, and mitigates the environmental footprint.

Keywords: lithium-ion battery separator; porous membrane; polymer; polyethylene; polypropylene;
poly(vinylidene fluoride)

1. Introduction

Owing to the increasing demand for environmentally-friendly products, LIBs have
received widespread attention as an energy storage solution. LIBs are widely considered
one of the most sustainable and powerful energy storage technologies available today
and are commonly used in industries such as mobile devices, electric vehicles (EVs),
and energy storage systems [1,2]. Given the escalating global demand for clean energy
and sustainable progress, the social and economic significance of LIBs continues to gain
momentum [3–6]. Due to their remarkable energy density, prolonged storage life, wide
operational temperature range, and elevated battery voltage, LIBs have emerged as the
predominant contender in the realm of energy storage batteries, finding widespread utility
in various domains such as aerospace, artificial satellites, and efficient energy storage for
both military and civilian electrical appliances [7]. Additionally, in the current low-carbon
global environment, new energy sources have assumed prime importance in the global
agenda, specifically with high-capacity LIBs serving as a key power source for 21st-century
new-energy EVs [5,8,9]. Notably, as the EV industry and the electronic information sector
(encompassing mobile phones, electric tools, and digital cameras) continue to flourish, the
demand for LIBs will persistently burgeon [1,10,11]. Therefore, the concept of LIBs has
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promising prospects, and higher requirements have been put forward for LIB performance,
particularly in terms of electrochemical performance (e.g., energy density) and safety [3,12].

LIBs are mainly composed of positive (cathode) and negative (anode) electrodes [13,14],
electrolytes, and separators [15–19], wherein the separator, mainly consisting of a porous
membrane material, assumes an indispensable and critical role within LIBs (Figure 1).
The porous membrane absorbs electrolytes and is assembled between the battery cathode
and anode electrodes, which is a crucial section in LIB separators [9,20]. Throughout the
charging and discharging cycles of LIBs, lithium ions (Li+) migrate between the cathode
and anode electrodes through a separator and, thus, conduct electricity [21]. Specifically, a
separator membrane fulfills several vital functions within an LIB. First, it serves to maintain
a physical barrier between the cathode and the anode, preventing short circuits arising from
direct electrode contact [22]. Second, the presence of micropores in the membrane allows for
the passage of Li+, forming a seamless charging and discharging circuit [23]. Furthermore,
the membrane exhibits the ability to shut down in response to appropriate temperatures,
subsequently closing the micropores, thereby serving as a protective open circuit that
safeguards against fires or explosions resulting from thermal runaway caused by elevated
temperatures and short circuits. Thus, it offers a protective shield for both battery users
and equipment [24,25]. It is worth mentioning that the separator material, typically a thin,
polymer-based porous membrane, may be inherently insulating. However, its structural
composition and performance characteristics significantly influence the overall performance
of LIBs. The basic performance parameters of the membrane mainly encompass thickness,
mechanical strength, porosity, wettability, thermal shrinkage, electrochemical stability, and
so on [26–28]. Therefore, appropriate material selection and structural design of separators
determine these performance parameters and play a crucial role in ensuring the safe
utilization and long-lasting charging and discharging cycles of LIBs.
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Figure 1. Schematic illustration of rechargeable LIBs consisting of cathode and anode electrodes,
electrolytes, and porous membrane-based separators.

Currently, the most commonly utilized polymeric materials for producing porous mem-
branes in rechargeable batteries, particularly LIBs, include polyethylene (PE), polypropy-
lene (PP), poly(tetrafluoroethylene) (PTFE), poly(vinylidene fluoride) (PVDF), poly(methyl
methacrylate) (PMMA), polyimide (PI), polyesters, poly(vinyl chloride) (PVC), poly(ethylene
oxide) (PEO), polyacrylonitrile (PAN), poly(ethylene terephthalate) (PET), and cellulose
and its derivatives [29,30]. Microporous polyolefin membranes, featuring PE, PP, and their
blends, hold prominence in the commercial market as separators for secondary recharge-
able batteries utilizing liquid electrolytes, including LIB, due to their superior mechanical
strength, chemical and electrochemical stability, cost-effective production, tunable pore
sizes, thermal shutdown capability, and reasonable material costs [30–32]. Notably, ultra-
high molecular weight polyethylene (UHMWPE) plays a crucial role in lithium battery
separator materials and is highly applied in the global automotive battery market [7,33,34].
Moreover, the UHMWPE membrane provides excellent safety protection for overcharging,
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short circuit, and explosions when the temperature rises, thus rendering it remarkably suit-
able for high-efficiency and high-power batteries. At elevated temperatures, the UHMWPE
melts smoothly, transitioning into a rubber-like gel without mobility due to the highly
entangled molecular chain, thereby impeding undesired membrane collapse [35–37]. Prepa-
ration methods for polyolefin microporous membranes for LIB separators mainly include
the dry method (i.e., melt extrusion stretching method) and the wet method (i.e., thermally
induced phase separation method, TIPS) [30,38–41]. These membranes are created through
sequential biaxial stretching, renowned for their remarkable mechanical robustness and
consistent pore size distribution [42]. However, these separators manifest noteworthy
thermal contraction and exhibit a limited affinity for electrolytes due to their electrolyte-
phobic nature and poor electrolyte retention during cycling processes [29,31,43]. These
factors compromise their suitability for application in high-power, high-capacity, and
high-temperature LIBs. Consequently, over the past decade, numerous researchers have
endeavored to address the limitations of conventionally used separators by modifying their
structural and material makeup, thereby amplifying the versatility of LIBs across a diverse
range of applications, particularly those with elevated power requirements [34,44–46].

Notably, the utilization of sustainable electrochemical energy storage devices holds
numerous benefits in fostering both a circular and green economy [1,9–11,38]. As one of
the economically applicable directions for clean energy, the main focus of LIB separators is
to develop and prepare new membranes for high-performance batteries [8]. Herein, this
review highlights the significance of porous membrane for separators in LIBs, including the
fundamental prerequisites and performance benchmarks of ideal separators, encompassing
the chemical, mechanical, electrical, and electrochemical properties of porous separator
membranes for batteries. Additionally, this review investigates cutting-edge advancements
in the preparation, design, modification, and optimization of porous membranes, leveraging
polymeric materials including but not limited to PE, UHMWPE, PP, and PVDF. Furthermore,
the future prospects of polymer-based composite membranes for LIB applications and the
prospective concerns of researchers are outlined. The overall objective of this review is to
assist relevant researchers in comprehending the underlying design principles, strategies,
methodologies, and potential application scenarios associated with porous membranes for
LIB separators. Overall, the development of robust, efficient, and innovative LIB separators
plays a pivotal role in realizing the tenets of a circular economy, as well as the broader
objectives of resource rationalization and environmental sustainability [47].

2. Characteristics Outline of LIB Separators and Polymeric Membranes
2.1. Requirements and Features of LIB Separators

The separator serves as a critical internal component within the structure of LIBs,
which determines the battery interface composition and internal resistance, thereby di-
rectly affecting battery efficiency, discharge capacity, cycling performance, safety, and
so on [48,49]. Positioned between the cathode and the anode, the LIB separator plays a
critical role in preventing short circuits resulting from direct contact between the cathode
and the anode active material, while allowing the rapid transfer of Li+ during charge and
discharge processes [50–54]. Considering that the separator material is a non-conductive
material responsible for preserving electrolytes crucial for establishing ion transfer path-
ways amidst intricate electrochemical processes, its physical and chemical attributes pose
a considerable impact on battery performance (Figure 2). In general, utilizing a thinner
and more porous separator results in a reduction in internal resistance, thereby improving
discharge capacity [55,56]. However, high porosity and low thickness can compromise
the mechanical strength of the separator, thus necessitating the development of materials
that balance electrochemical and mechanical properties to improve overall battery per-
formance [57,58]. Specifically, the commercialization of polymeric electrolytes for LIBs
has recently been developed in recent years, serving as both channels for ion migration
and separators between electrode materials [59–63]. Notably, polymer electrolytes (PEs)
have attracted tremendous interest in next-generation LIBs due to their high safety and
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energy density, along with their superior flexibility [64,65]. Compared to liquid electrolytes
(LEs), PEs offer a range of advantages, such as mechanical strength, tunability, and easy
processability, making them a promising option for flexible and wearable electronic de-
vices [66]. Furthermore, among the various types of solid electrolytes (SEs), PEs boast
benefits encompassing low flammability, high flexibility, exceptional thermal stability, and
ideal safety features [67]. Hence, diverse electrolytes necessitate the rational design and
selection of appropriate separators for LIBs.

 
 

 

 
Polymers 2023, 15, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/polymers 
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the appropriate separator for rechargeable LIBs.

2.1.1. Anti-Dendrite Capability and Enough Mechanical Strength

Notably, lithium dendrites could form during long-term charge/discharge cycles,
presenting the most prevalent and hazardous causes of internal short circuits in LIBs [68].
Ultimately, these dendrites may impact the separator upon reaching a specific magnitude,
fostering pressure and needle-like protrusions that give rise to mechanical malfunction and
a consequent short circuit between the cathode and anode electrodes, posing substantial
safety hazards [69]. Moreover, during the battery assembly process, bending or tilting
may result in electrode contact, leading to internal short circuits. Note that a thicker
separator provides improved mechanical durability, reducing the incidence of short circuits
during assembly. In general, separators for LIBs are typically less than 25 µm in thickness.
For high-energy batteries, a single-layer membrane with a thickness of 20 µm or 16 µm
is most commonly used [70]. However, electric and hybrid vehicles require a thicker
separator of 40 µm in order to achieve high battery capacity and elevated current discharge.
Herein, achieving a certain level of mechanical strength with sufficient puncture and tensile
strength is imperative, and this can be accomplished by utilizing a thinner separator with
higher porosity, which in turn decreases the internal resistance of the battery and improves
high-rate discharge capabilities [71].

2.1.2. Ideal Thermal Stability and Robust Shutdown Performance

LIBs inevitably generate heat during charge and discharge; in particular, when there is
a short circuit or overcharging, the heat released is considerably increased [72,73]. To adapt
to temperature changes and improve thermal stability in normal working environments,
the separator should maintain excellent dimensional stability and mechanical strength
within the temperature range of −20 ◦C to 90 ◦C [24]. To improve thermal stability, current
development is focused on coated (or composite) separators that can provide significant
advantages, especially improving the thermal stability of the separator [74]. By coating,
membrane heat and puncture resistance can be significantly boosted, thereby reducing
safety concerns related to rapid charging and heat dissipation, as well as thermal shrink-
age of the membrane (leading to contact between anode and cathode), combustion, and
explosion [75]. Currently, there are two prevailing coating types available, i.e., inorganic
coatings and organic coatings [76–78]. Inorganic coating generally refers to the composite
modification on the separator membrane with a layer of ceramic particles to enhance their
comprehensive performance [79]. Herein, the inorganic ceramic layers are composed of
inorganic particles and adhesives, including but not limited to aluminum oxide (Al2O3),
boehmite, zirconium dioxide (ZrO2), silicon dioxide (SiO2), and titanium dioxide (TiO2),
among others [80,81]. Compared to organic coatings, inorganic composite membranes
exhibit remarkable mechanical strength, exceptional stability, superior thermal resistance,
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and minimal shrinkage, which can prevent thermal runaway and significantly improve
the stability of LIBs [82]. Moreover, they offer numerous advantages, including mature
technology, high cost-effectiveness, and significant economic benefits. Correspondingly,
organic coating, also known as organic composite modification, entails the coating of an
organic substance (e.g., PVDF, PAN, PMMA, polydopamine (PDA), aramid, and their
composites) onto the surface of the separator membrane, which exhibits remarkable liquid
absorption and retention capabilities, along with high adhesion properties [7]. Moreover,
the ideal compatibility of organic compounds with the electrolyte can significantly diminish
the contact angle between the modified separator and the electrolyte, thereby improving
electrochemical performance (i.e., ion conductivity, cycle life, rate capability, and so on) [83].
Notably, the synergistic integration of organic and inorganic coatings can optimize the afore-
mentioned benefits, enhance the efficiency of high-power rapid charging and discharging,
and bolster the safety of LIBs (Figure 3) [84].
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Figure 3. (a) Schematic illustration of the preparation of the PE/Al2O3/PDA separator by synergistic
inorganic and organic coatings through atomic layer deposition and PDA treatment. (b) SEM images
and corresponding cross-sectional views of bare PE, PE/Al2O3, PE/PDA, and PE/Al2O3/PDA
separators. Reprinted with permission from reference [84], copyright Elsevier 2019.

