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Abstract: The global orthopedic market is forecasted to reach US$79.5 billion by the end of this
decade. Factors driving the increase in this market are population aging, sports injury, road traffic
accidents, and overweight, which justify a growing demand for orthopedic implants. Therefore, it is
of utmost importance to develop bone implants with superior mechanical and biological properties
to face the demand and improve patients’ quality of life. Today, metallic implants still hold a
dominant position in the global orthopedic implant market, mainly due to their superior mechanical
resistance. However, their performance might be jeopardized due to the possible release of metallic
debris, leading to cytotoxic effects and inflammatory responses in the body. Poly (ether-ether-ketone)
(PEEK) is a biocompatible, high-performance polymer and one of the most prominent candidates
to be used in manufacturing bone implants due to its similarity to the mechanical properties of
bone. Unfortunately, the bioinert nature of PEEK culminates in its diminished osseointegration.
Notwithstanding, PEEK’s bioactivity can be improved through surface modification techniques and
by the development of bioactive composites. This paper overviews the advantages of using PEEK for
manufacturing implants and addresses the most common strategies to improve the bioactivity of
PEEK in order to promote enhanced biomechanical performance.

Keywords: PEEK; surface modification; bioactive composites; bone implants

1. Introduction

Population aging, sports injuries, traffic accidents, and overweight are some of the
many factors that lead to increasing demand for orthopedic implants provoking public
health concerns [1]. For example, bone tissue loss is a common condition in elderly
people. It causes an alteration in the microstructures of bone, reducing bone strength and
density, which might eventually increase the predisposition to fractures [2]. In addition,
osteoarthritis is a degenerative joint disease in which longer life expectancy and being
overweight are some of the most prominent risk factors [3,4]. Furthermore, a more active
lifestyle increases the risk of injuries. Indeed, orthopedic fractures are the most common
injuries in running-involved sports and road traffic accidents [5]. Thus, the demand for
bone substitutes increases globally, and the orthopedic market value is expected to expand
progressively, reaching $79.5 billion by 2030 [6].

Bone is a dynamic tissue that undergoes a continuous remodeling process. However,
spontaneous healing and repair may fail in the case of large bone defects or pathological
fractures [7–9]. The use of metallic implants to tackle this issue is widespread, mainly due
to their superior mechanical strength [10]. However, the harmful effects of the metallic
implants, discussed in more detail further on, urge the use of alternative materials such as
polymers and their composites. A promising implant material should be biocompatible,
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enable a good integration with the bone tissue, have a modulus closer to the bone to
minimize bone resorption, and provide wear and corrosion resistance. Moreover, it should
combine contradictory properties. For instance, the implant must be stiff and able to resist
deformation. Nonetheless, it must also be flexible enough to absorb energy when deformed.
Furthermore, it is expected to shorten and lengthen when compressed, as well as stretch
and narrow when subjected to tension without cracking [9].

Poly(ether-ether-ketone) (PEEK) was proposed as a biomaterial in 1998 by Invibio
Ltd. (Thornton-Cleveleys, UK). Since then, PEEK-based materials have become an im-
portant group of biomaterials used in orthopedic and spinal implants owing to their
outstanding properties [11]. Other clinical applications of PEEK include craniomaxillofacial
reconstruction, dental implants, femoral stems, and total joint replacement. Studies have
already shown that PEEK experiences fatigue resistance under dynamic load in simulated
physiological conditions [12], good wear and corrosion resistance [13], and high creep
resistance [14]. Notwithstanding, the hydrophobic nature of PEEK restricts protein and cell
adhesion on its surface, hampering a good integration with bone tissue. Therefore, it is im-
portant to modify PEEK to enable it to promote both cell attachment and proliferation on its
surface. It is well-established in the literature that some techniques allow the hydrophilicity
of PEEK to be improved, consequently promoting osseointegration [15]. These techniques
include physical and chemical treatments, surface coating, and bulk modification with
bioactive materials, as schematically illustrated in Figure 1 [15]. On the other hand, if one
considers the mechanical strength of PEEK for load-bearing applications, this property
might be significantly ameliorated with reinforcing fillers.

Figure 1. Techniques to improve the bioactivity of PEEK. Adapted with permission from [15].
Copyright 2014, MDPI.

This overview presents and discusses the reported strategies used to modify PEEK
properties in order to mimic the biomechanical properties of bone. The content summarized
herein aims to highlight future directions for manufacturing PEEK implants.

2. Drawbacks in Metallic Implant Devices

Over the past decades, metals have dominated the orthopedic implant market [16,17].
Nonetheless, postoperative observations have usually shown that the biomechanics of
metallic implant devices requires improvement. Appropriate selection of the implant
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material is crucial for the long-term success of the orthopedic device. On this matter,
using polymers and their composites is a promising solution since the final properties
of the implanted material can be better tailored. PEEK is the leading high-performance
thermoplastic candidate for replacing metal implant devices [18] and can tackle some
drawbacks associated with the use of metallic implants.

A common problem related to metallic implants in load-bearing applications is stress
shielding. This phenomenon occurs because metals, such as cobalt-chromium-molybdenum
alloy, 316L grade stainless steel, titanium-aluminum-vanadium alloy, and titanium, are
much stiffer than the host bone, as shown in Figure 2. Consequently, the mechanical
stimulus in the adjacent bone changes after implantation, and the physiological loading
is mainly transferred to the implant [19]. Figure 3a shows the strain energy density (SED)
of an intact femur (left) and the SED distribution immediately after placement of the
implant (right). It is observed that high levels of SED in the femur (red) are greatly reduced
following implant placement [19]. This reduction indicates that natural bone experiences
decreased load stimulation compared to its natural state [20]. Over time, the lack of load
stimulus weakens the bone, reducing its density. Consequently, bone loss surrounding
the implant takes place, eventually leading to implant loosening and requiring revision
surgery (Figure 3b) [20,21].

Figure 2. Elastic modulus of bone, PEEK, and metals usually used in implants (a) [22]; (b) [23]; (c) [24];
(d) [25].

