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Abstract: Three-dimensional printed polymers offer unprecedented advantages for prosthetic appli-
cations, namely in terms of affordability and customisation. This work thus investigates the possibility
of designing an additively manufactured prosthetic foot using continuous fibre-reinforced polymers
as an alternative to composite laminate ones. A numerical approach was thus proposed and validated
as a possible design tool for additively manufactured composite feet. This approach was based on
explicit separate simulations of the infill, aiming to capture its homogenised engineering constants.
The approach was validated on simple sandwich specimens with a different infill geometry: stiffness
predictions were within the experimental standard deviation for 3D simulations. Such an approach
was thus applied to redesign a laminated component of a foot prosthesis inspired by a commercial
one with new additive technology. The new component was about 83% thicker than the reference
one, with 1.6 mm of glass fibre skins out of about 22 mm of the total thickness. Its stiffness was within
5% of the reference laminated one. Overall, this work showed how additive manufacturing could be
used as a low-cost alternative to manufacturing affordable prosthetic feet.

Keywords: 3D printing; composite materials; fibre-reinforced polymers; prosthesis; application;
numerical modelling

1. Introduction

Prosthetic feet have been widely studied and used as replacements for lower limbs [1].
Historically, the most common type of prosthetic foot was the solid ankle cushioned heel
(SACH) type. These early types of prostheses feature a rigid keel, which provides stability
in the mid-stance phase of the gait cycle, but limited mobility and comfort. The more recent
energy-storing-and-returning (ESAR) prostheses overcame these limitations by introducing
a flexible keel; this allows the prostheses to store or release elastic energy during the
gait cycle when needed [1–3]. Many of these prostheses are currently made of carbon
fibre-reinforced polymers (CFRPs) via lamination. These materials and manufacturing
techniques allow for lightweight, high-strength, and flexible structures [4,5]. However, the
lamination process imposes severe limitations on the customisation of the prosthesis, and
only standard sizes are available. Moreover, carbon fibre laminates are usually expensive
materials. As a result, composite prosthetic feet are expensive devices. Considering that
higher lower limb amputations are more frequent in lower-income areas, lowering the costs
of these devices is of extreme importance [6,7].

The additive manufacturing (AM) of prostheses is one of the most promising man-
ufacturing techniques to overcome these issues [8,9]. First of all, AM is considered a
relatively cost-effective solution, thanks to reduced material waste and a mould-less work-
ing principle [10–12]. Moreover, it allows for an unprecedented freedom of design to be
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achieved for complex geometries with a relatively short lead time [10–13]. Combined with
composite materials, AM can be effectively used for light structures with fair mechanical
properties [10–12].

Several composite materials formulations can be used together with additive manufac-
turing [10–12]. One of the main distinctions that can be made between these formulations
is based on the continuous or discontinuous nature of the reinforcement. Continuous
fibres offer the highest contribution to the mechanical performance of 3D printed parts but
impose additional design limitations [14]. The most commonly adopted fibres are carbon,
Kevlar, and glass [10,11], in this order of mechanical properties and price (from highest to
lowest). Short-fibre 3D-printed composites offer mechanical properties that are significantly
lower but still higher than neat polymers [10–12,15]. Their cost is also generally in between
the two.

The applications of AM for prosthetic feet are present in the literature [16]. Yap and
Renda [17] designed and manufactured a low-cost 3D-printed SACH foot. The foot was
printed on a hobby-level printer with polylactic acid (PLA). Failures during testing led to
the implementation of metal rods. After this, the foot was able to sustain the weight of a
person of 75 kg. Rochlitz et al. [18,19] used ABS to design and 3D-print an ESAR prosthetic
foot. The design involved several FE analyses to ensure the foot could hold a maximum
load of 1000 N. The authors showed the correct energy storage and release functionality for
a 60 kg patient.

The possibility of printing complex geometries also allowed the exploitation of topol-
ogy optimisation for weight reduction. Tao et al. [20] used a desktop 3D printer with PLA
to design and manufacture a prosthetic foot. The authors designed the foot by topology
optimisation techniques combined with finite element (FE) analysis. A similar approach
was adopted by Vijayan et al. [21]. Both works showed excellent weight reduction capabili-
ties. The high design flexibility allowed by AM also inspired some authors to tentatively
reproduce the flexible joints of the foot. Auxetic sub-structures were considered for both
the tow joint [22] and the heel [23]. Other applications include the integration of optical
fibres as strain-sensing devices [24].