Notably, thermal shutdown is another crucial aspect of separator performance, result-
ing in the closure of the micropores once the battery is short-circuited and the temperature
is abnormal beyond the operating range, which blocks the continuous transmission of
ions and avoids thermal runaway, thus safeguarding the batteries [29]. The shutdown
mechanism is achieved through the combination of two substances with different melting
temperatures (Tm). Due to the thermoplastic properties of polymeric materials, the porous
ion-conducting membrane can transform into an insulating layer without pores as the tem-
perature approaches Tm. Upon reaching the Tm of the fusible substance, it melts, blocking
pores, while the high Tm substance maintains structural integrity [85]. The safety window
temperature in the shutdown mechanism represents the Tm differential between the two
substances. In addition, the mechanical integrity of the separator should not be affected
by the shutdown process, otherwise the cathode/anode electrodes may come into direct
contact, causing chemical reactions that could lead to thermal runaway [86]. For example,
the shutdown and Tm of the PE–PP double-layer separator for rechargeable batteries are
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~130 ◦C and ~165 ◦C, respectively [25]. Furthermore, a fusible substance with a lower Tm
ensures a greater thermal sensitivity of the membrane, larger safety windows, and superior
safety performance of the membrane [24].

2.1.3. Superior Lithium Ion Permeability

Separator materials must facilitate ion mobility, provide ample and unobstructed
pathways for Li+ flow, and function as an electron insulator to uphold insulation between
the anode and cathode. The permeability of the separator is a crucial characteristic that
can be quantified using the MacMullin number [30]. Notably, the MacMullin number
is directly related to air permeability, which is often expressed as the Gurley value, i.e.,
the time for air to traverse a unit area of the separator at a fixed pressure [87]. The
Gurley value is contingent upon the tortuosity of the pores, as well as the thickness and
porosity of the separators, wherein a lower Gurley value suggests increased porosity and
diminished tortuosity [42]. Moreover, homogenous permeability is critical to achieving a
prolonged cycle life, considering that any variation in the permeability pattern can result in
a nonuniform distribution of current density and dendrite formation on electrode surfaces.
Additionally, to promote effective Li+ transmission during charge and discharge, a sufficient
porosity is required [30], with commonly used separator apertures in the market being less
than 1 µm. Meanwhile, to enhance safety during usage, porosity is generally recommended
not to exceed 50%.

2.1.4. High Corrosion Resistance

The chemical stability of a separator refers to its ability to withstand chemical reactions
with electrolytes and electrode materials [88]. Considering that LIB separators operate in
an environment surrounded by electrolytes and active electrodes, the separator must main-
tain long-term stability even under strong oxidation and reduction conditions, and avoid
reacting with electrolyte and electrode materials to ensure the safety of LIBs [89]. Notably,
separator resistance to electrolyte corrosion could be qualitatively or quantitatively mea-
sured to assess the separator chemical stability [90,91]. Given that various LIBs require a
separator that is resistant to organic solvents, high-strength polyolefin-based separators are
commonly employed [92,93], unlike polymers with labile bonds, such as polycarbonates,
polyesters, and polypeptides [94,95], which are easily decomposed by chemical or enzy-
matic factors [96]. Additionally, inorganic reinforcing nanomaterials are typically added
to construct more stable and robust separators, encompassing Al2O3, SiO2, TiO2, ZrO2,
and so on [29]. Due to its exceptional stability and strong affinity for electrolytes, Al2O3 is
widely regarded as a preferred reinforcement material [97]. For example, Al2O3-modified
PE separators in LIBs demonstrated enhanced safety and reliability, delivering excellent cy-
cling performance and stability at 55 ◦C and exceptional thermal safety even at 200 ◦C [97].
Currently, SiO2 has also been utilized to modify separators for enhanced stability and
electrolyte affinity, which are ideal materials for supporting the separator matrix for LIBs
due to high polarity and exceptional thermal stability [98]. For instance, the inclusion of
SiO2 can enhance critical properties of UHMWPE separators, including stability, electrolyte
wettability, and ionic conductivity. As such, the resulting LIB displayed superior discharge
capacities of 165 mAh g−1 at 0.1 C-rate and 123 mAh g−1 at 5 C-rate, alongside ideal cycling
performance over 100 cycles [99]. Meanwhile, TiO2 nanoparticles have been extensively
explored for LIB separator modification due to their high hydrophilicity, superior chemical
and thermal stability [100,101]. Here, a TiO2-grafted PE separator was developed that
not only demonstrated significantly enhanced stability even at 150 ◦C, but also superior
electrochemical performance compared to bare PE separators, thus presenting a highly
advantageous option for the construction of safer LIBs [102]. Additionally, ZrO2 is also
renowned for its exceptional chemical and thermal stability compared to other ceramic
materials such as Al2O3, SiO2, and TiO2 [103]. When added to separators, it could boost Li+

transference number and ionic conductivity while simultaneously enhancing interfacial
stability between electrodes and electrolytes. A LIB featuring the ZrO2-modified PE separa-
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tor exhibited exceptional cyclic performance with a remarkable retention rate (96.2%) after
50 cycles, and stability was considerably enhanced even after operation at 200 ◦C [104].
Moreover, other ceramic particles encompassing cerium dioxide (CeO2), calcium phosphate
(Ca3(PO4)2), magnesium oxide (MgO), and aluminum oxyhydroxide (AlOOH) have also
displayed promising functionality for stable separators with exceptional comprehensive
properties when skillfully engineered [7].

2.1.5. Excellent Electrolyte Wettability

Wettability refers to the capacity to efficiently absorb and retain electrolytes without
experiencing elongation or contraction [105]. Note that, if the separator can be quickly and
thoroughly penetrated by electrolytes, the internal resistance of LIBs can be significantly
reduced, thereby enhancing ion conductivity and charge and discharge capacity [106]. The
primary function of the LIB electrolyte is to conduct ions between cathode and anode, serv-
ing as a medium for charge and discharge [107]. Poor wettability increases resistance of the
separator, affecting cycle performance and charge/discharge efficiency [108,109]. Hence,
it is necessary to modify the surface of the membranes to be more hydrophilic. Common
methods involve surface or pore functionalization with hydrophilic groups or surfactant
treatment [110,111]. It should be noted, however, that surfactants may be lost through
electrolyte washing during cycling and storage, resulting in temporary hydrophobicity.
Conversely, hydrophilic functional groups can be grafted onto membrane surfaces through
thermal spray by carefully selecting appropriate gases, resulting in improved durability,
encompassing hydroxyl, carbonyl, carboxyl, amino, and sulfonyl groups [32]. Additionally,
wettability can also be increased through sulfonation, fluorination, graft polymerization,
etc. [112]. Contact angle testing and electrolyte absorption are widely used as characteriza-
tion methods to measure wettability. The methodology entails dispensing electrolyte onto
the separator and subsequently measuring the contact angle (θ). A lower θ value indicates
superior wettability of the separator surface towards the electrolyte [14].

2.1.6. Cost-Effectiveness, Economy, and Sustainability

Developing a cost-effective production process for separators is crucial for cost reduc-
tion. Thus, reducing the thickness of separators is an efficient way to cut down expenses
driven by the lowered prices of raw materials [10,113]. Moreover, the emergence of the LIB
and separator industries has resulted in a significant shift from dependence on petroleum
resource endowments to reliance on manufacturing endowments and recycling of lithium
batteries, thereby enabling sustainable development through a circular economy [114].
Specifically, with the growing global concern for environmental protection and sustainable
energy development, LIBs hold great value as an energy storage solution in fields like
EVs, mobile devices, and energy storage systems [115,116]. With the transformation of
energy structures in various countries and the increasing deployment of renewable en-
ergy, the LIB and separator industries have emerged as one of the most promising energy
industries with the surging worldwide demand for sustainable development and clean
energy [117]. Therefore, the preparation and design of separators and their components
should be consistent with the worldwide concepts of cost-effectiveness, sustainability, and
ecological consciousness.

2.2. Physical and Chemical Properties of Separator Membranes

The separator is a passive component in LIBs and plays a critical role in enhancing
battery performance and safety in practical applications. The various performance indi-
cators of the membrane are interrelated and significantly impact the overall performance
of the battery. Various techniques and methods are utilized to characterize membrane
performance, encompassing tensile strength, puncture resistance, thermal stability, porosity,
electrolyte wettability, chemical stability, and so on [23,31]. Due to its implementation
in various large-scale types of equipment such as EVs or energy storage stations, LIBs
require superior mechanical strength, capacity, thermal stability, rate capability, excellent
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electrochemical performance, and prolonged cycle performance. Accordingly, an optimal
separator is essential to meet certain critical physical and chemical properties (Figure 4).

 
 

 

 
Polymers 2023, 15, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/polymers 

 
Figure 4. Schematic illustration of the physical and chemical properties to consider when designing 
appropriate separator membranes for rechargeable LIBs. 

Figure 4. Schematic illustration of the physical and chemical properties to consider when designing
appropriate separator membranes for rechargeable LIBs.

2.2.1. Thickness

The membrane thickness should be kept to a minimum in applications with high-
energy density and high-power scenarios. However, this can jeopardize the battery’s safety
and mechanical durability. The thinner the membrane, the lower the mechanical strength,
increasing the risk of internal short circuits during long-term use due to perforation and
battery assembly [24]. Conversely, thicker separators could raise resistance, thus lowering
the electrochemical performance of the battery. Moreover, thickness uniformity is critical
because changes in thickness can hasten battery deterioration and shorten its lifespan,
necessitating a consistent current distribution throughout battery operation [118]. Therefore,
it is essential to reduce thickness and volume to boost the total energy density of the battery
without sacrificing the minimum tensile strength of the membrane, preventing cracking
both during assembly and throughout the battery service life. Generally, to ensure stable
and effective charging and discharging cycles and normal battery usage, it is ideal to
appropriately control the thickness of the separator within 25 µm [29].