Figure 3. (a) Strain energy density in a healthy femur and on an operated femur. Reproduced with
permission from [19]. Copyright 2015, Elsevier; (b) Schematic representation of stress shield and
bone loss. Reproduced with permission from [26]. Copyright 2020, MDPI.
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Another problem commonly observed in patients with metallic implants is metallosis,
a medical condition characterized by the release of metallic wear debris into periprosthetic
tissues and blood [27]. Metallosis causes a combination of direct cytotoxic effects, as well
as an inflammatory response within the synovial and periarticular tissues, culminating in
implant failure [28]. Metallosis is typical in joint prostheses, where the body movement
induces friction between the implant components. It is known that metallosis can occur
in both metal-on-metal (MoM) and metal-on-polymer (MoP) joint prostheses, illustrated
in Figure 4 [29]. However, in the study by Lanting et al. [30], they demonstrated that the
MoP hip prosthesis exhibited a negligible amount of material loss. In contrast, the MoM
hip prosthesis had five times the amount of material loss, highlighting the superiority
of polymeric parts in reducing metallic wear debris. Figure 5 shows a surgical revision
performed in patients with MoP Figure 5a and MoM Figure 5b hip prosthesis in which the
periprosthetic tissues showed necrosis and staining with metal debris. In Figure 5c, it is
possible to note a cutaneous manifestation of metallosis caused by the MoM hip implant.
This medical condition can also be observed in other joint replacements such as elbow,
shoulder, and knee, as illustrated in Figure 5d–f. The release of metallic alloying debris
after arthroplasty is a reason for concern. High serum cobalt levels, for example, can result
in hearing and vision loss [31–33], and can even lead to death due to poisoning [34].

Figure 4. Materials components in hip implants. Reproduced with permission from [35]. Copyright
2003, Baishideng Publishing Group.

Figure 5. Metallosis in hip prosthesis with MoP (a) [36] and MoM (b) [37] implants; cutaneous
manifestation of metallosis in the hip (c) [37], elbow (d) [38], shoulder (e) [29], and knee (f) [39]
implants. Reproduced with permission from [29] Copyright 2018, Elsevier; [36] Copyright 2015,
Elsevier; [37] Copyright 2012, Elsevier; [38] Copyright 2022, Elsevier; [39] Copyright 2020, Elsevier.
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Metallic devices are prone to corrosion due to the harsh body fluid environment they
are exposed to. In vivo corrosion resistance in implants is a key factor in assuring their
functionality and biocompatibility. Depending on the level of corrosion, the biomaterial
might lose its mechanical properties. Furthermore, cytotoxic and carcinogenic metal ions
may be released during corrosion, triggering allergy, inflammation, and even metal poi-
soning [40,41]. Compared to metals, polymer materials have superior corrosion resistance
against organic fluids and are already studied to be used as a coating in metallic materi-
als [42–44]. Wei et al. [42] investigated the coating of AZ31 Mg alloy with poly-L-lactic acid,
and the results showed that the polymer increased the corrosion resistance of the metallic
material in a physiological environment.

Another advantage of polymer-based devices is their radiolucency, which allows
for improved X-ray and computed tomography (CT) imaging compared to radiopaque
metals [45]. In the case of X-ray, less intensive radiation is used, the image accuracy and
definition are retained, and the patient’s exposure to radiation is reduced [46]. Figure 6
shows an interbody PEEK spacer implant fixed in adjacent vertebrae with stainless screws.
As can be seen, PEEK is not detected in the X-ray image while the screws are observed.
Radiolucency materials allow for examination of the bone underlying and surrounding the
implant without occlusion or obstruction [47].

Figure 6. (a) Interbody spacer device and (b) postsurgical X-ray examination. Reproduced with
permission from [48]. Copyright 2017, PLoS ONE.

Metallic implants are also known to create artifacts in magnetic resonance imaging
(MRI), which may significantly hinder the ability of researchers and clinicians to visualize
tissue proximal to the implant [47]. Figure 7a shows an implant made of PEEK from Invibio
Ltd. [46] with a moderate ability to absorb X-rays, i.e., it is not completely transparent in the
image. On the other hand, Figure 7b shows a metallic implant that is completely radiopaque.
It is possible to observe that the metallic implant image contains artifacts and a “starburst”
pattern radiating from the implant site [46]. A clinical study has already demonstrated that
radiopaque implants help to detect local recurrence (cancer that has returned at or near the
same location as the original tumor) due to the absence of artifacts [49].

Figure 7. CT images (a) with a PEEK-OPTIMA image contrast grade and (b) with a metallic implant.
Reproduced with permission from [46]. Copyrigth 2019, Elsevier.
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Besides the aforementioned advantages of polymeric materials over conventional
metallic orthopedic materials, PEEK devices are comparatively lightweight, offering er-
gonomic benefits to the patient. Furthermore, the high melting temperature of metals
makes any melting processing step extremely energy-intensive and expensive. Table 1 com-
pares density in metals, PEEK, and natural bone. It also shows the melting temperatures of
the traditional materials used in orthopedic devices.

Table 1. Density and melting temperature of bone, PEEK, and metal alloys traditionally used in
orthopedic implants.

Material Density (g/cm3)
Melting

Temperature (◦C) Reference

Cortical bone 1.5–2 - [23]
Trabecular bone 0.2–0.6 - [23]

PEEK 1.4 304–391 [25]
316L stainless steel 7.99 1380 [23,50]

Co-Cr-Mo 8.3 1350–1430 [51]
Ti-6Al-4V 4.43 1655 [52]

3. Peek Synthesis

Regarding the materials’ synthesis, there are two main PEEK polycondensation pro-
cesses: the nucleophilic and the electrophilic routes. Most PEEK used in industrial appli-
cations is synthesized by the nucleophilic route patented in 1977 and commercialized by
the brand Victrex PEEK [53]. This method involves a nucleophilic displacement reaction
illustrated in Figure 8a. First, hydroquinone and sodium carbonate form bisphenate in situ
and then react with a 4-4′difluorobenzophenone. Diphenylsulphone is the solvent, and
the reaction is carried out at relatively high temperatures (>300 ◦C) [53–55]. By contrast,
the electrophilic PEEK synthesis has limited commercial success since the produced mate-
rials have reactive-end groups, which are thermally unstable, such as benzoic acids [53].
Thus, due to its high thermal instability, the formed PEEK needs to be synthesized with
an end-capping agent [56]. A modification in the electrophilic route has been proposed by
Kemmish and Wilson [57], allowing the formation of a thermally stable PEEK that has been
applied in industrial processes. Figure 8b summarizes this electrophilic process.

Figure 8. (a) Nucleophilic and (b) electrophilic PEEK synthesis. Adapted with permission from [53].
Copyright 2019, Elsevier.
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The manufactured PEEK is a rigid high-performance semicrystalline engineering
thermoplastic. It is known for its outstanding thermal stability and high mechanical
strength, as well as for its wear and chemical resistances. Besides, PEEK is radiolucency,
bioinert, and has radiation stability. PEEK also has an average melting temperature of
343 ◦C and a glass transition temperature of 143 ◦C [56,58–60]. Table 2 displays some
mechanical and thermal characteristics of PEEK.