Overall, while the application of AM into prosthetic feet has shown promising results,
significant work is still required for the product to reach the market. In particular, the works
reported above adopt unreinforced polymers or short fibre-reinforced polymers. These
materials cannot match the mechanical properties of laminated carbon fibre composites [10];
indeed, the aforementioned works deal mainly with children or patients with low mobility.
As mentioned, continuous fibre-reinforced polymers have been recently introduced in
the additive manufacturing sector. These materials allow for a significant improvement
in both stiffness and strength [10]. Therefore, the aim of this work is to design an addi-
tively manufactured prosthetic foot component that matches the stiffness of a laminated
CFRP one. To achieve this goal, AM technology was exploited by using continuous fibre-
reinforced polymers in combination with 3D-printed composite sandwich structures [25].
To allow for the efficient and correct modelling of the infill core to be achieved, a numerical
homogenisation technique was tentatively adopted and validated against experimental
data. Then, a reference prosthesis component was selected and redesigned to exploit the
AM capabilities. The objective was to match the reference component’s stiffness since
this is the determining parameter affecting the comfort of use [26]. This work thus shows
that 3D-printed prosthetic feet can possibly be a future low-cost alternative to laminated
CFRP ones.

2. Materials and Methods
2.1. Specimens Manufacturing

The 3D printer adopted in this work was the Markforged Onyx Pro [27]. All specimens
were printed using Onyx: a micro-carbon fibre-reinforced polyamide developed and
supplied by Markforged [27]. The material parameters reported in the supplied datasheet
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are reported in Table 1. The data regarding continuous glass fibres are also reported and
will be used for the numerical analysis.

Table 1. Properties of the Onyx and of continuous glass fibre supplied by Markforged [27].

Property Onyx Glass Fibre

Tensile Modulus (GPa) 2.4 21
Tensile stress at yield (MPa) 40 -
Tensile stress at break (MPa) 37 590

Tensile strain at break (%) 25 1.1
Density (g/cm3) 1.2 1.5

Three-point bending (3PB) specimens were manufactured, as they more closely repro-
duce the foot prosthesis loading conditions (see Section 2.5). The composite foot prosthesis
requires to be printed on a side to allow the placement of a contour of continuous glass
fibres. This strategy was also adopted for the 3PB specimens to allow for a correct represen-
tation of the prosthesis component loading conditions. Figure 1a shows a 3PB specimen on
the printing bed, as shown by the Markforged proprietary slicer software Eiger; the dimen-
sions and coordinate system used in this work are also reported. The XY section is made of
an infill and four concentric Onyx rings, as shown in Figure 1b. Two layers with a ±45◦

raster orientation were printed on the top and bottom of the specimens, perpendicularly to
the Z axis with no infill to enclose the whole volume; these are shown in Figure 1c. The
filament height and width were 0.2 mm and 0.4 mm, respectively.
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Figure 1. (a) 3PB specimen on a printing bed, (b) Central layers (with a triangular infill) and
(c) Top/bottom layers.

The Markforged Onyx Pro allows for the printing of different infill shapes and densities.
To allow the evaluation of different infill geometries and to have different validation cases
for the considered approach, two infills were considered:

Triangular infill with 45% density. This will be referred to as “T45” in this work.
Rectangular infill with 20% density. This will be referred to as “R20” in this work.
Overall, the two specimen groups were manufactured and tested, differing only for

the type of infill.

2.2. Three Point Bending Tests

Three-point bending tests were performed according to ASTM D7264-07 [28]. Five
specimens per group were tested. The machine used was an MTS RF/100 equipped with a
100 kN load cell. A loading rate of 2 mm/min was chosen.