2.2.2. Tensile Strength

The membrane tensile strength is dictated by its material and manufacturing process,
primarily characterized by its strength in the mechanical direction (MD) and transverse
direction (TD). In order to prevent damage during transportation and assembly, as well
as battery short circuits caused by lithium dendrite growth, the membrane requires a
minimum tensile strength of 20 MPa [119]. Moreover, the separator must not experience
significant elongation under tension to prevent width shrinkage. Generally, higher porosity
results in lower impedance but weaker strength. Notably, uniaxial stretching can cause a
discrepancy in strength between stretching and vertical directions, whereas biaxial stretch-
ing results in consistent strength in both directions [28]. The ASTM D882-10 standard [120]
specifies test parameters, including fixture spacing, stretch rate, and sample size, for as-
sessing membrane tensile strength [30]. According to ASTM D882, the minimum tensile
strength of separators with a thickness of 25 µm is 98.06 MPa [71].
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2.2.3. Puncture Resistance

Puncture resistance refers to the mass applied to a specific needle to puncture a given
membrane sample, which is used to characterize the susceptibility of the membrane to
short circuits during processes such as assembly [121]. Considering factors such as curling
and packaging during the production of the membrane, assembly and disassembly of the
battery, and repeated charging and discharging, the membrane must have a certain level
of physical strength to withstand damage from puncture, physical impact, compression,
and wear. Therefore, the puncture strength of the membrane should be investigated, and
the membrane must have a certain strength of puncture resistance to prevent short circuits.
Based on ASTM D3763 [122], the puncture resistance of the separator must meet or exceed
300 g mil−1 [106]. Specifically, the penetration strength of bare PE and PE–PVDF separators
are of 5.67 and 6.20 N, respectively [123].

2.2.4. Porosity and Pore Size

Porosity refers to the ratio of the pore volume to the total volume of the separator
membrane, which can be calculated as a percentage using the following Equation (1).
The LIB separator should have sufficient porosity to absorb the electrolyte and maintain
high conductivity [14]. Notably, optimal porosity can ensure that sufficient electrolyte
is captured within the membrane pores to maintain elevated ionic conductivity, while
membranes with low porosity retain fewer electrolytes, resulting in increased internal
resistance, and excessive porosity could compromise the thermal shutdown of the bat-
tery [124,125]. Meanwhile, a relatively uniform pore size is a prerequisite to avoid electrode
performance degradation caused by uneven current [126,127]. The membrane pores should
have a uniform shape with appropriate size to allow Li+ to pass through the absorbed
electrolyte and prevent internal short circuits. Notably, appropriately increasing porosity
while maintaining a certain degree of mechanical and thermal stability is the trend of LIB
separators [7]. The current mainstream product of LIB separators has a porosity of 40%
with a pore size on the submicron scale (especially with a membrane thickness of 25 µm).
Specifically, the pore size of commercial membranes typically ranges from 0.03 to 0.12 µm
and exhibits a narrow and uniform distribution [128]. Moreover, the maximum pore size
should not exceed the average pore size distribution by more than 0.01 µm [129].

Porosity (%) = (1− ρM
ρP

) × 100 (1)

where ρM and ρP represent the actual density of the separator membrane and the polymer,
respectively.

2.2.5. Electrolyte Absorption and Retention Rate

Obviously, the separator should be able to absorb enough electrolyte and maintain
absorption during battery operation, which could improve LIBs performance by reducing
separator resistance and enhancing charge and discharge efficiency. The wetting rate is
related to the electrolyte filling time, as well as the polymer type, pore size, porosity, and
curvature of the membrane [105,111]. Note that the electrolyte should thoroughly wet
the membrane to reduce the internal resistance of the battery. In addition, the separator
must be quickly immersed in electrolyte to facilitate battery assembly during large-scale
production. Note that electrolyte absorption by the separator depends on the hydrophilicity
and crystallinity of the polymer matrix, as well as the porosity of the membrane [112].
Although electrolyte absorption can cause a certain loss of mechanical strength, the active
substances of adjacent electrodes will not be completely utilized if the electrolyte is not
distributed thoroughly and uniformly within the membrane. Equations (2) and (3) are used
to calculate the electrolyte absorption rate and retention rate of the separator [29]:

Electrolyte absorption rate (%) =
W−W0

W0
× 100 (2)
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Electrolyte retention rate (%) =
W −W0

W
× 100 (3)

where W0 is the original mass of the separator and W is the mass of the separator after
immersing into the electrolyte for 1 h.

2.2.6. Dimensional Stability

The membrane must maintain a flat surface and avoid curling when placed and
immersed in the electrolyte. However, in practical battery assembly, incomplete contact
may occur unexpectedly between the electrode and the membrane, resulting in internal
short circuits. Moreover, batteries emit thermal energy when undergoing both charging and
discharging processes, particularly when experiencing short circuits or being overcharged,
which leads to the release of a substantial amount of heat. Therefore, it is imperative for the
membrane to uphold its initial dimensional stability and mechanical resilience, functioning
as a partition to separate the cathode and anode while averting any potential short circuits,
particularly as the temperature escalates [130]. Herein, the separator must maintain its size
and avoid significant shrinkage even at high temperatures during battery operation. Note
that the thermal shrinkage of the separator in both the MD and TD directions should be less
than 5% (in vacuum) after holding at 90 ◦C for 60 min [131]. The thermal stability of the
separator was evaluated by measuring the two-dimensional change of square separators
(2 × 2 cm2 sample) after heat treatment in the temperature range of 90 to 145 ◦C for 30 min.
The thermal shrinkage rate was then calculated using Equation (4):

Thermal shrinkage (%) =
S0 − S

S0
× 100 (4)

where S0 is the original area of the separator and S is the area of the separator after the
heat treatment.

2.2.7. Air Permeability

The battery separator permeability is typically characterized using the Gurley value, in
accordance with ASTM D726-94 [106,132]. This measurement is based on air permeability
and expresses the time required for a specific volume of air to pass through a defined
separator area under specific pressure conditions. The Gurley value provides an indication
of the battery internal resistance, with higher values indicating greater resistance. The
Gurley value is influenced by the separator porosity, fraction of open pores, and the tortu-
osity [133]. The consistent permeability of the separator eliminates discrepancies in current
distribution, thus preventing dendrite formation and contributing to the extended cycle
life of LIBs. The ideal Gurley values of LIB separator should be below 0.025 s µm−1 [29].
The Gurley value (G) can be calculated using Equation (5) [57]:

G =
ηairVL
k∆PA

(5)

where ηair represents air viscosity, V denotes air volume, L refers to separator thickness,
k refers to permeability, ∆P represents pressure difference, and A represents the area of
the separator.

2.2.8. Electrochemical Performance

The electrochemical performance of battery separators mainly includes various factors
such as electrochemical stability, ion conductivity, cycling stability, rate
capability, etc. [134–136]. For the sake of ensuring the longevity of batteries, it is cru-
cial for the separator to possess exceptional chemical stability with respect to the electrolyte,
overcoming the formation of unnecessary degradation and mechanical strength loss dur-
ing charging and discharging. Moreover, separators must have stable electrochemical
properties in strong oxidation and reduction environments composed of active electrode
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components, and should not create impurities that may impact battery operation [137].
Notably, ion conductivity with liquid electrolytes (usually 10−1–10 mS cm−1) is heavily
associated with the membrane’s ability to transport Li+ while being immersed in the elec-
trolyte [138]. Thus, superlative ion conductivity and rate capability necessitate the separator
to have exceptional electrolyte wettability. However, flammable organic solvents in liquid
electrolytes such as ethylene carbonate and propylene carbonate pose significant safety
concerns [139,140]. The ion conductivity can be measured using electrochemical impedance
spectroscopy (EIS) with the membrane sample soaked in the electrolyte, then calculated
based on the measured volume resistance, thickness, and area of the separated sample [141].
Also, the cycling stability and rate capability of the battery separator are both examined by
assembling the electrolyte-soaked separator between two symmetrical lithium electrodes,
and the initial LIBs should display high cycling stability and capability [136,142]. Note that
superb electrolyte wettability can enhance cycling stability, improve capacity retention, and
battery efficiency. This, however, depends on whether the separator is convenient for Li+

transportation and whether it can display excellent interface compatibility between the
electrode and separator [143,144].

The ionic conductivity was analyzed by measuring the EIS of LIBs with two stainless
steel plates as electrodes with an amplitude of 10 mV at 25 ◦C, and the frequency range is
from 0.1 Hz to 105 Hz [23]. The ionic conductivity can be calculated with Equation (6):

σ =
d

RbS
(6)

where σ is the conductivity, d is the thickness of the separator, Rb is the bulk resistance, and
S is the area of the contact.

For rate capability of Li+ transfer at the solid−liquid interface, the core of electrochem-
ical kinetics is related to the potential difference at the solid−liquid interface through the
Butler−Volmer Equation (7) [134]:

Jr= 2kac0.5
e c0.5

s,surf
(
cs,max − cs,surf

)0.5sinh
[

0.5F
RT

(Φs−Φl−Vocv)

]
(7)

where Jr represents the ionic flux for the interfacial reaction, k denotes the reaction rate
constant, a refers to the surface area to volume ratio of the particle, ce represents the
Li+ concentration in the electrolyte adjacent to the particle surface, cs,max represents the
maximum Li+ concentration within the particle, cs,surf designates the Li+ concentration
at the particle surface, F signifies the Faraday constant, R stands for the gas constant, T
indicates the temperature, Φs denotes the solid potential, Φl stands for the electrolyte
potential, and Vocv represents the open-circuit potential.

3. Manufacturing: Dry and Wet Methods Based on Uniaxial/Biaxial Stretching
3.1. Uniaxial/Biaxial Stretching of Separator Membrane

LIB separator membranes can be categorized into several types, encompassing woven
or non-woven membranes, microporous membranes, composite membranes, cellulose-
based membranes, and electrolyte membranes [34,109,125]. Polyolefin materials such as PE
and PP are preferred due to their exceptional mechanical properties, chemical stability, ma-
ture manufacturing processes, and low cost; thus, they have been frequently employed as
separator components in LIBs research and development [28,34]. While some recent investi-
gations have delved into the utilization of substitute materials (e.g., PVDF) [145–148], as the
primary polymer in phase inversion methods and cellulose-based composite membranes in
LIBs [83,102,149–153], commercial polyolefin-based LIB separators still predominated the
overall LIBs markets, encompassing PE, PP, and UHMWPE [7,34]. Preparation procedures
can be segregated into dry and wet methods, based on the varying formation mechanisms
of microporous structures [30,34] (Figure 5).
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Figure 5. (a) Schematic illustration of the fabrication process for a microporous membrane by
simultaneous biaxial stretching, extraction, and drying based on the wet method. Reprinted with
permission from reference [154], copyright Elsevier 2021. (b) Schematic illustration of the casting and
sequential biaxial stretching processes based on the dry method. Reprinted with permission from
reference [155], copyright Elsevier 2022.