Table 2. PEEK mechanical and thermal properties.

Property Value Reference

Elastic modulus 2.0–4.0 GPa [25,59]
Tensile strength 84 MPa [59]

Compressive strength 112 MPa [59]
Elongation at break 3.5% [58]

Tg 143 [56]
Tc 314 [58]
Tm 343 [58]

4. Peek Bioactivity

As aforementioned, PEEK is a bioinert material with poor bonding to the surrounding
tissues leading to unsatisfactory bone–implant integration. The lack of osseointegration
along the implant–bone interface can lead to implant loosening due to its encapsulation
by fibrous tissue and/or colonization by bacteria caused by the foreign body reaction that
happens after the surgery, as schematically illustrated in Figure 9 [61–63].

Figure 9. Body response to a bioactive and bioinert material.

When a biomaterial is placed in a biological environment, the first molecules that reach
the implant surface are those of water. Following that, proteins interact with the biomaterial,
and this contact is affected by the adsorbed water molecules. Subsequently, the adhesion
of cells interacting with the adsorbed proteins takes place, influencing tissue growth as
schematically shown in Figure 10 [64,65]. Fibronectin is one of the more influential proteins
that mediate the biomaterial–cell interaction and is strongly adsorbed onto hydrophobic
surfaces. However, this strong interaction produces a structural deformation of the protein,
affecting its capacity to bind cells. On the other hand, when fibronectin is adsorbed into
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hydrophilic surfaces, the interaction is weaker, and the protein preserves its structure and
cell-binding ability [66,67].

Figure 10. Schematic representation of the consecutive events on biomaterial surface subsequently to
implantation [68].

Two methods are proposed in the literature to overcome PEEK’s hydrophobicity and its
lack of bioactivity: (i) the development of composites with bioactive fillers, and (ii) PEEK’s
surface treatment. This second method can be divided into direct surface modification
(physical and chemical treatments) and surface coating techniques (Figure 1) [65].

4.1. Surface Modification

After surgery, bone implants are directly in contact with bone tissue. Therefore, the
biological properties of their surface are important for osseointegration. In this concern, the
surface modification technique aims to alter the surface characteristics of PEEK without
affecting its bulk properties [15].

4.1.1. Chemical Modification

Chemical modifications introduce chemical groups into PEEK’s surface, creating a
series of surface-functionalized PEEKs. It changes the surface chemical structure of PEEK
to generate an environment with a favorable cellular response [15,69]. Zheng et al. [70]
prepared a series of modified PEEK with the functional groups -COOH, -OH, and -PO4H2.
These groups were studied because they are capable of inducing apatite layer growth on
their surface in the presence of simulated body fluid. The subsequent tests showed that
these species presented beneficial properties supporting cell adhesion, spreading, prolif-
eration, and higher osseointegration compared to pure PEEK. Sulfonation of the PEEK
chain is another treatment that improves the polymer hydrophilicity and bioactivity [71].
Concentrated sulfuric acid is the most common sulfonating agent and produces a porous
3D network on the PEEK surface. Ouyang et al. [71] proposed a hydrothermal treatment to
remove the residues on the surface. The thermally treated samples showed better osseointe-
gration and antibacterial ability when compared to the untreated sulfonated PEEK. Another
way to introduce sulfonate groups into PEEK’s surface is the treatment with the so-called
“piranha” solution. Dos Santos et al. [69] compared the sulfonation process with sulfuric
acid and piranha solutions and proved that both methods were efficient in supporting
fibroblast adhesion and proliferation. A further chemical modification is the amination of
PEEK. The addition of amine groups into PEEK is a powerful method to promote bioac-
tivity since it serves as a base for the covalent immobilization of the cell-adhesive protein
fibronectin. Liu et al. [72] introduced amino groups into PEEK using (3-aminopropyl)
tri-ethoxy silane as an amination agent. The study showed enhanced hydrophilicity and
fibronectin adsorption on the aminated PEEK. This improvement was subsequently in vivo
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manifested as better tissue integration. Chen M. et al. [73] combined a physical and wet
chemical treatment to produce a fluorinated PEEK (PEEK-F). Argon plasma immersion ion
implantation was employed, followed by hydrofluoric acid treatment. PEEK-F showed
increased cell adhesion, spreading, and proliferation, and better osseointegration was
achieved than in pure PEEK. Another combination of physical and chemical methods
was used to graft phosphonate groups into PEEK. For this purpose, sandblasting and
two-step diazonium chemistry treatments were used. The in vivo test showed that after
three months of implantation, the untreated PEEK implant was surrounded by fibrous
tissue. Nonetheless, in the treated PEEK, apatite mineral deposition was observed in the
region between the treated implant and the underlying bone [60].