All specimens were tested using three different span lengths, namely 160 mm, 120 mm,
and 80 mm. This was conducted to further expand the range of validation cases available
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for the considered modelling approach. The specimen’s stiffness, calculated as the slope of
the load–displacement curve, was calculated in the skins’ strain range between 0.1% and
0.3%, as suggested by the standard [28]. To this end, the maximum mid-span deflection
δmax was calculated via Equation (1) [28]:

δmax =
εmax · L2

6h
(1)

where εmax is the maximum strain, set to 0.3%, L is the span length, and h is the thickness of
the specimens. The resulting theoretical maximum vertical displacements and the applied
ones are reported in Table 2. Table 2 also reports the calculated maximum strains at the
actual applied vertical displacements. As shown, the maximum strain in the outer layers
is significantly smaller than the 1.7% yield strain reported in the supplier datasheets [27].
Therefore, no damage or plasticity is expected to be introduced in the specimens during
testing, which justifies the use of the same specimens for different span lengths.

Table 2. Theoretical (calculated via Equation (1)) and applied maximum vertical displacement during
the three point bending tests.

Parameter L = 160 mm L = 120 mm L = 80 mm

Theoretical max. vertical displacement (Equation (1)) 0.94 mm 0.52 mm 0.24 mm
Applied max. vertical displacement 1 mm 0.65 mm 0.3 mm

Maximum strain at applied vertical displacement 0.32% 0.375% 0.375%

2.3. Core Homogenisation through Explicit Modelling

The explicit simulation of the infill geometry is an inefficient approach to FE sim-
ulations [25]. This is due to both an increased computational time for each simulation
performed and an increased modelling effort in the pre-processing phase. For this reason, a
numerical investigation was performed to obtain the equivalent homogenised, in-plane
elastic constants of the infill. This numerical investigation was based on several explicit
simulations of the infill geometry alone.

To correctly model the infill geometries, the dimensions of the unit cells comprising
the considered infills were extracted from the slicing software Eiger. The results of this
operation are shown Figure 2a,b and showcase the dimensions of the unit cells composing
the T45 and R20 infill, respectively.
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Based on the extracted geometric information, 3D shell models were created on
Abaqus [29] to represent the infills. The considered models included many unit cells in
order to reduce any boundary effect. Figure 3 showcases both the T45 and R20 geometries
modelled in Abaqus. The in-plane dimensions are provided by the dimensions of the
unit cells; an arrangement of 12 × 14 unit cells and of 10 × 10 unit cells was modelled
for the T45 and the R20, respectively. The out-of-plane dimension was set to 20 mm.
The shell thickness was set to 0.4 mm: the same as the width of the filaments. The local
orientation was assigned, with direction one along the edge of the infills. The adopted
material parameters are reported in Table 3.
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Table 3. Onyx engineering constants used in the simulations.

Parameter Value

E1 (GPa) 2.4
E2 (GPa) 1 1.7
E3 (GPa) 1 1.7

ν12
2 0.29

ν13
2 0.29

ν23 0.35
G12 (MPa) 2 190
G13 (MPa) 2 190
G23 (MPa) 3 658

1 Transverse moduli were considered equal to that of unreinforced Nylon, as reported in [27]. 2 From [25].
3 Considering G23 = E2/(2 + 2·ν23).

Three simulations were performed for the T45 geometry to search for E1, E2, and G12.
For the R20 geometry, two simulations were performed to compute E1 and G12 because
the geometry was symmetric by rotation: E1 and E2 simulations would thus be equivalent.
Figure 3 highlights the group of nodes at the boundaries of the geometries. These are used
to apply the boundary conditions in the different simulations for the evaluation of E1, E2,
and G12. The boundary conditions applied to each case are reported in Table 4. Moreover,
all nodes lying on the plane Y = 0 (see Figure 3) were prevented from moving along the
Y axis. Quadratic shell elements S8R, with a global mesh size of 1 mm, were used for all
simulations because shell elements proved to be effective for modelling this type of core
geometry [25].
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Table 4. Applied boundary conditions to the different simulations (ux, uy, and uz refer to displace-
ments along X-axis, Y-axis, and Z-axis, respectively).