Industrially, the manufacturing focus has been on wet-processed biaxially stretched
PE membranes and dry-processed uniaxially stretched PP membranes. Dry stretching can
be categorized into uniaxial and biaxial stretching, while wet stretching can be divided into
synchronous and asynchronous stretching (Figure 6). Note that dry biaxial stretching relies
on the density difference between various phases of PP to create crystal transformation
and form microporous membranes. Correspondingly, the wet method, also known as
TIPS, utilizes temperature variations to induce phase separation [156]. It is noteworthy
that biaxial stretching of PP or PE membranes can be achieved either simultaneously
or in sequence. Specifically, sequential biaxial stretching involves stretching the casting
membrane in the MD direction while gradually increasing the roller speed. Next, the
stretcher frame is stretched in the TD direction with the membrane clamped on each side
by fasteners connected to the moving chain. The stretched membrane then passes through
the heating zone in the oven [58]. Alternatively, simultaneous biaxial stretching can be
utilized, wherein the cast or blown membrane is stretched in both MD and TD directions
synchronously in a single process, thus preventing scratches and contaminants on the
surface of the casting membrane caused by contact with rollers during uniaxial stretching
in the MD direction [34].
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3.2. Dry Method

The dry method is also known as the melt extrusion stretching method [30]. In a
dry process utilizing uniaxial stretching, polyolefin melt is extruded and casted or blown
into a membrane, then annealed within the temperature range between glass transition
temperature (Tg) and Tm to increase crystallinity and regulate grain size [155]. Then, the
melt is stretched in the MD. Specifically, the blend is melted at elevated temperatures,
extruded, and crystallized under the stress field induced by extrusion. Heat treatment is
applied subsequently to promote the thickening and refinement of the lamellar crystals [34].
After cold stretching, the lamellar crystals separated into microporous nuclei, followed by
hot stretching (to promote microvoid growth) and transformation from lamellar clusters
into fibrous crystals. The microporous structure is then fixed by heat-setting to eliminate
internal stress. Note that the quality of the prefabricated membrane depends on factors
encompassing molecular weight (MW) and distribution (MWD) of the polyolefin resins, as
well as extrusion–casting process parameters (i.e., die temperature, tensile ratio, cooling
temperature, extrusion rate, etc.) [42]. Moreover, the processing of microporous membranes
is influenced by multiple factors including stretching rate and temperature, heat-setting
duration and temperature, etc. Overall, the dry stretching method has proven to be a
simple and highly efficient technique, yielding a porous membrane that is well-suited for
high-power density batteries.

Significantly, despite the dominance of uniaxial stretching technology in the PP mem-
brane market through the dry method, biaxial stretching of PP can be achieved by in-
corporating β-nucleated isotactic PP (β-iPP) as nucleating agents [157,158]. This process
aids in crystal transformation and the formation of microvoids, which occur as a result of
differences in density between various phases during stretching. Moreover, this technique
optimizes the uniaxial stretching process and balances tensile strength in both MD and
TD directions [159]. However, biaxially stretched PP membranes generated from the dry
method may have some drawbacks, including excessive thickness, lack of control over pore
size and porosity, unevenness, and the need to incorporate pore-forming agents [154,160],
which can compromise their practical applications. Notably, a method that takes advantage
of the dry method processing has been proposed, wherein the extruded PP membrane is
biaxially stretched in both the MD and TD directions without incorporation of β-nucleation
agents [34].
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3.3. Wet Method

The wet method, also known as the TIPS method, is a technique driven by tem-
perature changes [41,154]. This approach involves melting, swelling, and dissolution of
polymers at elevated temperatures to produce a homogeneous solution [34]. In a typical
wet method, PE is blended with a solvent of low MW above its Tm, melted to form a
homogenous solution, and then extruded into a casting membrane [154]. Notably, paraffin
oil is the most commonly used hydrocarbon solvent for PE membranes. After cooling,
phase separation occurs, including solid–liquid or liquid–liquid phase separations with
a prefabricated membrane formed. It is then heated to a temperature near Tm and then
subjected to biaxial stretching in MD and TD to ensure homogeneous molecular chain ori-
entation. Subsequently, the diluent is extracted and recycled, resulting in the formation of a
microporous membrane [28]. Note that the wet method yields a microporous membrane
featuring comparable tensile strength in both MD and TD directions due to its isotropic
properties. However, the anisotropic nature of PP membranes prepared by dry method
uniaxial stretching generates a significant disparity in tensile strength between MD and
TD, ultimately resulting in poor tear resistance.

Notably, in wet method processes, phase separation is a critical and sophisticated
event that involves crystal nucleation, growth, and microcrystalline orientation, occurring
after extrusion and cooling. Moreover, nucleation, growth, destruction, and reconstruction
of crystals, as well as the nonlinear evolution of multi-scale structures such as lamellar
crystals, amorphous regions, fibrous crystals, and microvoids occur through synchronous
or asynchronous biaxial stretching [30]. Subsequently, the solvent is extracted with a
suitable extractant with a low boiling point, and internal stresses are then alleviated by
heat treatment, leading to the development of a cohesive microporous structure (Figure 6).
Therefore, the preparation of microporous membranes is a multifaceted coupling outcome
of several phases and multiple courses involving various processing parameters, dependent
on multifarious factors encompassing MW, MWD, material concentration, and processing
conditions including extrusion molding, casting, biaxial stretching, heat-setting, and so
on [58]. Note that the predominant advantage of PE separator membranes lies in their
superior mechanical strength, which is well balanced in both directions. This can be
attributed to their less anisotropic pore structure, which distinguishes them from uniaxially
stretched PP-based membranes [28,30].

4. Recent Progress in Polymer-Based Porous Separator Membranes

In recent years, significant progress has been made in the development of polymeric-
based porous separator membranes for rechargeable batteries. Various preparation tech-
niques have been established, leading to the creation of several types of separator mem-
branes. Notably, it is worth emphasizing that polymers play a crucial role in these mem-
branes. Typical polymeric materials for preparing porous membranes in rechargeable
batteries [7], such as LIBs, include PE, PP, PVDF, PI, polyesters, PTFE, PET, PAN, cellulose,
and their derivatives, as well as blends of these materials [161–163]. This article aims to
provide a comprehensive overview of recent breakthroughs in polymeric materials for
separator membranes in the LIB field (Table 1).

4.1. PE-Based Separator Membranes

Microporous polyolefin membranes, particularly those fabricated from PE, PP, and
their blends, have emerged as the dominant separator in the secondary rechargeable battery
market. In particular, UHMWPE has gained significant market share in the commercial
membrane industry through polymerization using Ziegler–Natta catalysts under low-
pressure conditions [164–167]. The regular −CH2− structure on the elongated molecular
chain in UHMWPE semi-crystalline structure imparts exceptional wear resistance that
increases proportionally with MW, ranging from 3 × 106 Da to 6 × 106 Da. Moreover,
this polymer exhibits remarkable impact strength under ordinary ambient conditions and
retains robust impact resistance even at low temperatures [168–172]. Notably, the resultant
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membrane possesses superior microporous structure, exceptional puncture resistance, out-
standing mechanical properties, unparalleled chemical resistance, and thermal stability,
as well as ultra-high wear and impact resistance [173–177]. Furthermore, these separa-
tors are relatively cost-effective, thus enhancing their appeal for large-scale commercial
production [7].

Nevertheless, polyolefin-based membranes are hindered by poor thermal stability due
to low Tm and combustibility. Additionally, the hydrophobic nature of these membranes
can also lead to insufficient electrolyte wettability, ultimately resulting in reduced ionic
conductivity. Furthermore, shrinkage of separators and subsequent melting at elevated
temperatures can cause internal short circuits, potentially leading to thermal runaway
and further catastrophic security hazards [23]. Herein, these constraints have compro-
mised their application to high-performance secondary batteries. Nonetheless, commercial
polyolefin-based LIB separators still predominate in the overall LIBs markets, encompass-
ing PE, PP, and UHMWPE due to their exceptional mechanical properties, (electro)chemical
stability, mature manufacturing processes, and low cost [34]. Hence, substantial advance-
ments have been made in improving the fundamental performance and robustness of
polyolefin membranes to satisfy the extensive requirement for such membranes in the
commercial market. In recent years, scientists have focused primarily on functionalizing
PE membranes through surface modification to enhance properties including wettability,
strength, and thermal and dimensional stability, encompassing both inorganic and organic
coatings [23,81,178,179]. Specifically, inorganic reinforcement materials, such as SiO2,
Al2O3, TiO2, ZrO2 and so on, can be incorporated into the PE matrix to prevent membrane
deformation under elevated temperature conditions and further enhance the safety of LIBs,
due to their excellent heat resistance and function as a physical skeleton [81,173,180].

Significantly, the utilization of inorganic and organic coating techniques, including in-
corporation of inorganic nanoparticles and organic polar moieties, can boost hydrophilicity
of the separator surfaces [181]. For example, Wang et al. [182] utilized Al2O3 and boehmite
(γ-AlOOH) as ceramic coating particles that were supplemented with BYK (Beck Chemical
Co., Ltd., Altena, Germany) as an aqueous assistant to fabricate PE–Al2O3 and PE–AlOOH
separators. The presence of polar group (–OH) in the PE–AlOOH separator significantly
enhanced the interactions between the coating layer and PE matrix, leading to increased
electrolyte uptake (i.e., 187%), higher electrolyte wettability (contact angle of 5.7◦), and
fairly strong ionic conductivity (i.e., 1.0 mS cm−1). Consequently, the electrochemical
efficiency of the battery has been enhanced, encompassing both its rate capability and
cycling performance. Notably, the enhancement of hydrophilicity on the surface of the
PE separator can also be achieved by the incorporation of organic polar groups through
chemical modifications. For example, Kim et al. [183] utilized benzoyl peroxide (BPO) to
chemically treat the PE separator of LIBs, which introduced oxygen-containing functional
groups such as carbonyl to both the surface and interior of the membrane. Accordingly, the
hydrophobic nature of the PE separator was transformed to hydrophilic, thus enhancing
electrolyte wettability and reducing the internal resistance associated with the transfer of
Li+ ions across the separator. Note that the BPO–PE separator, as prepared, demonstrated
exceptional rate capacity (i.e., 86.7% at a current rate of 3.0 C) and outstanding capacity
retention (i.e., 98.1%) after 70 cycles, which is superior to the pure PE separator rate ca-
pability (i.e., 78.6%) and capacity retention (i.e., 91.7%) under the same conditions. These
improvements hold great potential for enhancing the overall performance and lifespan of
LIBs. Moreover, the functionalization of PE-based membranes can also be accomplished
by light irradiation. For example, Sheng et al. [184] employed low-dose γ radiation to
activate the PE separator and subsequently grafted methyl acetate (MA) onto it under UV
light for the fabrication of the PE-g-MA separator. The inclusion of MA introduced the
polar ester functional group into the PE-g-MA separator, which could effectively enhance
liquid electrolyte affinity. Consequently, the PE-g-MA separator demonstrated a higher
transference number of Li+ (i.e., 0.49) than the bare PE separator (i.e., 0.29). This exemplary
performance is attributed to the increased interaction between the PE-g-MA membrane and
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the solvent, thereby facilitating the process of Li+ desolvation. Furthermore, the activation
energy of the PE-g-MA separator exhibited a comparatively lower value (i.e., 52.1 kJ mol−1)
than that of the unmodified PE membrane (i.e., 56.5 kJ mol−1), indicative of a more facile
migration of Li+ across the electrode/PE-g-MA interface containing liquid electrolyte.

Moreover, the core–shell structure could also be applied to enhance the performance
of PE-based separators. For example, Fu et al. [185] combined SiO2 nanoparticles with
poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) to prepare SiO2–PZS core–shell
structured nanoparticles, and then coated the resulting SiO2–PZS on both sides of the PE
microporous membrane to obtain PE–SiO2@PZS separator. The hydroxyl group and N, O
atoms on the surface of PZS nanoparticles can act in synergy with Li+ ions, facilitating the
dissociation of lithium salt (i.e., LiPF6), resulting in an increase in both ionic conductivity
and discharge capacity of LIBs. Experimental findings demonstrated that the discharge
capacity was 115 mAh g−1 at the 8 C rate, surpassing both the values of PE membranes
(105 mAh g−1) and PE–SiO2 separators 106 (mAh g−1). Thus, SiO2–PZS nanoparticles
characterized by a core–shell structure hold great promise as a ceramic coating material
for LIBs. Xiao et al. [186] successfully developed a novel core–shell structured coating
material by synergistically combining PE wax with boehmite (γ-AlOOH, abbreviated as
AO), which was utilized to fabricate a high-density PE wax@AO/PE composite separator
(Figure 7). The molten HDPE wax was capable of fusing and occluding pores within the
separator membranes, ultimately blocking Li+ ion transport channels upon heating to
130 ◦C due to the appropriate HDPE Tm (i.e., 130 ◦C) below that of the PE substrate. By
establishing a mass ratio of HDPE wax to AO of 1:3, the modified separators demonstrated
superior cycling stability with 81% capacity retention over 200 cycles when compared to
the unmodified PE separator, which retained only 71% capacity.
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with permission from reference [186], copyright Elsevier 2022.