4.1.2. Physical Modification

The commonly used physical treatments to modify PEEK’s surface are plasma, laser,
accelerated neutral atom beam (ANAB), and ultraviolet (UV) irradiation. The plasma
treatment was used to alter the surface chemistry of the material. Nitrogen [74,75], oxygen,
argon [76], water [76,77], ammonia [77], and air [78] are some plasma sources that introduce
functional groups into the PEEK surface. These introduced polar groups increase the sur-
face hydrophilicity and roughness, conditions for positive cell interaction. An in vitro study
was performed in PEEK treated with a gas mixture of water vapor as a plasma resource
and argon as an ionization assistant [76]. The modified polymer exhibited a more favor-
able environment for osteoblast adhesion, spreading, proliferation, and early osteogenic
differentiation. Therefore, it is expected that a faster bone maturation induction will occur
around the PEEK implant [76]. Laser treatment is a low-cost technique that increases the
material’s surface energy, increasing the surface roughness and wettability [79]. Similar
to plasma treatment, laser technology allows for the addition of polar groups on the poly-
mer surface, increasing the potential for cell adhesion and thus increasing the likelihood
of implant acceptance by the body [80]. Zheng et al. [81] proposed a dual modification
method that combines laser and plasma surface treatments. While the laser treatment
constructs microstructures over the PEEK surface, the plasma polymerization of acrylic
acid introduces carboxyl groups onto the PEEK surface. The dual-modified PEEK was
more favorable for pre-osteoblast adhesion, spreading, and proliferation. Plasma and laser
techniques can also be used to immobilize biomolecules on the PEEK surface [74,82–86].
Terpiłowski et al. [74] pre-treated PEEK with nitrogen plasma to further immobilize chi-
tosan on its surface. Chitosan exhibits an intrinsic antibacterial activity and is an alternative
to be introduced in implant materials to avoid the bacterial resistance provoked by the
excessive use of antibiotics. It was observed that the plasma activation of PEEK increased
the adhesion of chitosan to its surface due to a combination of two factors. The increased
surface roughness, along with the interaction of the amine groups on chitosan and the
nitrogen deposited on the surface, increased chitosan linkage to the polymer. Gelatin is a
protein derived from collagen. It is the major protein in the extracellular matrix and has
been widely studied due to its outstanding biocompatibility and cost-effectiveness [87,88].
Omrani et al. [85] performed a pre-plasma treatment on PEEK’s surface to enhance the
affinity between gelatin and PEEK. They found that the immobilization of gelatin into
PEEK promoted higher cell growth than both plasma-treated and pure PEEK. The ANAB
process does not change the PEEK chemical structure but modifies its hydrophilicity due
to changes in surface roughness. Khoury et al. [89] demonstrated that after ANAB treat-
ment, PEEK showed an increase in cellular adhesion and proliferation activity. Finally, UV
irradiation was performed as the first stage of some chemical modification by introducing
active functional groups into the bioinert PEEK surface. It happens through the reaction of
radical species generated by the diphenyl ketone structure present in PEEK when exposed
to irradiation with a monomer. Sulfonate [90] and phosphate [91] chemical groups were in-
troduced to PEEK by this technique, producing a surface group-functionalized PEEK. Both
modified PEEK greatly enhanced the adhesion, spreading, proliferation, and osteogenic
differentiation of the pre-osteoblastic cells after surface sulfonation and phosphorylation.
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4.1.3. Limitations of Chemical and Physical Treatments

Some drawbacks in the treatments reported above lie in the recovery of the initial
PEEK hydrophobicity [76,92]. This aging phenomenon can be attributed to the reorientation
of polar groups within the polymer matrix to reduce their surface energy, reverting the
modified PEEK to a surface close to its original property [92,93]. For example, the physical
treatment with plasma has already been demonstrated to revert PEEK to its original surface
in a few hours or days, while in the chemical treatments, the aging can be retarded for tens
of days [92]. Furthermore, grafting polar groups on the PEEK surface may also result in
an unstable surface once the bonding may not tolerate the sterilization process crucial in
biomedical applications [94]. Wang et al. [76] studied the aging process after subjecting
PEEK to a plasma treatment using a mixture of water and argon. For that study, the
produced samples were stored either in air or in water, followed by air. A decrease in the
contact angle was observed right after the plasma treatment. However, the contact angle
increased in samples stored in the air after only four days, reaching a value higher than
the one found for pure PEEK. On the other hand, the samples stored in water or water
followed by air, after 15 days, displayed relatively stable contact angle values. Since the
implants are stored for a substantial amount of time before implantation [94], hydrophobic
recovery is of concern, and the storage of the implants in water is not a solution able to be
applied in the industry.

4.1.4. Surface Coating

The deposition of a bioactive layer on PEEK’s surface is another modification process
to improve its cell affinity. Several techniques are feasible for applying bioactive coatings,
such as electron beam evaporation, arc ion plating, plasma spraying, plasma immersion ion
implantation, chemical deposition, and spin coating. The deposition of bioactive materials
such as titanium dioxide (TiO2) [95] and calcium metasilicate (CaSiO3) [96] by e-beam was
reported in the past decade. Both studies revealed that the coated substrates presented
a better bone–implant contact than the pure PEEK. TiO2 can also be coated into PEEK
through the arc ion implanting process. The TiO2-PEEK substrate studied by Tsou et al. [97]
showed a bone-bonding performance superior to the pure PEEK. The coating with titanium
(Ti) by the plasma-sprayed technique was already studied by Walsh et al. [98]. After the
deposition, a rough surface was formed, and the in vivo study demonstrated that direct
bone–implant bonding was achieved by Ti-PEEK substrate.

Furthermore, the stiffness at the bone–implant interface with Ti-bond was significantly
greater than in uncoated PEEK. Tantalum (Ta) [99] and calcium (Ca) [100] can also be coated
into PEEK using plasma immersion ion implantation, producing a material with better
cell adhesion and proliferation and enhanced osteogenic activity. Moreover, the Ta-PEEK
sample presented an elastic modulus closer to that of the human cortical bone than the
uncoated PEEK. Hydroxyapatite (HA) is one of the most common bioactive materials
used for coating biomaterials. Almasi et al. [101] coated HA into PEEK by chemical
deposition. In this technique, PEEK was first sulfonated, introducing -SO3H groups,
responsible for the increase in the surface roughness, and then HA was deposited. The
obtained material presented an increase in wettability, which is an indication of improved
bioactivity. The deposition of HA through the spin-coating technique was also reported by
Johansson et al. [102]. Their results of the in vivo experiments showed that a higher bone
area was formed surrounding the HA-PEEK implant compared to the untreated PEEK.

As evidenced, the bioinertness of PEEK can be greatly enhanced by means of the coat-
ing of bioactive materials. Nonetheless, some difficulties are associated with this method.
For example, coating PEEK with metallic materials may trigger problems already associated
with the use of metallic implants. For instance, stress shielding, due to an increase in the
elastic modulus and the release of metal ions, can increase the risk of inflammation and
implant loosening [103,104]. Furthermore, since wear or delamination may be caused by
shear loading, Kienle et al. [104] carried out a mechanical test to investigate whether the
impaction process of Ti-coated PEEK can trigger one of these phenomena. The results
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showed the loss of some coating materials in the plasma-sprayed Ti implants, although full
delamination was not observed.

It is worth mentioning that even thin coatings can interfere with the clinical analysis
of the bone–implant interface owing to artifacts produced during medical imaging tech-
niques [105]. Among the described methods, the deposition of HA via plasma spraying is
a method qualified for commercial operation [65]. However, this technique is expensive
and cannot be easily applied to PEEK implants with complex shapes [60]. In addition, the
difference in stiffness between the substrate and the coating can aggravate the stress at the
interface, leading to the delamination of the coating [106]. Moreover, HA coatings suffer
from insufficient adhesion to PEEK due to a low bonding strength between the PEEK and
the HA layer, which can also produce debonding at the interface [60,107].

