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Abstract: In RC (reinforced concrete) frame structures, wall-like columns are laid within the space
occupied by masonry walls to maximize usable space and thus minimize the column projections
into the usable area. These columns often require strengthening owing to various reasons, including
increasing the number of stories, changes in building usage, and others. The use of a hybrid system
comprising NSM (near-surface mounted) steel rebars combined with CFRP (carbon-fiber reinforced
polymer) laminates may be considered a sound technique for strengthening such wall-like building
columns. The prime aim of this study is to devise an efficient scheme using a hybrid NSM/CFRP
system to strengthen existing RC wall-like columns. Six half-scale RC wall-like columns were pre-
pared and tested under monotonic concentric axial compression. Two columns were unstrengthened
to serve as control specimens (CW1 and CW2), and four specimens were strengthened using four
different schemes (SW1, SW2, SW3, and SW4). As favored by architects, all strengthening schemes
were designed so that the dimensions of the column cross-section were not increased. The effects
of strengthening schemes on the enhancement of axial capacity, energy dissipated, and stiffness
were evaluated to find the most efficient scheme. Among the four studied schemes, using vertical
continuous NSM rebars in combination with the wrapping of the three CFRP layers onto the exterior
column surface (in specimen SW2) was the most efficient as it enhanced the ultimate load capacity by
80%. Three-dimensional FE (finite element) analysis was also conducted to predict the response of
test specimens. The test results matched well with the FE outputs, which justified the accuracy of the
used constitutive models for concrete, steel rebars, and CFRP sheets.

Keywords: wall-like RC columns; strengthening; FRP jacket; NSM rebars; testing; FE modeling

1. Introduction

In order to maximize the space in RC buildings, wall-like columns are used in the space
occupied by masonry walls. Such wall-like columns are extensively used in congested and
expensive areas of metropolitan cities. However, throughout the Kingdom of Saudi Arabia,
there are a number of wall-like RC columns that are exceptionally old, deteriorating, or
carrying higher loads than those for which they were designed due to various reasons.
Therefore, these columns need to be strengthened.

Until recently, the two most common methods for strengthening a deficient RC column
were (i) constructing an additional RC jacket [1,2] and (ii) installing grout-injected steel
jackets [3–7]. These methods are labor-intensive and occasionally difficult to implement
on-site. In addition to being heavy, steel jackets are also poor in resisting weather. In recent
years, strengthening RC columns using FRP composites has gained wide popularity and
replaced steel jacketing substantially. The use of FRP composites is a sound technique
for strengthening such wall-like building columns because composites ensure increased
strength and/or ductility, fast and easy installation, high durability, low interruption to
the users of the structure, and an almost negligible increase in the mass and geometrical
dimensions of the column cross-sections.
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There are several studies dealing with the numerical modeling of FRP-wrapped mem-
bers, such as (i) circular RC columns wrapped with partial FRP strips [8], (ii) FRP retrofitted
members having deficient lap splices [9–11], (iii) rectangular RC columns strengthened by
FRP wrapping under axial [12] and cyclic axial compression [13], and (iv) general cases of
confined concrete [14] using Drucker–Prager plasticity models [15]. The axial behavior of
FRP sections was also studied numerically [16]. Other techniques of retrofitting have also
been investigated, such as the use of precast fiber-reinforced cementitious composites [17].

Investigations of the compressive behavior of RC columns of rectangular sections
wrapped with epoxy-bonded FRP sheets have mostly studied the effect of the aspect ratio
of column sections varying from 1 to 2. Some studies [18–26] involving wall-like columns
were conducted. Tan [18] tested wall-like columns under axial load to study the effect of the
type of fibers, their configuration, and anchors on the load-carrying capacity of columns.
A simplified approach was suggested for the assessment of the load-carrying capacity
of the retrofitted columns. A comparison of the predicted load capacity was also made
with available models [27,28]. Hosny et al. [19] studied 12 RC columns with rectangular
cross-sections of 15 cm × 45 cm and heights of 150 cm. They employed CFRP strips for
the confinement of the axially loaded members. They observed that the failure of the
FRP-upgraded columns occurred at low FRP strains. The effect of anchorage (by CFRP
anchors and steel plates) on the effectiveness of the system was also studied.