In addition to coating materials, the coating process has a significant impact on the
performance of LIBs. The microstructure of the coating not only affects ion migration and
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electrolyte storage, but also profoundly influences the deformation and thermal shutdown
of the separator when subjected to abusive conditions [187]. To achieve even coating,
Wang et al. [188] employed gravure-printing method to coat pore-controllable polyamide–
imide (PAI) on PE substrates. Subsequently, they prepared a series of carefully controlled
PAI-coated PE separators (PAI–PE-1, PAI–PE-2, and PAI–PE-3), with pore diameters of
0.02 µm, 0.17 µm, and 0.85 µm, respectively, through a phase transfer process to eliminate
nonsolvent. Significantly, the synergistic approach of combining the “guest–host transition”
of PAI with the “pore on–off” mechanism of PE cooperatively provides an advanced level
of security for LIBs. Compared to the severe shrinkage of bare PE membrane, the PAI
layer on the PE substrate can reverse from guest to host and effectively prevent serious
short circuits during overcharge, hot box, and nail test conditions. More significantly,
the micropores in the PE layer exhibited a positive thermal response. Upon exposure to
heat, the PE layer can constrict and close micropores, resulting in a substantial increase
in its electrical resistance and forming an efficient barrier layer between the electrodes.
Conversely, a battery with a bare PE separator is prone to thermal runaway as the PE
material undergoes severe shrinkage and cannot effectively prevent extensive internal short
circuits. Moreover, the findings indicated that, for pore sizes ranging from 0.17 to 0.85 µm,
the electrochemical performance of PAI–PE-2 and PAI–PE-3 did not exhibit significant
attenuation in comparison with PE membrane. Furthermore, Shin et al. [189] utilized
polyethylene oxide (PEO)-functionalized ladder-like polysilsesquioxanes (LPSQ) and 4-
(chloroacetyl) catechol to produce a catechol (CA)-branched organic–inorganic hybrid
material (i.e., CA–PEO–LPSQ), where polycatechol and PEO were utilized as organic
constituents, while LPSQ served as the inorganic component. CA–PEO–LPSQ was used
as a surface modifier and coated on the PE separator through an optimized dip-coating
technique at various alkaline pH levels to improve the performance of LIBs. The results
indicated that the PE-M-9 separator produced at pH 9.0 exhibited excellent surface wetting
properties for both aqueous solutions and battery electrolytes, with notably enhanced
electrolyte absorption in comparison to unmodified PE separators. Meanwhile, the PE-
M-9 separator exhibited merely 9% thermal shrinkage at 120 ◦C, with less deformation
compared to PE-M-8 (13%), PE-M-10 (11%), and bare PE (26%) separators, thus enhancing
the safety of LIBs. Furthermore, the material showed an increase in ionic conductivity (i.e.,
5.79 mS cm−1), and the half-cell constructed using the PE-M-9 membrane demonstrated
exceptional rate capability and prolonged cycle life. At 0.5 C, the capacity retention rate
was 98% after the first cycle and still astonishingly high at 82% after 300 cycles.

Notably, UHMWPE has occupied a substantial market share in commercial LIB separa-
tors, owing to its superior microporous structure, puncture resistance, mechanical strength,
chemical resistance, cost-effectiveness, thermal stability, and so on [173–177]. Just like
conventional PE-based components, the performance of a UHMWPE membrane can also
be enhanced when used as a battery separator through the introduction of inorganic ma-
terials (e.g., SiO2, Al2O3, TiO2, and ZrO2) and organic materials (e.g., PVDF, PMMA) to
enhance thermal stability and improve the safety of LIBs [173,180]. As an illustration,
Babiker et al. [99] efficiently engineered and industrialized UHMWPE/SiO2 nanocom-
posite membranes for the first time by means of a biaxial stretching without additional
post-modifications. This novel method combined the preparation of UHMWPE separators
with the functionalization of SiO2, effectively minimizing both costs and the duration of
preparation and post-treatment procedures. When utilizing UHMWPE/SiO2 membranes
for LIBs, the separator exhibited enhanced thermal stability with a SiO2 concentration of
20 wt.%. Specifically, the thermal shrinkage of MD (1.7%) and TD (1%) was significantly
superior to that of a pure UHMWPE membrane, with thermal shrinkage of MD (30.5%)
and TD (27.6%). Additionally, the membrane exhibited remarkable discharge capacity
(i.e., 165 mAh g−1 at 0.1 C and 123 mAh g−1 at 5 C) and superior cycling performance
with impressive CE (i.e., 99.93% over 100 cycles) and C-rate capability (146.2 mAh g−1

at current rate of 1 C). Likewise, organic compounds can also be used to enhance the
performance of a UHMWPE-based membrane. Habumugisha et al. [190] employed poly(4-
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methyl-1-pentene) (PMP) to augment the thermal behavior and electrochemical properties
of UHMWPE separators, and produced a UHMWPE/PMP blend membrane through se-
quential biaxial stretching. When tested on LIBs, it was found that the UHMWPE/PMP
microporous separator exhibited remarkable thermal stability with a PMP content of
7.5 wt.%. After exposure to 120 ◦C for 1 h, dimensional shrinkage was fairly low in both
MD (0.7%) and TD (1.6%). Furthermore, the membrane exhibited exceptional electrochemi-
cal performance. The rate capability test results revealed a maximum discharge capacity
of 172.8 mAh g−1 at 0.1 C, surpassing the ideal capacity of the LiFePO4 cathode (i.e.,
170 mAh g−1). Remarkably, the cells incorporating the UHMPE/PMP membrane exhibited
superior and enduring cyclability, maintaining a discharge capacity of 148.0 mAh g−1 and
a CE of 99.89%, even after undergoing 100 cycles at a rate of 1 C. Alongside enhancing
battery safety by improving the thermal stability of the separator, the puncture resistance is
also a crucial factor worthy of consideration. Given that any punctures produced on the
membrane may potentially result in a catastrophic failure of the entire system, Li et al. [191]
developed a self-reinforced composite UHMWPE membrane with nanopores (~200 nm)
homogeneously embedded within interpenetrating nanofibrillar “shish kebab” networks.
By maintaining molecular orientations upon pore closure, the composite material displayed
a remarkable increase of 300% in both tensile strength (i.e., 550 MPa) and puncture resis-
tance (i.e., 1.5 N µm−1). Additionally, cells fabricated using this UHMWPE-based separator
demonstrated a 10% higher energy density and superior cyclability compared to those
employing commercially available separators.

Furthermore, the performance of UHMWPE-based membranes could also be influ-
enced by processing methodologies. Wu et al. [154] investigated the effect of wet and dry
methods on the performance of UHMWPE/liquid paraffin (LP) gel membranes. The find-
ings demonstrated that separators generated through the dry method portrayed enhanced
electrochemical performance, yet produced substandard mechanical properties compared
to the membrane obtained via the wet method. Therefore, to create LIB separators with
optimal pore structure and exceptional properties, it is critical to merge the benefits of
both dry and wet methods. Moreover, Ding et al. [192] have successfully developed a
separator utilizing a wet method to create a uniform microporous structure with a porous
Al2O3 nanoparticles through in situ blending, which can be easily prepared using the
TIPS method involving paraffin, nano-Al2O3, and UHMWPE. This membrane has demon-
strated improved electrochemical stability, ionic conductivity, and Li+ transference numbers
due to the cooperative effect of uniformly distributed microvoids and Al2O3 nanoparti-
cles within the porous framework, enabling facile Li+ transport and endowing LIBs with
outstanding performance.

4.2. PP-Based Separator Membranes

Similar to PE, PP serves as a commonly used separator material for LIBs due to
its exceptional chemical stability, thickness, and mechanical strength. However, these
separators can experience significant thermal contraction at high temperatures, posing a
serious threat to battery safety by potentially causing internal short circuits and leading to
fire or explosion. To overcome the limitations of PP materials used in separator membranes,
extensive research has been conducted in recent years, including surface modification to
enhance performance, encompassing wettability, mechanical strength, puncture resistance,
thermal stability, and dimensional stability with inorganic/organic coatings [23].

Yan et al. [193] employed PP as the architectural backbone to synthesize a novel
multifunctional copolymer, i.e., poly(acrylonitrile-co-lithium acrylate-co-butyl acrylate)
(PAAB–Li), via soap-free emulsion polymerization. Furthermore, the copolymer was
utilized to create uniform-covered separators (i.e., PAAB–Li-assisted PP separators) on a PP
substrate using a straightforward dip-annealing procedure. Note that the PAAB–Li-assisted
PP separators exhibited superior performance, encompassing higher ionic conductivity and
Li+ transference number value (increased from 0.360 to 0.525), as well as lower interface
impedance (decreased from 155 Ω to 34 Ω) compared to the bare PP separator. Furthermore,



Polymers 2023, 15, 3690 19 of 39

cells containing the modified separator demonstrated consistent cycling performance for
over 800 h, suggesting that the functional layer could effectively inhibit the growth of
lithium dendrites. Meanwhile, LiCoO2/graphite cells using the as-prepared PAAB–Li-
assisted separator exhibited exceptional cycle stability and rate capability. Thus, this
straightforward strategy can be applied to LIBs that need high levels of safety requirements
and can even be scalable to Li metal batteries. Additionally, Ding et al. [155] fabricated
fumed SiO2/β-iPP membranes through the utilization of PP, silica, and β-nucleating agent
(β-iPP) coupled with a sophisticated bidirectional stretching technique to optimize the
porous structure and achieved fumed SiO2 coating in situ during the pore formation
within β-iPP. The membrane displayed a more uniform microporous structure with a
silica mass ratio of 5%, and exhibited superior discharge capacity at high current densities
(67.2 mAh g−1 at 7 C). Moreover, the membrane maintained capacity retention above 87%
even after 200 cycles, surpassing the performance of PP membranes without SiO2 (i.e.,
70.2% after 200 cycles).