T45 R20

E1
Nodes X+: ux = 1 mm Nodes X+: ux =1 mm
Nodes X−: ux = 0 mm Nodes X−: ux =0 mm
Nodes Z−: uz = 0 mm Nodes Z−: uz = 0 mm

E2
Nodes Z+: uz = 1 mm

-Nodes Z−: uz = 0 mm
Nodes X−: ux = 0 mm

G12

Nodes X+: ux = 0 mm Nodes X+: ux = 0 mm
Nodes X+: uz = 1 mm Nodes X+: uz = 1 mm
Nodes X−: ux = 0 mm Nodes X−: ux = 0 mm
Nodes X−: uy = 0 mm Nodes X−: uy = 0 mm

2.4. Three-Point Bending Simulations

Two different approaches were adopted for the simulations of the 3PB specimens.
First of all, 2D simulations were performed with a homogenised core. Figure 4 shows the
modelled 2D specimens with a span length of 160 mm. As shown, a contour layer of Onyx
simulates the outer skins of the specimen; a local orientation is assigned to the layer and is
defined via the tangential and normal directions. The elastic properties of the core are the
ones obtained through the core homogenisation step previously described (see Section 3).
The local orientation is aligned with the global reference system (see Figure 4). Moreover,
two reference points were used to apply the boundary conditions, simulating the support
rollers; a third reference point was used to apply an imposed displacement. The applied
displacements are the same as those applied during the tests, as reported in Table 2. Note
that the different span lengths are simulated by moving the two lower reference points
closer together. Finally, the adopted material constants are reported in Table 3.
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local orientation.

Three-dimensional simulations of the 3PB specimens, with an explicit core representa-
tion, were also performed. This was performed to compare the homogenised core approach
with an additional modelling strategy which is closer to reality but less applicable to full
structures. Only a quarter of the 3PB specimens were modelled to reduce the computational
time required. The exemplificative case of the T45 core, with a 160 mm span, is shown
in Figure 5. Boundary conditions are also reported. The material properties are the ones
reported in Table 3.
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2.5. Reference Prosthesis Simulation

The objective of this work was to design an additively manufactured glass-reinforced
prosthetic component with a stiffness comparable to that of a commercial one. Glass fibres
were preferred to carbon fibres to keep the cost of the new prosthesis as low as possible.
Prosthetic feet, currently, are often manufactured via the lamination of continuous fibre-
reinforced composites [31]. To set a benchmark stiffness, a component of a commercially
available laminated carbon fibre prosthesis was first simulated. The reference prosthesis
was inspired by the Össur VARI-FLEXTM, represented in Figure 7a [32]. As shown, the
prosthesis is mainly composed of two laminated components connected by bolts. Since
no information was available on the bolted connection, it was decided to model only the
spring. The extracted simulated component is shown in Figure 7b.
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A 2D FE simulation was performed on the reference component. It was modelled
as a quasi-isotropic carbon fibre laminate whose properties are reported in Table 5. The
table reports the elastic properties in the local coordinate system; the local orientation of
the material along the prosthesis is shown in Figure 8. Moreover, Figure 8 also shows the
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3. Results and Discussions
3.1. Homogenisation Results

The engineering constants obtained from the explicit simulations are reported in
Table 6. As shown, the E1 simulations led to the estimation of Poisson’s ratios of the cores
as well. Moreover, a slight anisotropy was observed for the T45 core. While the triangular
honeycombs are known to have isotropic in-plane properties [30], the difference between
the computed E1 and E2 is smaller than 5%, and thus, it was considered acceptable. The
analytical results are also reported in Table 7. As shown, the results demonstrate quite a
good agreement between the two approaches. The 30% discrepancy obtained for the R20
core is more likely due to the very low value of its modulus, which makes a small difference
of 9 MPa significant.

Table 6. Results of the explicit homogenisation procedure.

T45 R20

FEM Analytical FEM Analytical

E1 (MPa) 400 410 23 32
E2 (MPa) 419 410 - 32

ν12 0.318 - 0.476 -
G12 (MPa) 109 - 45 -

Table 7. Experimentally measured and computed stiffnesses (all in N/mm). “±” denotes
standard deviation.