Tanwongsval et al. [20] tested FRP-strengthened wall-like columns under concentric
load. The column shape was modified by adding a semi-circular section of non-shrink
mortar at the two ends of the column section. The columns were then wrapped with
GFRP laminates. The performance of this scheme of strengthening was compared with
the columns wrapped with GFRP laminates without shape modification. The performance
of columns retrofitted after shape modification was reported to be better than for the
one strengthened without shape modification. Maalej et al. [21] studied the influence of
FRP wrapping on the load-carrying capacity of wall-like concrete columns. The authors
extended the load capacity predictions of past studies [29,30] for predicting the load capacity
of FRP-strengthened wall-like columns.

Prota et al. [22] studied the effect of FRP strengthening on enhancing the load-carrying
capacity of wall-like concrete columns. The authors concluded that the ductility and load
capacity could be enhanced by FRP strengthening. At failure, the strains in FRP laminate
were much smaller than the fiber fracture strain. De Luca et al. [23] discussed the laboratory
testing of three wall-like concrete columns externally confined using GFRP sheets. Two
columns were strengthened using a varying number of GFRP sheets. It was concluded that
the confinement did not increase the compressive strength of concrete. However, the FRP
confinement substantially increased the axial compressive strain at failure and prevented
the rebar buckling.

Alsayed et al. [24] studied the response of FRP-strengthened columns with a large
cross-sectional aspect ratio under concentric axial loads experimentally. The column section
was transformed into an elliptical one using cement mortar; then, it was externally confined
by CFRP laminates. The experimental load-compression response was validated with
the help of a numerical model. The CFRP confinement increased the load capacity and
ductility of the wall-like column. Abbas et al. [25] recently investigated, experimentally
and numerically, many other schemes for strengthening wall-like columns. Triantafillou
et al. [26] tested 45 wall-like concrete columns with varying section aspect ratios under axial
loading. The purpose of the study was to investigate the efficacy of different configurations
of wrapping CFRP laminates in combination with shape modification. The authors reported
the enhancement in confinement provided by FRP sheets when the number of FRP sheets
provided at the section edges was increased.

Concerning the design of strengthening techniques for RC structures using externally
bonded FRP composites, design codes, guidelines, or standards have to be accessible by
practicing structural engineers. In the literature, ten codes/guidelines were found for
designing FRP systems for upgrading RC structures. The ten design documents were
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developed as follows: two in the United States [31,32], one in Canada [33], one by the
European Committee for Standardization [34], one by the European ƒib Task Group 9.3 [35],
one in the UK [36], one in Italy [37], two in Asia [38,39], and one by the Egyptian Code
Committee [40]. However, three guidelines were found in the literature for strengthening
RC structures using near-surface mounted (NSM) techniques. These are ACI 440.2R-17 [31],
English TR 55 [36], and Canadian CSA S806-12 [41]. Although the NSM technique is an
effective method of retrofitting, the problems of debonding associated with this technique
were highlighted by D’Antino and Pisani [42]. In order to address this issue, the authors
developed a fracture-based model for the assessment of the bond strength of NSM bars
employed for the retrofitting of RC structures. The model was validated using 117 test
results available in the literature for different reinforcement types, including rectangular
and round bars and strips.

The above-detailed review of the literature illustrates that very limited systematic and
detailed experimental studies are available on the monotonic behavior of FRP-confined RC
wall-like columns. Previous research has shown that confining rectangular RC columns
with FRP jackets can provide marginal increases in the maximum axial compressive load.
In fact, design codes and guidelines do not allow the use of FRP confinement for members
featuring a side aspect ratio greater than a certain limit (see Ref. [43]). The ACI 440.2R-17
guidelines [31] do not recommend using FRP wrapping for RC columns with a sectional
aspect ratio greater than 2.0. The novelty of this study is that large-size wall-like column
specimens, strengthened with innovative hybrid NSM/CFRP systems, are tested under
concentric loading. This helped in investigating and validating the efficacy of CFRP
wrapping in enhancing the behavior of wall-like concrete columns experimentally. In this
research, a total of six RC wall-like column specimens of half-scale were cast and tested
under concentric axial compression. Two columns were unstrengthened to serve as control
specimens, and four were strengthened using different schemes. The 3D numerical models
were prepared to predict the response of tested specimens in terms of the load-compression
variation and failure modes.