Given that short circuits may result in combustion or detonation, posing a signifi-
cant safety hazard to batteries, numerous studies have focused on surface modification
of membranes utilized in LIB separators in order to mitigate the negative effects of ther-
mal shrinkage on commercial PP separators. For example, Zhao et al. [194] engineered
Celgard–SiO2–TEOS (TEOS = tetraethylorthosilicate) separators by modifying commercial
polyolefin separators (i.e., Celgard-2300) through surface chemical modification, utilizing
a robust silicon–oxygen cross-linked heat-resistant network grafted onto the surface to
improve membrane thermal stability. Note that the untreated separator experienced 38.6%
shrinkage in the MD direction at 150 ◦C for 30 min, while the graft-modified separator expe-
rienced only 4.6% shrinkage. As such, these modified separators may represent a superior
option than conventional silica nanoparticle-coated polyolefin separators for improving
the thermal stability of LIBs. Additionally, Yu et al. [195] utilized a PI microsphere coating
with high porosity and exceptional thermal stability to fabricate a PP@PI microsphere com-
posite separator. The resulting composite separator exhibited outstanding characteristics,
including thermal stability (with minimal shrinkage at 150 ◦C), flame retardancy, liquid
retention capacity, and electrolyte wettability (with contact angles of 7◦ and 5◦, respectively).
Furthermore, the ionic conductivity is increased from 0.26 mS cm−1 to 0.35 mS cm−1. More-
over, the half-cell featuring the PP@PI microsphere composite separator boasted a high
capacity of 144.3 mAh g−1 at 5 C, surpassing commercial PP separator-equipped battery
(117.8 mAh g−1). Notably, LIBs equipped with PP@PI microsphere composite separators
demonstrated exceptional cycle stability over 200 cycles at the current rate of 1 C. Fur-
thermore, Chen et al. [196] have successfully developed an innovative inorganic–organic
separator by directly coating the PP separator surface with zeolitic imidazolate frame-
work (ZIF)-67 particles. Notably, two types of ZIF-67 materials, i.e., ZIF-67–H2O and
ZIF-67–CH3OH, were synthesized with different solvents (i.e., H2O and CH3OH), re-
lying on the solvent regulation effect on crystal growth to investigate the influence of
ZIF-67 structures on battery electrochemical properties. Significantly, ZIF-67–CH3OH
displayed improved cell capacity retention (61.5%) compared to the bare PP separator
(0.0%) after 100 cycles at a high temperature of 55 ◦C. These observations suggest that LIBs’
performance is influenced by ZIF-67 samples synthesized with different solvents; hence,
optimizing ZIF-67 structures could potentially enhance battery performance.

Notably, Romano et al. [197] were pioneers in synthesizing novel ultra-high molecu-
lar weight isotactic polypropylene (UHMWiPP) with reduced chain entanglements (i.e.,
disentangled-UHMWiPP), featuring chain disentanglement in the non-crystalline region
of the semi-crystalline polymer. Note that solid-state processing of UHMWiPP opens the
avenue of the preparation of disentangled molecular chains via an eco-friendly route. Note
that the resultant polymers can be processed in solid state to achieve a uniaxially oriented
structure below Tm of the nascent powder (without any solvent) to create stretched tapes
boasting unparalleled mechanical properties (i.e., specific strength of 1.2 N tex−1, specific
modulus of 28 N tex−1). Therefore, this innovative low-entangled UHMWiPP has demon-



Polymers 2023, 15, 3690 20 of 39

strated remarkable mechanical properties and superior thermal resistance to isotactic PP,
making it highly promising for use as a separator material in LIBs.

Notably, there is a significant polarity disparity between the PP-based separator and
the electrolyte, which poses a considerable obstacle in achieving optimal electrolyte wetta-
bility. Meanwhile, inadequate wetting ability and insufficient porosity of the separator can
significantly hinder Li+ ion conductivity in LIBs, thus compromising their functionality
and overall performance [109]. Such complications have emerged as the most signifi-
cant barriers to the development of high-capacity and secure LIBs. To address this issue,
Chen et al. [198] introduced bis(2,2,2-trichloroethyl) azodicarboxylate (BTCEAD) moieties
onto the PP separator to synthesize PP(s)-g-BTCEAD using N-hydroxyphthalimide (NHPI)
as catalyst. The grafted BTCEAD on the surface of PP(s)-g-BTCEAD then acted as an initia-
tor for polymerization of poly(ethylene glycol methacrylate) (PEGMA) through activators
regenerated by electron transfer atom transfer radical polymerization (ARGET–ATRP),
resulting in the formation of PP(s)-g-PPEGMA with a tailored grafting degree (GD). The
ionic conductivities of PP(s)-g-PPEGMA containing 8% and 18% GD were improved to
0.56 mS cm−1 and 0.51 mS cm−1, respectively. Experimental data revealed that the unmod-
ified PP separator exhibited a rapid capacity decline after the first 100 cycles. In contrast,
PP(s)-g-PPEGMA containing 18% GD could maintain stable cycling for up to 180 cycles.
Hence, this work provides an effective approach for the modification of PP separators in
gentle conditions with precise control over the grafting reaction. Moreover, this highly
efficient tactic can be extended to modify other polyolefin separator membranes with
diverse functional polymer brushes, thus achieving superior electrochemical performance
for LIBs.

Additionally, PP/PE multilayer separators have been commonly used in LIBs due to
their superior mechanical strength and electrochemical stability. For example, Li et al. [199]
employed a combination of multilayer coextrusion (MC) and TIPS methods to fabricate
PP/PE multilayer separators (i.e., MC–TIPS PP/PE) (Figure 8). Note that MC–TIPS PP/PE
has a cellular-like submicron pore structure and does not necessitate the cumbersome
conventional stretching processes, which is advantageous for the dimensional and ther-
mal stability of the membrane product. The dimensional shrinkage of MC–TIPS PP/PE
is negligible up to a temperature of 160 ◦C. Furthermore, compared to commercial sep-
arators, MC–TIPS PP/PE had superior porosity (54.6%) and electrolyte wettability (i.e.,
electrolyte uptake: 157%, electrolyte retention: 141%), resulting in higher ionic conductivity
(1.46 mS cm−1) and, ultimately, better battery performance. Note that this method is a
one-step solution that features cost-effectiveness, environmental safety, and improved
production efficiency. These remarkable merits, together with facile fabrication proce-
dures, render MC–TIPS PP/PE a promising candidate for high-performance LIB separators.
Meanwhile, in order to address the challenges associated with commercial PP-based mem-
branes, such as lower ionic conductivity, lower porosity, and higher thermal shrinkage,
Liu et al. [200] utilized a wet-laid process to modify PP with cotton fibers and PAN, result-
ing in a PP/PAN/cotton fiber composite membrane. Considering that cotton fibers contain
a large number of polar –OH groups, while PAN fibers provide abundant hydrophilic
cyano (–CN) groups, the hydrophilicity of the separator membrane is significantly en-
hanced. Meanwhile, PAN with high Tm (up to 320 ◦C) further contributes to enhanced
thermal stability. When the cotton fiber content reached 50 wt.%, the PP/PAN/cotton fiber
composite membrane demonstrated optimal overall performance, which displayed ideal
tensile strength (i.e., 1.644 kN m−1), reasonable porosity (i.e., 63%), desirable wettability
(with an aspiration height of 39 mm), and superior liquid absorption (269%). Furthermore,
the thermal shrinkage of the composite membrane was below 4% following thermal treat-
ment at 160 ◦C. Notably, the ionic conductivity of the fiber membrane decreased from
1.99 mS cm−1 to 0.32 mS cm−1 after 1 h of thermal treatment at 160 ◦C, leaving significant
room for further optimization.
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copyright Elsevier 2018.

4.3. PVDF-Based Separator Membranes

Given the existing deficiencies in commercial polyolefin separators that compromise
LIB applications, considerable efforts have been directed towards addressing this dilemma
to improve LIB performance. Alongside techniques such as organic/inorganic composite
separators and coating separators, advances in novel material technology have paved a
promising avenue for enhancing LIBs. Addressing the shortcomings of existing separators
is essential to the development of improved LIBs that can meet the growing demand for
high-performance and environmentally friendly energy solutions [201]. Notably, PVDF has
received significant attention for its potential applications in the battery industry due to
its exceptional dielectric properties (i.e., ε = 8.4). Furthermore, the PVDF backbone com-
prises strong electron-withdrawing groups (i.e., −CF2−) that facilitate the dissolution of
lithium salts and enhance the carrier concentration [71,123,202]. However, PVDF is a semi-
crystalline polymer that may impede the absorption and swelling of the liquid electrolyte,
thus diminishing the migration of Li+ ions, resulting in poor charge/discharge properties
and inferior rate capability. To surmount these challenges facing PVDF, researchers have
explored various optimization and improvement methods, including blending disparate
polymers, pioneering polymer synthesis, and synthesizing composite polymer electrolytes
with the incorporation of inorganic fillers.
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Notably, as a hydrophilic substance, PMMA boasts excellent compatibility with liquid
electrolytes and can enhance the affinity between the membrane and electrolyte, thereby
improving electrolyte absorption and ionic conductivity of the separator [203]. In this
regard, PMMA can be employed to blend PVDF to enhance its performance. For example,
Liu et al. [204] successfully prepared a gel polymer electrolyte (GPE) by blending PVDF
and PMMA via a nonsolvent-induced phase separation (NIPS) method. A satisfactory ionic
conductivity (2.18 mS cm−1 at 26 ◦C) was achieved with a PVDF/PMMA weight ratio of
6:4. Moreover, the specific capacity of the cell assembled with the PVDF/PMMA membrane
could retain 130.7 mAh g−1 even after undergoing 200 cycles at a rate of 1 C, surpassing
the performance of the Celgard-2320 separator. In addition, inorganic nanoparticles can be
introduced to decrease the crystallinity of PVDF. For example, Fu et al. [205] incorporated
SiO2 nanoparticles with PMMA into PVDF membranes to create a PVDF/PMMA/SiO2
porous membrane. The introduction of PMMA and SiO2 resulted in decreased PVDF
crystallinity and heightened liquid electrolyte absorption, thereby leading to improved
ionic conductivity (4.0 mS cm−1) and reduced interfacial resistance in comparison to the
Celgard separator. Moreover, the homogenous dispersion of SiO2 nanoparticles within the
membrane can enhance the mechanical and puncture strength of separators to withstand
stress and perforation, thus leading to elevated tensile strength (32.69 MPa) and high
elongation at break (137.50%).

Although the crystalline nature has a detrimental impact on the performance of LIBs,
PVDF with a β-crystalline phase featuring a TTTT configuration can enhance ionic con-
ductivity. This makes it exceptionally well suited for high-performance battery separators
due to PVDF’s strong polarity and dielectric properties, which result from the same dipole
direction in PVDF. Therefore, Yu et al. [75] employed a novel method by combining melt
electrospinning and phase-change techniques to introduce polylactic acid (PLA), a highly
polar polymer, into PVDF melt for phase separation and melt electrospinning (Figure 9).
Due to the robust chemical interactions between the carbonyl (−C=O) bonds in PLA and
the −C−F bonds in PVDF, as well as the effects of temperature and electrostatic composite
fields, there is an increase in the orderly arrangement of−C−F bonds along the macromolec-
ular backbone of PVDF, resulting in a heightened β-phase of PVDF fibers. Furthermore,
ceramic nanoparticles of SiO2 and Al2O3 were co-deposited onto the β-PVDF nanofiber
membrane via magnetron sputtering, resulting in the formation of a SiO2/Al2O3/ME-ext
PVDF composite separator. This innovative separator could not only enhance thermal
stability, but also combat issues such as coating layer deposition and excessive thickness
build-up during cycling. Moreover, the LIB equipped with this composite separator ex-
hibited an impressive ion conductivity of 2.242 mS cm−1 and a high thermostability of
150 ◦C. Additionally, it also demonstrated excellent cycle stability and a specific capacity
retention rate with a high discharge capacity (171.633 mAh g−1). This study proposes a
feasible approach for producing an ultrafine β-PVDF nanofibrous separator with an ultra-
thin functional coating, successfully overcoming the technical obstacles pertaining to the
battery separators.