4.2. Bulk Modification

An alternative to overcome the aforementioned surface modification shortcomings is
to tailor PEEK’s properties by compounding it with nanoparticles. The melt-processing
temperature of PEEK ranges between 360 and 400 ◦C, and it can be processed using all of
the typical thermoplastic processes, such as injection molding, extrusion, and compression
molding. The high processing temperature and inertness in most solvents hinder PEEK
processability, making it a challenging procedure. In contrast, its high thermal and chemical
stability provides remarkable resistance to sterilization by gamma and electron beam
radiation, an important attribute in biomedical applications, among other advantages [56].

4.2.1. Bioactive Composites of PEEK

Different bioactive materials such as TiO2 [108], bioglass [109], calcium silicate [110],
β-tricalcium phosphate [111,112], natural amorphous silica fibers [113], HA, and HA doped
with fluorine [114], as well HA doped with strontium (Sr) [115], have already been incorpo-
rated to PEEK to mitigate its bioinertness (Table 3). Among these bioactive fillers, the incorpo-
ration of HA to PEEK draws much attention and is extensively studied [15,58,116–121]. HA
is the major inorganic bone component, and it is known for its biocompatibility, bioactivity,
and osteoconduction properties [15]. Therefore, this section will focus on the mechanical
and biological properties of PEEK/HA composites.

Table 3. Bioactive composites of PEEK and their processing method.

Filler Processing Method Bioactivity Highlight Reference

nano-TiO2
Dispersion in ethanol and

compression molding

In vivo studies showed that the percent of bone
volume on the n-TiO2/PEEK surface was

approximately twice as large as that of PEEK.
[108]

nano-bioglass particle leaching and
compression molding

The apatite mineralization ability in simulated body
fluid (SBF) was significantly improved in

the composite.
[109]

nano-calcium silicate High-speed ball mill and
injection molding

In vivo tests revealed that the composite promoted
osseointegration at the bone/implant interface

compared to PEEK.
[110]

β-tricalcium phosphate laser sintering
In vivo evaluation showed that the composite

exhibited bone–implant contact while the control
group was encapsulated by fibrous tissue.

[112]

natural amorphous silica fibers Ball mill and
compression molding

The addition of fibers into PEEK stimulated the
metabolic activity of fibroblasts grown on the

composites compared to the metabolic activity of
neat PEEK.

[113]

HA doped with fluorine Dispersion in alcohol and
compression molding

The composite exhibited enhanced antibacterial
activity and osseointegration. [114]

HA doped with Sr Solvent dispersion and
compression molding

The addition of the filler enhanced the bioactivity of
the material. [115]
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One way to compound PEEK and HA is by using ball milling and injection molding
processes, as reported by Ma and Guo [116]. The tensile test revealed that the elastic
modulus increased as the HA content increased (from 0 to 40 wt%). The addition of 30 and
40 wt% of HA provided an elastic modulus of approximately 7.2 and 10.6 GPa, respectively,
while the value for the pure PEEK is only 2 GPa. Since the elastic modulus for cortical
bone ranges from 7 to 25 GPa, the prepared composites match the bone stiffness. On
the other hand, the tensile strength decreased with increasing HA content, indicating a
loss of ductility. The composite with 30 wt% of HA was selected to study its bioactivity
since both elastic modulus and tensile strength match the values of these properties for
bone (Table 4). As expected, the PEEK/HA composite presented a higher cell attachment,
proliferation, and osteogenic activity than pure PEEK. In fact, the hydrophobic surface
of pure PEEK hinders cell attachment, which leads to its separation from the bone. Both
samples were immersed in SBF to evaluate the bioactivity of PEEK/HA and PEEK. It was
observed that the composite induced apatite formation after seven days of immersion.
After 28 days, the composite was almost completely covered by apatite, while no changes
were observed on the pure PEEK surface. In addition, the in vivo test showed that after
eight weeks of implantation, new bone was formed and integrated with the implant surface
of PEEK/HA. However, the pure PEEK surface was surrounded by fibrous connective
tissue (Figure 11) [116].

Table 4. Mechanical properties of PEEK composites and cortical bone.

Material Processing Method Elastic Modulus (GPa) Tensile Strength (MPa) Fracture Strain (%) Reference

Cortical bone - 7–25 50–150 1–3 [23,58]

PEEK/
HA

Ball mill/
Injection molding

7.2 (30 wt% HA)
10.6 (40 wt% HA)

56 (30 wt% HA)
45 (40 wt% HA) - [116]

PEEK/
HA In situ synthesis -

106 (2.6 vol% HA)
99 (5.6 vol% HA)
75 (8.7 vol% HA)

- [117]

PEEK/
nHA

Particles dispersion/
cold compression/

sintering

4.79 ± 0.16 (15.1 vol% nHA)
5.76 ± 0.09 (21.9 vol% nHA)
6.73 ± 0.12 (29.2 vol% nHA)
7.63 ± 0.09 (38.2 vol% nHA)

63.9 ± 1.8 (15.1 vol% nHA)
60.5 ± 2.2 (21.9 vol% nHA)
54.3 ± 2.7 (29.2 vol% nHA)
43.1 ± 1.5 (38.2 vol% nHA)

1.31 ± 0.07 (15.1 vol% nHA)
1.08 ± 0.05 (21.9 vol% nHA)
0.86 ± 0.03 (29.2 vol% nHA)
0.58 ± 0.04 (38.2 vol% nHA)

[58]

PEEK/
HA

Mixing/
Hot compression

molding

~0.23 (5 wt% HA)
~0.45 (15 wt% HA)
0.58 (20 wt% HA)

71.46 (5 wt% HA)
~35 (15 wt% HA)
~11 (20 wt% HA)

- [119]

PEEK/
mHA

Mixing/
Hot compression

molding

~0.36 (5 wt% mHA)
~0.55 (15 wt% mHA)
0.72 (20 wt% mHA)

76.21 (5 wt% mHA)
~53 (15 wt% mHA)
~40 (20 wt% mHA)

- [119]