2. Experimental Program

The experimental program involves a series of experiments involving strengthening
and testing wall-like RC columns in the event of axial load. The key parameter of the
investigation was the strengthening scheme. Four schemes for strengthening wall-like RC
columns were developed and tested experimentally.

2.1. Test Matrix

A representative prototype wall-like column was selected to be an interior ground-
story column of an existing seven-story (G+6) commercial building. Half-scale columns
were then selected as test specimens. It should be pointed out that full-scale columns were
not selected in this study as the peak load of the full-scale strengthened specimens may
exceed the capacity of the available compression testing machine. Moreover, it is clarified
from previous research conducted by the authors on FRP-confined concrete [44] that with
the same FRP confinement ratio, no significant variations occur in neither compressive
strength nor ultimate strain when different sizes of FRP-confined concrete specimens were
used. Accordingly, there is no need to introduce a size factor for the test results, which are
based on scaled sizes of FRP-wrapped concrete specimens. The test matrix is shown in
Table 1. A total of six RC wall-like columns having a cross-sectional aspect ratio of four
were cast. Two identical columns (CW) served as control specimens, and the remaining
four specimens (SW1, SW2, SW3, and SW4) were upgraded using different schemes. The
control specimen (CW) of dimensions 125 × 500 × 1200 mm was designed as shown in
Figure 1. The design of the column conforms to the relevant code provisions [45,46]. The
columns were reinforced with 10 ф10 longitudinal rebars (1.26% steel), and the transverse
ties provided in the middle and the end portions were ф8 at a center-to-center spacing of
200 mm and ф10 at a center-to-center spacing of 50 mm, respectively. The column ends
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were designed to have bulbs of 500 × 500 × 500 mm size to eliminate the concentration
of stresses and to properly distribute the axial load at the ends (Figure 1). The bulbs were
reinforced with ф10, ф12, and ф16 steel rebars.

Table 1. Matrix of column testing.

Column ID Strengthening Scheme No. of Columns

CW Control specimen (see Figure 1) 2

SW1
This specimen is strengthened using scheme-1

(wrapping of CFRP laminates around the outer column
surface) (see Figure 2)

1

SW2
This specimen is strengthened using scheme-2

(wrapping of CFRP laminates around the outer column
surface + connected NSM steel rebars) (see Figure 3)

1

SW3

This specimen is strengthened using scheme-3 (bending
of two CFRP layers inside the NSM grooves before the

installation of NSM rebars and wrapping of the
remaining CFRP layers around the outer column surface

+ connected NSM steel rebars) (see Figure 4)

1

SW4

This specimen is strengthened using scheme-4 (bending
of two CFRP layers inside the NSM grooves before the

installation of NSM rebars and wrapping of the
remaining CFRP layers around the outer column surface

+ disconnected NSM steel rebars) (see Figure 5)

1

Total No. of columns = 6
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Figure 1. Dimensions and reinforcement detailing of control specimen CW (note: all dimensions are
in mm).

2.2. Strengthening Schemes

Four schemes were developed for the strengthening of wall-like columns. The first
scheme (scheme-1) employed the conventional externally bonded FRP wrapping of the col-
umn with fibers oriented in the circumferential direction. In this scheme, CFRP composite
sheets were tried, and the column (SW1) was wrapped with three layers of the sheet in the
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middle 600 mm length; however, in the end zones of the column, an extra CFRP layer was
added to ensure the column failure in the middle portion. The details of this scheme are
presented in Figure 2.

The second strengthening scheme (scheme-2) employed a combination of vertical
NSM steel rebars and externally bonded CFRP wrapping. The provided NSM rebars were
14 ф10, which enhanced the column reinforcement from 1.26% to 3.01%. The provided
vertical NSM rebars require transverse ties for preventing their buckling. However, in this
scheme of strengthening, CFRP wrapping was utilized to support the NSM rebars laterally.
The CFRP wrapping scheme was the same as that adopted for column SW1, i.e., three
layers in the central portion and four layers at the two ends. The strengthening details of
this scheme are shown in Figure 3. It should be noted that the NSM rebars in this scheme
were continuous and connected to the top and bottom RC bulbs with development lengths
of 150 mm and 300 mm for the 12 ф10 bars on the long side and the 2 ф10 bars on the
short side of the column, respectively (see Figure 3). It is worth mentioning that a shorter
development length of 150 mm was selected for the NSM bars on the long side of the
column because these bars were developed in compression in the confined concrete of the
RC bulbs by drilling and bonding with epoxy adhesive mortar. However, the bars on the
short side were developed in compression in the unconfined concrete cover of the end
bulbs via preinstalled grooves filled with epoxy adhesive mortar.