Additionally, polyvinylidene fluoride–hexafluoropropylene (PVDF–HFP) is a co-
polymer of PVDF renowned for its high solvent resistance, thermoxidative degradation,
and exceptional hydrophobic stability [206]. Therefore, PVDF–HFP separators are widely
employed in LIB separators given their outstanding electrochemical stability, enhanced
electrolyte compatibility, and increased porosity. For instance, Pinto et al. [207] fabricated
PVDF–HFP through direct ink writing (DIW) by adjusting the evaporation temperature of
the solvent and the percentage of fill density. They produced porous PVDF–HFP structures
for the separator membranes of LIBs which displayed outstanding cycling performance
and attained a maximum ionic conductivity of 3.8 mS cm−1 with a fill density of 100%
and a solvent evaporation temperature of 25 ◦C. Nevertheless, PVDF–HFP separators still
encounter challenges concerning inadequate mechanical strength and poor thermal stability.
To address this issue, Zhao et al. [208] fabricated PVDF–HFP/TiN composite separators
by incorporating TiN nanoparticles with elevated Mohs hardness (8.5) and Tm (2950 ◦C)
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into PVDF–HFP blends. After comprehensive characterizations and density functional
theory (DFT) calculations, it was determined that the optimal amount of TiN addition was
12 wt.% under the premise of no agglomeration. As a result, TiN greatly enhanced the
interaction between PVDF–HFP and the electrolyte, leading to a remarkable increase in
electrolyte absorption rate (i.e., 192%). Additionally, the as-prepared membrane exhibited a
high discharge specific capacity (i.e., 156 mAh g−1 at 1 C), exceptional cycle stability (up to
98% capacity retention after 1000 cycles), and impressive rate capability (105 mAh g−1 at
10 C), with a cycle life of 748 h. Furthermore, the mechanical strength of PVDF–HFP/TiN
was further enhanced, as the presence of Ti-F bonds contributed to increased structural in-
tegrity. In addition, PVDF–HFP/TiN displayed exceptional thermal stability and
flame retardancy.
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Figure 9. (a) Schematic illustration for the fabrication of the SiO2/Al2O3/ME-ext PVDF separator
membrane. (b) Typical photographs recorded for PP, PVDF, and SiO2/Al2O3/PVDF separators after
heat treatment at various temperatures for 0.5 h. (c) Initial charge/discharge curves of cells assembled
with PP, SiO2/ME–PVDF, Al2O3/ME–PVDF, SiO2/Al2O3/ME–PVDF, and SiO2/Al2O3/ME-ext
PVDF separators. Reprinted with permission from reference [75], copyright American Chemical
Society 2023.

4.4. Other Polymer-Based Separator Membranes

Polyurethane (PU) nanofibers have received significant attention due to their excep-
tional mechanical properties, heat and chemical resistance, and electrochemical
stability [209]. Moreover, PU-based separators prepared by electrospinning technique
exhibit great potential for flexible energy storage applications. Notably, incorporating
inorganic particles into PU could enhance its electrochemical performance while simul-
taneously improving thermal stability. As such, Jiang et al. [210] utilized graphene and
lithium acetate (LiAc) to prepare PU/G/LiAc separators. These separators can maintain
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original dimensions, even after being heated at 170 ◦C for 1 h, and exhibit high ionic
conductivity of 2.47 mS cm−1, whereas significant thermal shrinkage was observed in the
Celgard separator. Note that the PU separator containing 0.3 wt.% graphene demonstrated
the highest stress of 1.67 MPa when subjected to a strain of 200%. Thermal gravimetric
analysis (TGA) indicated that the weight of PU/G/LiAc materials remained unchanged
until the temperature reached 300 ◦C. Furthermore, at current densities of 0.2, 0.5, and
1.0 C, a specific discharge capacity of 164.59, 151.95, and 132.96 mAh g−1, respectively,
can be achieved. Compared to the Celgard separator, the testing cell with PU/G/LiAc
separator exhibited excellent rate capability at a current density ranging from 0.2 to
5.0 C. The findings indicate that the freshly prepared PU/graphene separator modified
with LiAc has great potential as a promising candidate for commercial polyolefin sep-
arators. In addition, in order to enhance the thermal stability of PU-based separators,
Cheng et al. [211] developed a 3D composite PUC separator by electrospinning PU nanofibers
filled with ceramic Al2O3 material. Compared to commercially available PP (i.e., Celgard)
separators, the PUC separator demonstrated superior comprehensive performance encom-
passing smaller average pore size (1.088 µm), higher porosity (63.7%), greater electrolyte
absorption (371%), higher ionic conductivity (6.5 × 10−4 S cm−1), and excellent thermal
stability at 211 ◦C. Moreover, the electrode comprising the separator and LiNi0.8Co0.1Mn0.1O2
(NCM811) cathode material exhibited low interface resistance and exceptional rate capability
(139.5 mAh g−1) at 5 C current rate, while maintaining 82.7% discharge capacity after
200 cycles at 1 C, surpassing Celgard as separator (78.8%). Overall, the battery assembled with
the PUC separator demonstrated satisfactory rate capability and cycle performance, thereby
presenting a novel material for LIB separators.

Notably, the PAN–PMMA membrane represents a novel separator material charac-
terized by enhanced microstructure, porosity, and electrochemical properties. Specifically,
the incorporation of PMMA enables the formation of a highly porous structure that fa-
cilitates the absorption of electrolytes into the membrane [212]. However, it should be
noted that certain drawbacks, such as suboptimal wetting capability and decreased ionic
conductivity, must be addressed to facilitate the deployment of this material in large-
scale LIB applications. Recently, Zhang et al. [213] reported a facile method to produce
PDA–PAN/PMMA membranes by surface modification of PAN/PMMA membranes using
a PDA coating, which could improve the thermostability, mechanical strength, and electro-
chemical performance of microporous membranes. After the PDA coating, the porosity
of the PAN/PMMA membrane underwent a remarkable decrease down to 56.1%, while
demonstrating a significant improvement in electrolyte uptake to 421% from 365%. As
the liquid electrolyte uptake increased in separators, the ionic conductivity increased from
3.20 mS cm−1 to 3.61 mS cm−1. These findings suggested that the introduction of PDA coat-
ings could not hinder porosity of the membrane, but rather enhance its electrolyte uptake
properties, possibly attributed to the adhesive performance of PDA. Note that the capacity
of PDA–PAN/PMMA separator could achieve 164 mAh g−1 with an extremely high reten-
tion of 96.5% when the current rate returns to 0.2 C. Considering that PDA–PAN/PMMA
cells exhibited reversible capacities of 162.3 mAh g−1 after 200 cycles, obviously higher
than PAN/PMMA cells (151.6 mAh g−1) and PP cells (147.6 mAh g−1), the PDA coatings
thus demonstrated enhanced cycling stability and a greater reversible capacity compared
to the battery equipped with the PAN/PMMA membrane separator and commercially
available PP separator.

Significantly, the prominent drawback of commercial separators is inadequate thermal
stability due to their low Tm, e.g., ~135 ◦C for PE and ~165 ◦C for PP [214]. However,
polyimide, i.e., PI, is a novel type of insulating material that has gained widespread
applications in various fields owing to its exceptional thermal and chemical stability
properties. Remarkably, PI fulfills almost all the requirements of the LIB separator and
holds great potential as the ideal separator for safe, high-voltage, high-power LIBs. To
prepare the PI-based separator, Li et al. [215] utilized a NIPS method with two porogens,
namely, dibutyl phthalate (DBP) and glycerin (Gly). Owing to the hydrogen-bonding
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interaction between these porogens, DBP dispersed uniformly in the PAA solution, leading
to a PI separator with higher porosity and more homogeneous pore size distribution when
compared to those prepared using a single porogen. The thickness of the PI separator
was merely ~10.5 µm, resulting in lower interfacial resistance and higher specific capacity.
The battery coin cells assembled with the PI separator displayed robust durability and
could still function after being heated at 140 ◦C for 1 h, whereas those with the commercial
PE separator could no longer charge due to the shrinkage of the PE under the same
circumstances. Additionally, the separator demonstrated sufficient tensile strength of
23.7 MPa for battery manufacture and usage, and exhibited superior thermal dimensional
stability, even at 180 ◦C.

Moreover, Zhang et al. [216] utilized a chemical modification strategy to enhance
the effectiveness of natural polymer nanofiber-based separators by grafting cyanoethyl
groups onto the surface of chitin nanofibers, resulting in the formation of cyanoethyl chitin
nanofibers (CCN). The obtained CCN could form a dense membrane with exceptional
tensile strength, as well as efficient transport of Li+ ions, due to the specific interaction
between cyano groups and ions. Meanwhile, the CCN separator boasted tensile strength
of up to 120 MPa, outperforming previously reported porous chitin nanofiber (PCN)
separators (i.e., 80 MPa). Furthermore, the ionic conductivity and Li+ ion transference
number of the CCN separators were significantly increased, reaching 0.45 mS cm−1 and
0.62, respectively, which were 13-fold and 2.5-fold higher than those in unmodified chitin
nanofiber separators (i.e., 0.035 mS cm−1 and 0.25, respectively). Note that preliminary
experiments indicated that the CCN–3M separator could maintain stable cell operation even
at a high temperature of 120 ◦C. Thus, this novel chemical modification strategy presents
tremendous potential to enhance other naturally occurring polymer nanofiber separators,
encompassing bacterial cellulose nanofibers and lignocellulosic nanofibers. As such, it
offers prospects for curbing fossil fuel consumption and promoting global sustainability,
reinforcing its viability as a more sustainable solution.

Additionally, Liu et al. [217] utilized hydroxyapatite (HAP) and cellulose nanofibers,
i.e., CNF, as raw materials to fabricate a HAP/CNF hybrid separator membrane (Figure 10).
Compared to PP, the electrolyte wettability is significantly enhanced with HAP/CNF sepa-
rators, resulting in a twofold increment in ionic conductivity. Meanwhile, the raw materials
used were eco-friendly and the manufacturing processes were void of any organic sol-
vents. Remarkably, the separator membrane showcased exceptional thermal stability (up to
250 ◦C) and flame retardancy. In comparison to PP separators, the HAP/CNF separator ex-
hibited a markedly decreased contact angle with electrolytes (i.e., 17.2◦), making it superior
to commercial PP membranes (i.e., 45.5◦). Notably, the hybrid HAP/CNF separator demon-
strated a significantly higher electrolyte absorption rate of 162% compared to commercial
PP-based membrane (78%), and displayed significantly improved surface smoothness
with a value of 68.0 nm. Additionally, cells with the HAP/CNF membrane exhibited
significantly higher capacity retention at 2 C (67.1%) when compared to that with the PP
membrane (57.8%), which can be attributed to enhanced electrolyte wettability and higher
Li+ transference numbers of HAP/CNF. Note that the capacity of the HAP/CNF separator
could be maintained even after 100 cycles. Overall, the findings demonstrated that LIBs
equipped with HAP/CNF hybrid separators outperformed those utilizing commercial PP
separators, suggesting that HAP/CNF hybrid separators are feasible and promising in
next-generation high-safety and high-performance LIBs.
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Figure 10. (a) Schematic illustration for the fabrication of hybrid porous hydroxyapatite/cellulose
nanofibers (HAP/CNF) membranes and their application in LIB separators. (b) Typical photographs
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tom: HAP/CNF). (c) Contact angles recorded for electrolytes deposited on HAP/CNF and PP mem-
branes, respectively. Reprinted with permission from reference [217], copyright American Chemical
Society 2023.
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Table 1. Summary of polymer-based separator membranes discussed in this review.

Substrate
Material Additives Thickness

(µm)
Porosity

(%)
Thermal Shrinkage

(%)

Electrolyte
Uptake

(%)

Ionic
Conductivity (mS cm−1)

Battery
Performance Ref.