Ma et al. [117] proposed an in situ synthesis process to produce PEEK/HA composites
in order to improve the interfacial bonding between PEEK and HA and overcome the high-
temperature processing issue. Di-terbutyl peroxide, p-dihydroxybenzene, sulfobenzide,
K2CO3, and Na2CO3 were used for PEEK synthesis, and different contents of commercial
HA powders were introduced to the reaction medium. Lower HA contents (2.6 and
5.6 vol%) increased the tensile strength of the composites. The composite reached the
higher tensile strength of 106 MPa for 2.6 vol% of HA. However, higher HA contents
decreased the strength, probably due to filler agglomeration. Despite the decrease in the
tensile strength, the composite with 8.7 vol% of HA displayed a tensile strength of 75 MPa,
which is in the range of the tensile strength of the cortical bone (50–150 MPa) (Table 4).
Although the elastic modulus of the composites was not reported, an increase in this
property is expected with HA increment. A subsequent study by Ma et al. [122] evaluated
the in vivo biocompatibility and toxicity of the composite with 5.6 vol% of HA and the
in vivo bioactivity of all composites [122]. The results showed that the PEEK/5.6 vol% HA
composite has desirable biocompatibility without apparent toxicity to animals. Moreover,
the bioactivity test demonstrated that a higher HA content promotes faster new bone tissue
growth around the implant made of PEEK/HA. Unfortunately, this method is not suitable
to be used on an industrial scale due to the complex preparation process.
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Figure 11. Histological observation after eight weeks of implantation in rabbits: (a) Ultra-high
molecular weight polyethylene (UHMWPE), (b) PEEK, (c) HA/PEEK, (d) quantitative analysis of
bone/implant contact ratio. The black asterisks indicate the fibrous connective tissue, and the white
arrows indicate the bone contact. Printed with the permission of [116]. Copyright 2019, BioMed Central.

A current proposal by Zhong et al. [118] to produce PEEK/HA composites is the
three-dimensional (3D) printing of a HA scaffold. Then, the incorporation of PEEK into
the scaffold uses the compression molding process, finally soaking the composite in an
HCl solution to introduce porosity. The HCl solution dissolves the HA network, leaving
interconnected channels within the composite. The composite, containing 40 vol% of HA,
presented good biocompatibility, and the compressive strength (110 ± 7 MPa) is in the
range of the cortical bone (100–230 MPa).

Another way to prepare these composites is first to disperse PEEK and HA in a
solvent to prevent the agglomeration of HA particles in the PEEK matrix. In Li et al.’s [58]
study, PEEK and nanorod HA (nHA) contents were independently dispersed in ethanol
under sonication. The separate suspensions were then mixed and kept under continuous
magnetic stirring. The mixtures were dried and cold-compressed. In addition, the samples
were sintered under a protective argon atmosphere and cooled at room temperature. In
conjunction with a high filler addition, the high melt temperature of PEEK culminates in
large melt viscosity and poor processability of the composites. For this reason, Li et al. [58]
implemented the aforementioned methodology to avoid conventional techniques such as
injection and extrusion. From mechanical tests, they observed, like in the other studies,
that the tensile strength decreases with increasing filler content (15.1 to 38.2% vol nHA).
Using nHA can potentialize this drop in strength, since nanofillers tend to aggregate when
their contents become high due to their large surface area. On the other hand, the elastic
modulus increases with increasing nHA content (Table 4). The mechanical properties of the
composites filled with 21.6 and 29.2 vol% closely matched those of human cortical bone
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(Table 3). The in vitro bioactivity test performed in the composites with 15.1 and 21.9 vol%
nHA demonstrated that both materials are bioactive. However, fewer apatite minerals were
deposited on the PEEK/15.1 vol% nHA surface, as shown in Figure 12. The cytotoxicity
test confirmed that higher nHA content induces higher biocompatibility.

Figure 12. SEM micrographs after immersion in SBF on the 15.1 vol% nHA/PEEK and
29.2 vol% nHA/PEEK nanocomposites. The deposition of the apatite mineral layer is observed
in the images and confirmed by energy-dispersive X-ray spectroscopy. Printed with the permission
of [58]. Copyright 2012, Wiley.

An attempt to improve PEEK-HA bonding is to modify the HA surface. Ma et al. [119]
reported a silanization of HA. In their work, the HA was modified with a silane coupling
agent (KH560), and the modified HA (mHA), as well as HA without modification, was
mixed with PEEK powder at different ratios (5 to 30 wt% of HA or mHA). Finally, the
mixtures were hot-pressed at 320 ◦C. The PEEK/mHA composites presented a higher
elastic modulus than the unmodified PEEK/HA composites (Table 4). The tensile strength
increased for low HA and mHA contents (5 wt%) and then decreased with the increment
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of filler content. Comparatively, the tensile strength was higher for the PEEK/mHA
composites, showing that the modification on the HA surface provided a better bonding
between the filler and the polymer matrix. The in vivo analysis revealed that new bone
layers around the implants with the modified filler were larger than in the pure PEEK.
Moreover, the growth of bone tissue around the PEEK/5 wt% mHA was the highest among
all composites [119]. The better results of the composite with 5 wt% mHA were attributed
to an efficient dispersion of the inorganic filler in the organic matrix. Regarding the content
of silane coupling in the filler, the thermogravimetric analysis indicated that the coupling
agent covered only 1.3 wt% of the total quantity of HA. Thus, the composite’s mechanical
properties should be greatly improved with the modified filler to justify this additional cost
in production.

As seen in the reviewed studies [58,116–119], as well as in other works reported in the
literature [120,121], adding large amounts of HA to PEEK increases the elastic modulus;
however, it turns the material more brittle. On the other hand, the increase in the HA
contents generally improves the biological properties of the material. Therefore, it is
a challenge to combine good biological and mechanical properties. Aiming to use this
material in load-bearing applications, it is important to produce a resistant material since
the implant will be continuously loaded at relatively high stress levels. Nevertheless, the
implant must be bioactive to provide a good biological fixation, avoiding failure. The poor
interfacial bond between PEEK and HA is responsible for the ineffective load transfer across
the filler–matrix interface, leading to the debonding of these materials [58]. This interfacial
debonding contributes to the initiation and propagation of micro-cracks, which can cause
fatigue failure [121]. As recognized, coupling agents are widely used to facilitate stress
transfer across the filler–polymer. However, this agent might cause cytotoxicity during
biological tests. In addition, due to the high melting temperature of PEEK, it is difficult
to find a coupling agent that can withstand high temperatures without releasing volatiles.
Therefore, finding a balance between mechanical strength and biological properties is
important. This balance can be accomplished by reinforcing PEEK with an appropriate
filler, as discussed in the following section.

4.2.2. Reinforced PEEK Composites

One of the first fillers added to PEEK to improve its stiffness and strength was carbon
fiber reinforcement (CFR). For instance, PEEK with CFR has an elastic modulus in the range
of the cortical bone, i.e., around 20 GPa (Table 4), while the elastic modulus for pure PEEK
is 4 GPa [123]. On the other hand, the presence of CFR impairs the strain properties of the
material, as indicated by Kurtz and Devine, 2007 [56]. Over the last years, PEEK with CFR
has been introduced in spinal and orthopedic implants [11,124].