The third scheme of strengthening wall-like columns is the same as scheme-2 except
that the arrangement of the CFRP layers was different. The details of scheme-3 are shown
in Figure 4. In this scheme, two of the CFRP layers were bonded to the column surface
before the installation of NSM rebars, and these layers were bent inside the NSM grooves,
as seen in Figure 4. However, the remaining CFRP layers were bonded to the column
surface after the installation of the NSM rebars and filling out the NSM grooves with epoxy
adhesive mortar (see Figure 4).

As seen in Figure 5, scheme-4 is exactly like scheme-3 except that the NSM rebars were
disconnected from the top and bottom RC bulbs. The length of the NSM rebars was 20 mm
shorter than the column height, and a gap of 10 mm width was provided between the NSM
rebars and the RC bulbs, as seen in Figure 5.
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Figure 2. Dimensions and reinforcement detailing of strengthened specimen SW1 (note: all dimen-
sions are in mm).
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2.3. Properties of Material

The concrete of the wall-like columns was obtained from a local company with a
target compressive strength of 25 MPa. Six standard 150 × 300 mm concrete cylinders
were prepared from the mix. Out of the six cylinders, three were tested at 28 days, and the
remaining three were tested on the day of testing the columns. Testing of concrete cylinders
was as per the ASTM C39/C39M [47]. The average concrete strengths were 26.10 MPa and
29.15 MPa at 28 days and on the day of column testing, respectively.

Locally manufactured deformed rebars of diameters 8 and 10 mm were utilized as
steel reinforcement for the column specimens. Steel rebars were tested under uniaxial
tension as per the ASTM E8/E8M [48], and the average mechanical properties are listed in
Table 2.

Commercially available CFRP composite laminates were utilized for the strengthening
of columns. It should be clarified that the properties reported in Table 2 for the CFRP
composite system are based on the gross-laminate area and not on the net-fiber area of
the system. Three standard tensile coupons were prepared in the lab for the CFRP sheets
and then tested as per the ASTM D3039/ D3039M–14 [49]. Table 2 presents the average
mechanical properties of the CFRP composite system. It is worth mentioning that the
longitudinal tensile strength of CFRP laminates listed in Table 2 is taken as 55% of the
tensile strength of flat CFRP test coupons [31]. The 55% reduction is called the FRP strain
efficiency factor that accounts for the premature failure of the FRP system, related primarily
to stress concentration regions (e.g., corner of wall-like columns) caused by cracking of the
concrete as it dilates.



Polymers 2023, 15, 378 8 of 32

Table 2. Properties of constituent materials employed in FEA.

Concrete-Like Materials Concrete Epoxy Mortar

Constitutive model Control specimen 2
Density (kg/m3) 2170 2170

Uni-axial compressive strength (MPa) 29.15 65
Poisson’s ratio 0.2 0.2

Maximum size of aggregate (mm) 10 5

Steel rebars ф8 ф10

Constitutive model Type 24 (piecewise linear plasticity model)
Density (kg/m3) 7850

Elastic modulus (GPa) 200
Poisson’s ratio 0.3

Yield stress (MPa) 548 531
Tangent modulus (MPa) 86.37 133.75

Plastic strain to failure (%) 9.72 9.73

CFRP material

Constitutive model Type 54–55 (enhanced comp. damage model)
Density (kg/m3) 1740

Thickness of single layer (mm) 1.3
Tensile modulus in long. dir. (GPa) 71.46

Tensile modulus in transverse dir. (GPa) 3.59
Longitudinal tensile strength (MPa) 710

Transverse tensile strength (MPa) 71

The commercially available structural adhesive mortar (Sikadur-31) was utilized for
filling the NSM grooves in specimens SW2, SW3, and SW4. Table 2 presents the mechanical
properties of the mortar as provided by the manufacturer’s datasheet.