PE Al2O3 26 55.20 0% at 130 ◦C for 0.5 h 144 0.75 68.4% (89.3 mAh g−1) after 200 cycles
at 1 C

[182]

PE γ-AlOOH 26 55.63 0% at 170 ◦C for 0.5 h 187 1.00 75.1% (95.1 mAh g−1) after 200 cycles
at 1 C

[182]

PE BPO 85 0.89 98.1% after 70 cycles [183]

PE MA 16 0.306 >135 cycles at 1.5 mA cm−2 (1 C) [184]

PE SiO2–PZS 20.4 ± 1.2 155.2 ± 14.3 1.04 115 mAh g−1 at 8 C;
81.69% after 100 cycles at 0.5 C

[185]

PE HDPE wax/γ-
AlOOH 10

44.0
(85 ◦C);

10.3
(130 ◦C)

<5% at 130 ◦C for 1 h 136.8 0.32
190.1 mAh g−1 (85 ◦C) at 0.1 C;
181.8 mAh g−1 (85 ◦C) at 0.1 C;

81% over 200 cycles
[186]

PE PAI 14.5–15.0 35–55 1.7% (MD) and 1.1%
(TD) at 130 ◦C for 0.5 h 98.8–99.5% after 10 cycles at 0 ◦C [188]

PE CA–PEO–
LPSQ 26 ± 1.5 9% at 120 ◦C for 1 h 185 5.79 82% after 300 cycles at 0.5 C [189]

UHMWPE SiO2 500 1.7% (MD) and 1%
(TD) at 120 ◦C for 1 h 472 ± 11.5 3.38 ± 0.62 165 mAh g−1 at 0.1 C; 123 mAh g−1

at 5 C; 99.93% after 300 cycles at 0.5 C
[99]

UHMWPE PMP 65.4 ± 1.1 0.7% (MD) and 1.6%
(TD) at 120 ◦C for 1 h 259.7% 1.17 172.8 mAh g−1 at 0.1 C; 99.89% after

100 cycles at 1 C
[190]

UHMWPE 2 78.3 [191]

UHMWPE liquid paraffin 12/5 94/30 [154]

UHMWPE nano-Al2O3 15.3 44.2
14.3% at 120 ◦C and

34.5% at
130 ◦C for 0.5 h

129.8 0.94 139.4 mAh g−1 at 0.2 C; 89.4% after
200 cycles at 1 C

[192]

PP PAAB–Li 24 61.8 195.8 0.96 119.4 mAh g−1 at 1 C; 78.0% after 250
cycles at 1 C

[193]
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Table 1. Cont.

Substrate
Material Additives Thickness

(µm)
Porosity

(%)
Thermal Shrinkage

(%)

Electrolyte
Uptake

(%)

Ionic
Conductivity (mS cm−1)

Battery
Performance Ref.

PP SiO2/β-iPP 18 42 113.7 0.82 67.2 mAh g−1 at 7 C; 87% after
200 cycles

[155]

PP SiO2–TEOS 25.6 4.6% at
150 ◦C for 0.5 h 0.16 140 mAh g−1 at 0.2 C; 96.14% after

65 cycles at 0.2 C
[194]

PP PI 24 54.78 0% at 150 ◦C for 0.5 h 207.62 0.35 144.3 mAh g−1 at 5 C;
80.1% after 200 cycles at 1 C

[195]

PP ZIF-67–H2O 30 57.17 3.33% at 120 ◦C
for 0.5 h 147 0.62

80.0% after 100 cycles at 1 C under
25 ◦C; 37.8% after 100 cycles at 1 C

under 55 ◦C
[196]

PP ZIF-67–
CH3OH 30 52.53 3.33% at 120 ◦C

for 0.5 h 142 0.78
86.9% after 100 cycles at 1 C under
25 ◦C; 61.5% after 100 cycles at 1 C

under 55 ◦C
[196]

PP BTCEAD

38.2 ± 1.30
(8% GD);

32.7 ± 2.24
(18% GD);
24.3 ± 1.49
(31% GD)

144 ± 5.9
(8% GD);
212 ± 4.5
(18% GD);
292 ± 9.4
(31% GD)

0.56 (8% GD);
0.51 (18% GD)
0.37 (31% GD)

84.59% after 175 cycles at 0.5 C
(8% GD); 97.97% after 175 cycles at

0.5 C (18% GD)
[198]

PP/PE 25 54.6 0% at 160 ◦C for 0.5 h 157 1.46 98% (coulombic efficiency) after
30 cycles at 0.2 C [199]

PP/PAN/
cotton 63 <4% at 160 ◦C for 1 h 269 1.99 166.7 mAh g−1 at 1 C; 93.8% after

100 cycles at 1 C
[200]

PVDF PMMA 70–80 2.18 133.3 mAh g−1 at 4 C;
130.7 mAh g−1 after 200 cycles at 1 C

[204]

PVDF SiO2/PMMA 30 77 406 4.0 158 mAh g−1 after 50 cycles at 0.2 C [205]

PVDF PLA/SiO2/Al2O3 25 468.46 2.24 86.42% after 100 cycles at 0.2 C [75]

PVDF HFP 100–180 >300 3.8 38 mAh g−1 at 2 C [207]
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Table 1. Cont.

Substrate
Material Additives Thickness

(µm)
Porosity

(%)
Thermal Shrinkage

(%)

Electrolyte
Uptake

(%)

Ionic
Conductivity (mS cm−1)

Battery
Performance Ref.

PVDF–
HFP TiN 25 30% at 175 ◦C for 1 h 192 1.02 156 mAh g−1 at 1 C;

98% after 1000 cycles
[208]

PU graphene/LiAc 61 0% at 170 ◦C for 1 h 224.1 2.47

164.59 mAh g−1 at 0.2 C;
151.95 mAh g−1 at 0.5 C;

132.96 mAh g−1 at 1 C; 95%
after 50 cycles at 0.5 C

[210]

PU Al2O3 29.1 63.7 0% at 211 ◦C 371 0.65 139.5 mAh g−1 at 5 C;
82.7% after 200 cycles at 1 C

[211]

PAN/
PMMA PDA 65 56.1 421 3.61

172 mAh g−1 at 0.2 C;
162.3 mAh g−1 after 200 cycles

at 0.2 C
[213]

PI DBP/Gly 10.5 80 (LiTFSI);
76 (LiPF6) 0% at 180 ◦C for 0.5 h 200 (LiTFSI);

220 (LiPF6)
0.54 (LiTFSI);
0.55 (LiPF6)

75.2 mAh g−1 at 2 C;
87.2% after 100 cycles at 0.5 C

[215]

CCN 12

0.4 (CCN-0M);
1.6 (CCN-1M);
5.4 (CCN-3M);
4.6 (CCN-5M)

1.16 (CCN-0M); 0.59
(CCN-1M); 0.57
(CCN-3M); 0.58

(CCN-5M) at 170 ◦C
for 0.5 h

0.45 100% (140 mAh g−1) after 49 cycles
at 120 ◦C (CCN-3M)

[216]

HAP/CNF 28 76 0% at 250 ◦C for 0.5 h 162 0.81 [217]
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5. Future Perspectives

The utilization of polyolefin porous membranes in commercial LIB materials has
become widespread, and this technology has reached a level of maturity owing to its
remarkable mechanical properties, chemical stability, and contribution to the circular econ-
omy. Recently, research has also been directed towards exploring other alternative materials,
such as cellulose composite membranes and PVDF employed as bulk polymer in the phase
inversion method, for the production of LIB membranes. Additionally, researchers should
shift their focus towards elevating the tensile strength and puncture resistance of these
membranes, aiming to avert internal short circuits prompted by external mechanical forces
or the detrimental impact of lithium dendrites on membrane integrity. Specifically, in
commercialized LIBs consisting of PE and PP microporous membranes, the separator pore
size is typically below 1 µm, with porosity generally less than 50% to increase safety during
usage. Herein, the development of a separator membrane with enhanced mechanical
robustness and significantly improved porosity shall inevitably bestow a substantial boost
on the overall performance of LIBs.

Simultaneously, the augmentation of the thermal endurance of the membrane (sur-
passing 165 ◦C) assumes paramount importance in averting the peril of thermal runaway
within LIBs, particularly in the event of an internal short circuit. Hence, the reduction
of the membrane shutdown temperature and the bolstering of its thermal stability are
imperative for fortifying the safety of LIBs. Currently, coated (or composite) membranes
are materializing as the vanguard of membrane application advancements. Specifically,
the coatings adorning the membrane surface hold immense potential, as they contribute
to an array of advantageous attributes, which encompass heightened membrane thermal
stability, improved membrane conductivity when in contact with electrolytes, diminished
internal resistance within the battery, and augmented discharge power. Moreover, these
coatings can effectively impede or mitigate the deleterious process of separator oxidation,
facilitate the seamless coordination with high-voltage anode operation, and protract the
overall cycle life of the battery. Consequently, innovative coating materials and techniques
ought to be explored beyond the conventional utilization of boehmite, PVDF, alumina, etc.
Additionally, the development of a multifunctional composite separator capable of actively
suppressing the growth of lithium dendrites presents itself as a viable avenue towards
enhancing the safety and charge–discharge efficiency of LIBs.

Overall, persistent challenges pertaining to the unsatisfactory thermal stability of
lithium battery separator membranes, insufficient shutdown functionality, and suboptimal
ion conductivity present pressing areas of inquiry that necessitate meticulous analysis and
dedicated investigation. Subsequent research endeavors should focus on the development
of LIB separator membranes that boast a thin profile, exhibit heightened thermal sensitivity
(manifesting in the ability to shut down at lower temperatures), elevated ion conductivity,
and enhanced thermal dimensional stability. These advancements will effectively address
existing flaws and dilemmas, thereby elevating the efficacy, safety, cycling capability, cost-
effectiveness, and sustainability of LIBs. Notably, addressing environmental concerns
entails not exclusively prioritizing application efficiency, but also considering the sustain-
ability and ecological footprint of materials. The implementation of a robust and durable
membrane not only demonstrates superior efficacy across numerous applications, but also
lays the groundwork for a circular economy that curtails waste generation, minimizes
process costs, and mitigates detrimental environmental repercussions.

6. Conclusions

LIBs have emerged as a prominent solution for energy storage, catering to the in-
creasing demand for environmentally conscious products. As the global impetus towards
sustainable energy gains momentum, the profound societal, economic, and environmental
significance of LIBs is being increasingly acknowledged. The realm of LIB separator mem-
branes has witnessed significant research endeavors, yielding a multitude of innovative
systems aimed at enhancing separator performance, bolstering security measures, and
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addressing inherent limitations. The objective of this review is to furnish researchers with a
comprehensive body of knowledge pertaining to battery separator membranes, encompass-
ing performance prerequisites, functional parameters, production protocols, applications,
and overall efficacy. Furthermore, it delves into the latest advancements in the realm of
porous membranes, derived from polymeric materials such as PE, PP, PVDF, and so on, in
terms of their preparation, design, modification, and optimization. Additionally, this article
endeavors to shed light on the future trajectory of polymer-based composite membranes
for LIB applications, while also contemplating prospective research avenues. The robust
and durable membrane forged through these efforts has proven superior in efficacy across
various applications, paving the way towards a circular economy that engenders waste
reduction, diminishes process costs, and curtails environmental footprints.

In conclusion, the escalating demand for eco-friendly products has positioned LIBs at
the forefront of energy storage solutions. The pivotal role played by separator membranes
has necessitated substantial research efforts geared towards enhancing their performance
and resolving pertinent challenges. Overall, the concrete content presented in this review
serves as a valuable resource, fostering a profound comprehension of separator membranes
and guiding the pursuit of optimized performance, ultimately contributing to the realization
of sustainable energy solutions.
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