The biofunctionalization of PEEK is recommended to enhance its bioactivity. For exam-
ple, in an attempt to obtain a composite with proper biomechanics, HA was added to the
PEEK/CFR composite [125]. The presence of CFR in the ternary PEEK/CFR/HA composite
enhanced the strength loss derived from the addition of HA into PEEK. Deng et al. [125]
prepared PEEK/25 wt% nHA/20 wt% CFR by melt blending and injection molding. The
ternary composite showed an elastic modulus of 16.5 ± 0.07 GPa, which was higher than the
values usually found for the binary PEEK/HA composite. These values usually reach the
lower range of the elastic modulus of cortical bone (7–20 GPa). According to Deng et al. [125],
the tensile strength of the composite was higher than that of pure PEEK, unlike what was
observed in PEEK/HA composites, revised in the previous section. The subsequent in vitro
tests showed that PEEK/nHA/CFR has better osteogenic differentiation, bioactivity, higher
cell attachment, and proliferation. In addition, the in vivo evaluation revealed that the
newly formed bone volume of the ternary composite was higher than that using pure
PEEK. Moreover, Tan et al. [126] showed that PEEK/nano-HA/short carbon fiber bioactive
composite provides the most suitable implant for bone plating application for tibia. Fur-
thermore, Zhou and Yang [127] used carbon/PEEK composite plates and demonstrated
that these lower-stiffness bone plates had reduced stress shielding at the fracture site.
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Despite the improved mechanical properties promoted by the CFR, clinical concerns
have already been reported in the literature regarding composites with CFR for biomedical
applications. For example, a clinical study reported the failure of the PEEK/CFR tibial
intramedullary nail 10 weeks after its placement [128]. Another clinical study showed that
after wrist-plate implantation made of PEEK/CFR, the fibers became exposed directly to
the living tissue, resulting in severe synovitis, which led to flexor tendon damage in the
wrist [129]. The symptoms of an inflammatory response started after three months of the
operation, where painful swelling was reported. The symptoms kept worsening, and after
four months, the patient was unable to flex the thumb [129]. Therefore, it is important to
better understand the toxic response of the CFRs in the human body, since other studies
have already shown that carbon particulate debris is released in the tissue surrounding the
PEEK/CFR implants [56,130].

The incorporation of zinc oxide (ZnO) and TiO2 into PEEK can simultaneously promote
reinforcement and antibacterial activity in the matrix [131–133]. To date, both ZnO and
TiO2 are generally recognized as safe and effective components by the Food and Drug
Administration (FDA) [134].

Díez-Pascual, Xu, and Luque incorporated [132] ZnO and silanization ZnO (s-ZnO)
to PEEK using a ball mill at cryogenic temperature, followed by compressing molding at
360 ◦C. The elastic modulus and tensile strength of the composite were higher for the s-ZnO
than for the composite with unmodified ZnO. This behavior is ascribed to the strong rein-
forcement driven by the coupling agent, promoting better adhesion between the matrix and
the filler. On the other hand, the elongation at break decreases with the increase in the ZnO
and s-ZnO particles. This decrease in ductility was more pronounced for the composites
with unmodified ZnO. The antibacterial activity tested against human pathogenic bacteria
was improved by increasing the amount of ZnO and s-ZnO in the polymeric matrix [132].
However, a better antibacterial property was obtained for the PEEK/s-ZnO composites,
and the best activity was achieved with 7.5 wt% s-ZnO. In a similar study, Hao et al. [135]
modified ZnO with a different silane coupling agent in a similar study. However, the ZnO
nanoparticles were processed with PEEK by a twin-screw extruder followed by injection
molding. The tensile strength and the elastic modulus were improved after adding s-ZnO.
However, the increase in mechanical properties with 5 wt% s-ZnO in this study was lower
than the one observed in the PEEK/5 wt% s-ZnO composite developed by Díez-Pascual,
Xu, and Luque [132]. Given the increase in the tensile strength and the elastic modulus for
the PEEK/s-ZnO composites, the melting of the silane component during the compound
process can lead to its decomposition due to the high melting temperature of PEEK. If the
decomposition triggers the release of toxic volatiles, it might be of concern for biomedical
applications. In another study, Díez-Pascual and Díez-Vicente [133] prepared a master-
batch of carboxylated PEEK and ZnO (PEEK-CO-O-CH2-ZnO), which was subsequently
compounded with PEEK in a mini-extruder at 380 ◦C. The produced PEEK/masterbatch
composites showed a higher stiffness, strength, and ductility than both the pure PEEK
and the PEEK/ZnO composites prepared for comparison. The antimicrobial behavior of
PEEK/masterbatch composites was similar to the one observed in their previous study, i.e.,
the antimicrobial effect increased by raising the amount of the nanoparticles and was found
to be higher for PEEK/masterbatch composites. Montaño-Machado et al. [136] prepared
PEEK composites with ZnO by extrusion. However, the amount of filler incorporated
into the matrix was below the theoretical values and proved the adversity in introducing
nanoparticles into the PEEK matrix due to its high melt viscosity, which also hinders a
reasonable dispersion of the fillers. The preparation of PEEK/TiO2 composites using a
single screw extruder was performed by Bragaglia et al. [137]. The presence of TiO2 slightly
increased the stiffness of the material and barely affected the elongation at break and the
tensile strength, not turning the material brittle. Although the antibacterial activity was not
tested in the aforementioned study [137], in a previous study performed by Díez-Pascual
and Díez-Vicente, [131] it was confirmed that the presence of TiO2 in the blend PEEK/PEI
promoted antibacterial activity in the material.
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Table 5 summarizes the notable finds of some composites of PEEK with different
nanoparticles for biomedical applications.

Table 5. List of some reported studies of PEEK composites.

Nanoparticle Processing Method Key Finds Reference

Nanorod HA
Particles dispersion/
cold compression/

sintering

The nanocomposites with 21.6 and 29.2 vol% had tensile strength
and fracture strain close to the human cortical bones.

Furthermore, the higher volume of nHA triggered better
bioactivity and biocompatibility.

[58]

HA Ball mill/
Injection molding

The tensile strength and elastic modulus of the composite with 30
wt% closely match these values for cortical bone. In vivo tests
showed a higher bone contact for the composite compared to

raw PEEK.

[116]

HA In situ synthesis

The processing method promoted a better interfacial bonding
between PEEK and HA, resulting in better mechanical properties.

The PEEK/5.6 vol% of HA demonstrated desirable
biocompatibility without apparent toxicity to the animal. In

addition, the in vivo bioactivity showed that higher HA content
promotes a faster new bone tissue growth around the implant

made of PEEK/HA.