2.4. Preparation of Specimens

Figure 6 shows the different steps followed in the preparation of test specimens.
The rebar cages of the wall-like columns are illustrated in Figure 6a. Figure 6b,c depict
the wall-like columns before and after casting. All specimens were cast simultaneously
using ready-mix concrete to avoid variations in concrete batches. Figure 6d shows the test
specimens after stripping of forms and curing. The control columns were tested, whereas
the columns meant for strengthening were strengthened using the developed schemes, as
explained in Section 2.2. It should be noted that in all strengthened specimens the corners
were rounded with a radius of 20 mm to reduce the concentration of CFRP stresses at
corners (see Figures 2–5).

In strengthening scheme-1, sandpaper was employed to grind the column surface.
Subsequently, sandblasting was performed to take away all the unevenness on the surface,
which was afterward cleaned with the help of acetone. The wet layup procedure was
adopted in wrapping CFRP sheets. Figure 6e shows the process of strengthening the
column with scheme-1 using CFRP sheets (specimen SW1).
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umn with scheme-1 using CFRP sheets (specimen SW1). 

Figure 6. Preparation of test specimens: (a) rebar cages; (b) reinforcement cages in the formworks
before casting of concrete; (c) test specimens after casting; (d) test specimens ready for testing
and strengthening; (e) strengthening of column with scheme-1 using CFRP sheets (SW1); and
(f) strengthening of column with scheme-2 using CFRP sheets combined with connected NSM rebars
(SW2).

In other strengthening schemes (specimens SW2, SW3, and SW4), NSM rebars were
used, and they were provided in longitudinal grooves in the concrete cover. These
grooves were made by attaching strips of polystyrene foams to the column during casting
(Figure 6d). In scheme-2, the reinforcing rebars were planted into these grooves and bonded
with an epoxy adhesive mortar (Sikadur 31), as presented in Figure 6f. After the curing
of adhesive mortar, CFRP sheets were wrapped around the column, as seen in Figure 6f.
Nevertheless, for schemes 3 and 4, two CFRP layers were bonded to the column surface
before the installation of NSM rebars, and these layers were bent inside the NSM grooves.
Thereafter, the NSM rebars were inserted into the grooves and bonded with epoxy mortar
(Sikadur-31). After curing of the epoxy mortar, the surface of the mortar was sandblasted
and then cleaned using acetone liquid. Subsequently, the remaining CFRP layers were
bonded to the column’s surface. It should be noted that in schemes 2 and 3, the 12 ф10 NSM
rebars on the long side were connected to the top and bottom bases by drilling 150 mm
deep holes and then bonding the rebars using epoxy mortar (Sikadur-31). However, the
2 ф10 NSM rebars on the short side were connected to the top and bottom bases by bonding
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them in the preinstalled concrete cover grooves (with a development length = 300 mm)
using epoxy adhesive mortar. In scheme-4, the NSM rebars were disconnected from the top
and bottom bases.

2.5. Testing Setup and Instrumentation Layout

Figure 7 presents the instrumentation layout and testing setup for column specimens.
The concentric axial compressive load was applied to the columns via a compression testing
machine at a rate of 0.5 mm/min. For measuring the axial displacement of the specimen,
four LVDTs (linear variable displacement transducers) were attached to the central part of
the column, as illustrated in Figure 7. Strain gages were also used to measure strains in
different parts of the specimen (concrete, steel rebars, and CFRP sheets). Figure 8 shows the
location of strain gauges installed on different parts of the test specimens. The test results
were monitored using a data acquisition system.
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Figure 8. Layout of strain gages for test specimens (note: all dimensions are in mm): (a) locations on
concrete surface for control specimens CW1 and CW2; (b) locations on FRP surface for strengthened
specimens; (c) numbering of steel rebars for all specimens; and (d) table showing locations for
different parts of test specimens.