T45 R20

Span Exp. 3D FE 2D FE Exp. 3D FE 2D FE

80 mm 864 ± 91 927 752 734 ± 102 774 437
120 mm 304 ± 33 332 284 263 ± 41 281 202
160 mm 136 ± 16 150 131 116 ± 19 126 103

Figure 9a,b showcases the comparison between the experimentally measured and the
computationally calculated stiffnesses for the T45 and the R20 specimens, respectively. The
numerical values are also reported in Table 7. As shown, the 2D simulations consistently
show some degree of underpredictions, especially for the low span length. This was
expected because the 2D analyses did not simulate the presence of the lateral walls, which
have a non-negligible impact on the specimens’ stiffness. This is also supported by the fact
that the full 3D simulations show a very good agreement with the experimental results.
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Considering the results reported above and the fact that the considered prosthetic
component presents a relatively long span (see Section 2.5), it was decided that the obtained
engineering constants for the design of the component should be used.

3.2. Design and Optimisation of the 3D Printed Components

Laminated carbon fibre composites generally display better mechanical properties
than 3D-printed glass fibre ones. Therefore, the newly designed 3D-printed component
must be significantly thicker than the reference one. A thicker 3D-printed composite
would also behave as a composite sandwich component, which is generally a very efficient
lightweight structure [25].

A preliminary analytical optimisation was thus performed to identify the best geomet-
rical parameters for the new component. The complex shape of the laminated component
prevents an analytical optimisation over its whole shape. For this reason, the analytical
optimisation was performed on an equivalent cantilever beam which was representative
of a portion of the component highlighted in Figure 9. The highlighted portion indeed
behaves as a cantilever beam, whereas the stiffer vertical portion behaves similar to a
constraint, and the contact with the floor introduces the load.

For a cantilever sandwich beam, the skins and the core determine the bending and
shear rigidities, respectively. Therefore, the bending and shear rigidities Kb and Ks can be
obtained via Equations (4) and (5), respectively:

Kb =
E f · b · t · c2

2
(4)

Ks =
Gc · b · (c + t)2

c
(5)

where Ef and Gc are the elastic moduli of the fibres and the shear modulus of the core,
respectively; b, t, and c are the width of the panel, the thickness of the skins, and the
thickness of the core, respectively. Moreover, the beam flexibility, namely the ratio of the
tip displacement δ at a given load P over that load, and weight W are calculated as:

δ

P
=

l3

3Kb
+

l
Ks

(6)

W = 2ρsbltg + ρcblcg (7)

where l is the length of the beam, g is the acceleration of gravity, and ρs and ρc are the
densities of the skins and core, respectively. Note that the cores’ densities were calculated
using the volume occupied by the Onyx in a single cell times the Onyx density over the
total volume of the cell. Moreover, the shear moduli of the cores were obtained via the
homogenisation procedure described in Section 3. Regarding the skins, the properties were
assumed to be equal to those of the glass fibres (see Table 1).

The design variables of the optimisation procedure are t/l and c/l, namely the thick-
nesses of the skins and the core when normalised with the beam of the length. The
optimisation constraint imposes that the new design has the same stiffness as the reference
prosthesis, which is obtained via the FE simulations described in Section 2.5. The objective
of the optimisation was to minimise the weight. The parameters adopted are reported in
Table 8. Two optimisations were performed, considering a T45 and an R20 core. Therefore,
two different designs of the same component will be obtained and further evaluated.
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Table 8. Parameters used in the optimisation procedure.

Parameter Description Value

l Beam length 175 mm
b Beam width 50 mm

P/δ Reference prosthesis
stiffness 131.6 N/mm

Es
Skins’ elastic

modulus 21 GPa

Gc Cores’ shear modulus 109 MPa (T45) 45 MPa (R20)
ρs Density of the skins 1500 kg/m3

ρc Density of the cores 477 kg/m3 (T45) 418 kg/m3 (R20)

The results of the optimisations are reported in Figure 10a,b for the T45 and R20 cores,
respectively. In the graphs, the iso–weight curves appear linear, while curves relative
to the stiffness requirements are hyperboles. In both figures, the points labelled A show
the optimal design variables to minimise the weight. The relative results are reported in
Table 9. As shown, the skin’s thickness is not a multiple of 0.8 mm, which is the width of the
glass fibre filaments specified by the supplier [27]. Both points A are, therefore, unfeasible
solutions. A more realistic design had to be selected on the same stiffness curve. Points
B were thus considered, the dimensions of which are also reported in Table 9; the weight
increase with respect to the optimal points was found to be less than 2% in both cases.
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Table 9. Numerical results of the optimisation procedures.