[117,122]

HA Compression molding The PEEK/40 vol% composite showed good biocompatibility and
the compressive strength was in range with the cortical bone. [118]

mHA Mixing/
compression molding

The composite with 5 wt% of mHA showed higher tensile
strength, 23% higher than pure PEEK. Higher growth of the bone

tissue observed in the in vivo test was achieved for the same
composite composition with 5 wt% of mHA.

[119]

25 wt% nHA/
20 wt% CFR

Melt blending and
injection molding

The ternary composite presented an elastic modulus higher than
the values usually found for the PEEK/HA composites.

Furthermore, the ternary composite improved biocompatibility
in vitro and promoted osseointegration in vivo.

[125]

s-ZnO Cryogenic ball-milling/
compression molding

The PEEK/sZnO displayed superior stiffness and strength
compared to the neat polymer and the composites with ZnO

without modification. Moreover, the antibacterial activity was
improved with increasing nanoparticle content.

[130]

hydroxylated ZnO Extrusion

The hydroxylated PEEK was grafted in the carboxylated PEEK to
prepare masterbatches. Then, the masterbatches were

compounded with PEEK. A superior stiffness and strength were
exhibited for the composites with polymer-grafted nanoparticles
compared to the neat PEEK. Moreover, the antibacterial activity

increased raising the nanoparticle content.

[131]

s-ZnO Twin-screw
extrusion/injection molding

The addition of s-ZnO increased the tensile strength and elastic
modulus. However, the improvement in the mechanical

properties was inferior to the [130] study. It can be associated
with the processing method, along with the use difference of
different silane coupling. Cell viability was enhanced for the
PEEK/ZnO composites, as well as the antibacterial activity

[134]

ZnO Co-rotating twin-screw
extrusion

The incorporation of ZnO nanoparticles did not improve the
mechanical properties. Nonetheless, a positive effect on

biological performance was observed after incorporating ZnO.
[135]

TiO2
Planetary mixer/

single-screw extrusion
The incorporation of TiO2 lightly increased the material’s

stiffness and did not interfere with the tensile strength. [136]

4.3. PEEK on Biomedical Field: Applications and Future Prospectives

In the orthopedic segment, a commercial femoral stem containing PEEK in its current
architecture is the VerSys®EPOCH® (Zimmer, Warsaw, IN, USA) [138]. It is a composite
of PEEK and Co-Cr-Mo alloy core coated with Ti fiber. Unfortunately, after EPOCH
implantation, a clinical study reported implant failure due to the delamination of PEEK
from the Co-Cr-Mo alloy core [139,140]. In dental implants, PEEK is used to construct
partial dentures, crowns, and bridges. Spinal implants of PEEK are already on the market,
like the ANATOMIC PEEK™ PTC (Medtronic, Fridley, MN, USA), [141] which is a cage for
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cervical fusion coated with Ti. Although the metallic coating can improve the wettability
of the material generating better cell attachment, the delamination of Ti coating can cause
the implant loosening. Additionally, wear debris of Ti can induce inflammation [104]. In
the past few years, the subtractive manufacturing method has been the standard technique
for manufacturing PEEK parts [142]. However, it displays shortcomings such as waste
generation and no specific match with patient anatomy.

The growing need for implant customization leads to additive manufacturing (AM) as
an emerging technique to fulfill this demand. This technology has attracted the attention of
surgeons and patients, and its application is growing steadily. AM is a process used to make
3D-printed objects from a digital model by depositing successive layers of the material [142].
Despite the wide range of AM processes, fused deposition modeling (FDM) is a widespread
technique for the AM of polymers, which permits the fabrication of complicated geometrical
parts. In the FDM technique, layers are printed starting from polymeric filaments. During
3D printing, the filament is melted and extruded in a nozzle. Then, layer by layer, the
material is deposited onto a heated building platform, following a specific laydown pattern
described by the digital model [143,144]. Customized PEEK implants are already used
for craniomaxillofacial reconstruction and can improve postoperative outcomes. During
the surgery, if a prefabricated implant is used, it has to be fitted manually, increasing
operative time and, consequently, the risk of contamination. Furthermore, a good esthetic
appearance may not be achieved [145]. The increasing need for patient-specific implants to
fit individual anatomical shapes shows the importance of 3D printing in the production of
medical implants and opens the need for further investigations on the subject.

5. Final Considerations

The clinical interest in developing a material with adequate biomechanics is well rec-
ognized. PEEK has drawn considerable attention to being used in load-bearing biomedical
applications. As extensively discussed in this work, its bioactivity should be enhanced. The
surface modification techniques usually used for these purposes face more drawbacks than
bulk modification. The main problem of the chemical and physical treatments relies on the
recovery of the hydrophobicity of PEEK, jeopardizing the cell’s interaction. Furthermore,
the grafting of polar groups commonly used may create an unstable surface. Moreover, the
delamination that a surface coating material may undergo inefficient stress transference
between the bone and the implant. Therefore, bulk modification emerges as a better route
to enhance PEEK’s bioactivity. As evidenced, the addition of HA to PEEK, widely studied
in the literature, turns the material brittle but improves its bioactivity. On the other hand,
adding reinforcing fillers, such as CFR, ZnO, and TiO2, can significantly increase the me-
chanical strength of PEEK composites. However, the reinforced composite lacks bioactivity,
a property that is a key factor in providing direct bone–implant bonding, avoiding implant
failure. Therefore, it is still a great challenge to produce a PEEK-based material that can
be used in load-bearing conditions. This overview intends to point out the drawbacks of
using metals in implant devices and highlight that it is important to concentrate efforts on
producing a tough and bioactive non-metallic material in an attempt to improve the quality
of life of people all around the world.
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Abbreviations

Description Abbreviation
316L SS 316L stainless steel
accelerated neutral atom beam ANAB
additive manufacturing AM
calcium Ca
calcium metasilicate CaSiO3
carbon fiber reinforced CFR
computed tomography CT
fused deposition modeling FDM
hydroxyapatite HA
metal-on-metal MoM
metal-on-polymer MoP
modified HA mHA
nanorod HA nHA
poly(ether-ether-ketone) PEEK
silanized zinc oxide s-ZnO
simulated body fluid SBF
strain energy density SED
strontium Sr
tantalum Ta
titanium Ti
titanium dioxide TiO2
ultra-high molecular weight polyethylene UHMWPE
ultraviolet UV
zinc oxide ZnO
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