Optimal Point A Realistic Point B

Skins Thickness t Core Thickness c Skins Thickness t Core Thickness c

T45 1.4 mm 19.5 mm 1.6 mm 18.3 mm
R20 1.3 mm 20.6 mm 1.6 mm 19.0 mm

The resulting designs of the 3D-printed prosthetic component, considering a T45 or an
R20 core, are reported in Figure 11a,b, respectively. Note that these were obtained by leaving
the shape of the lower surface unaltered, using the updated core and skin thicknesses.
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Two-dimensional FE simulations were then performed on the newly designed prosthe-
ses to compare them with the reference laminated one. The boundary conditions, mesh size,
and types are the same as those used for the reference prosthesis simulations described in
Section 2.5. The material parameters adopted for the core are the ones obtained from the
homogenisation procedure and reported in Table 6; the glass fibre properties are reported
in Table 10.

Table 10. Properties of glass fibre material used in the prosthesis simulations. All moduli are in MPa
and Poisson’s ratios are dimensionless. The coordinate system considered is the local one.

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23

21,000 2318 2318 0.31 0.31 0.43 859 859 819

The load–displacement curves obtained from this comparison are reported in Figure 12.
As shown, both 3D-printed prosthesis components show a stiffness that is comparable to
that of the laminated reference.
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3.3. 3D Printed Prosthesis Components and Further Design Work

The FE analyses performed in this work show that 3D-printed components can meet
the stiffness requirements of prosthetic feet. This is an encouraging result because stiff-
ness is one of the major requirements for this kind of structure [26]. Moreover, further
improvements can still be applied to the proposed designs. First of all, glass fibres were
considered in this work as a continuous reinforcement instead of carbon fibres to reduce
the cost of the prosthetic device. However, the use of the more performing carbon fibre
can further increase the mechanical properties of a prosthetic component, thus allowing
smaller thicknesses and a slenderer shape.

Another possible improvement to a 3D-printed prosthesis would be the manufacturing
of an integrated prosthesis. As shown in Figure 8, the reference prosthesis is composed
of two main components: a common solution for laminated prostheses [32]. However,
the increased manufacturing flexibility allowed by AM can be exploited to design a one-
component prosthesis. Such prosthesis would thus integrate the functionalities of adequate
contact to the ground and the connection to the upper pylon. This would further reduce
the cost of the final products, thanks to reduced assembly costs.

Finally, while the potential of an additively manufactured foot is demonstrated here,
further work is required for it to reach the market. In particular, it must be proven that the
prosthetic component can also resist fatigue loads in both standard and extreme environ-
mental conditions (considering a wide range of temperatures and humidity). This requires
further work on the different 3D-printed materials because their fatigue characterisation
and modelling are still an active research field [14,33,34]. To reach commercialization, fur-
ther analysis is needed in the framework of the biomechanical behaviour of the prosthesis,
similar to the analysis of the roll-over shape and the assessment of the energy storage and
releasing capability.

4. Conclusions

The present work investigated the possibility of designing an additively manufactured
prosthetic foot with the same stiffness as that of a composite laminated one. It was decided
to consider a 3D-printed sandwich structure because these structures generally show good
bending responses.

To correctly model the infill elastic behaviour, a numerical homogenisation procedure
was adopted. The homogenised engineering constants were extracted via the explicit
modelling of the actual infill geometry. To validate this procedure, experimental tests were
conducted on three points for the bending specimens.

Once a satisfying modelling procedure was identified, it was adopted to design a
prosthetic foot component. First of all, a reference component inspired by a commercially
available one was considered as a benchmark, and it was simulated to compute its stiffness.
The reference component was made of laminated carbon fibre composite. Then, new
designs of an additively manufactured component with the same stiffness as the reference
were obtained via an optimisation procedure. This optimisation aimed to minimise the
prosthesis weight. Once the new designs were obtained, their mechanical response to a
vertical load (simulating the weight of a person) was computed via FE analysis, showing
a good agreement with the reference structure. Therefore, this work shows promising
results in the adoption of continuous fibre-reinforced additively manufactured polymers
for low-cost prosthetic feet.
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