3. Discussion of Experimental Results

Table 3 depicts the key test results of the load-displacement response for test columns
with regard to load and axial displacement at the onset of main rebar yielding, peak
load, axial displacement at service load level, axial displacement at maximum load, axial
displacement at the ultimate state level, stiffness at service load level, and dissipated energy.
In the current research, the column stiffness (Ks) was computed as the ratio of service axial
load (assumed as 40% of the maximum load [7,50,51]) to the related axial displacement
(see Figure 9). As shown in Figure 10a, the energy dissipated (Eu) was assessed as the
area under the load-displacement envelope up to ultimate displacement. The ultimate
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state was taken as that corresponding to concrete crushing, as presented in Figure 10b,
and it is assumed as that corresponding to a failure load of Pf = 0.8 φPu where φ is the
resistance factor for sections under concentric axial compression (= 0.65 as per both ACI
318-19 code [45] and SBC 304-18 code [46]). The reduction factor of 0.8 was taken as per
the requirements of both ACI 318-19 and SBC 304-18 codes to account for the minimum
eccentricity for tied columns. In this regard, it is assumed in this study that the column
reaches its ultimate limit state if its load-carrying capacity is less than the design ultimate
capacity calculated by the code.

Table 3. Comparison of experimental and FE results of load-displacement response for test columns *.

Column
ID Results Py (kN) Pu (kN) ∆s (mm) ∆y (mm) ∆pu (mm) ∆u (mm) Ks

(kN/mm)
Eu

(kN.mm)

Control specimens

CW1 EXP 1846 1862 0.27 0.93 1.05 2.01 2810 2866
FE 1969 1974 0.29 1.04 1.09 2.15 2693 3220

EXP/FE 0.94 0.94 0.90 0.89 0.96 0.93 1.04 0.89
CW2 EXP 1919 2006 0.29 0.93 1.11 1.97 2815 3157

FE 1969 1974 0.29 1.04 1.09 2.15 2693 3220
EXP/FE 0.97 1.02 0.97 0.89 1.02 0.92 1.05 0.98

Strengthened specimens

SW1 EXP 2241 2451 0.33 1.02 1.31 2.02 3017 3531
FE 2439 2540 0.34 1.18 1.39 1.99 2991 3424

EXP/FE 0.92 0.96 0.96 0.86 0.94 1.01 1.01 1.03
SW2 EXP 3223 3478 0.34 1.06 1.37 1.72 4092 4212

FE 3491 3686 0.37 1.18 1.40 1.75 4020 4343
EXP/FE 0.92 0.94 0.93 0.89 0.98 0.98 1.02 0.97

SW3 EXP 3027 3225 0.32 0.92 1.06 1.11 3993 3992
FE 2971 3088 0.31 0.91 1.10 1.26 4004 3849

EXP/FE 1.02 1.04 1.05 1.01 0.97 0.88 1.00 1.04
SW4 EXP 2859 3027 0.31 1.00 1.20 1.22 3875 3842

FE 2971 3088 0.31 0.91 1.10 1.26 4004 3849
EXP/FE 0.96 0.98 1.01 1.10 1.10 0.97 0.97 1.00

* Py and ∆y = load and axial displacement at yielding of longitudinal steel rebars; Pu = peak load; ∆s = axial
displacement at service load level; ∆pu = axial displacement at peak load; ∆u = axial displacement at ultimate
state; Ks = stiffness at service load level; Eu = energy dissipated at ultimate state; EXP = experimental; FE = finite
element.
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concrete strain.

Table 4 displays the key experimental results of the axial stress-strain response for
test specimens with respect to: peak average concrete strength ( f

′
c−avg), maximum ac-

tual concrete strength ( f
′
c−act), axial concrete strain at peak stress (εc−pu), ultimate axial

concrete strain (εcu), strains in main and NSM steel rebars, respectively, at peak load
(εs−pu&εs,NSM−pu), and peak horizontal strain in CFRP laminates of strengthened speci-
mens (εFRP,u). The peak average concrete strength was calculated from

f
′
c−avg =

Pu

Ag
(1)

Table 4. Comparison of experimental and FE results of stress-strain relationship for test columns *.

Column
ID Results

f’
c−avg

(MPa)
f’
c−act

(MPa)
εc−pu εcu εs−pu εs,NSM−pu εFRP,u

Control specimens
CW1 EXP 29.79 23.41 0.0026 0.0050 0.0034 - -

FE 31.59 25.23 0.0027 0.0054 0.0033 - -
EXP/FE 0.94 0.93 0.96 0.93 1.04 - -

CW2 EXP 32.09 25.74 0.0028 0.0049 0.0031 - -
FE 31.59 25.23 0.0027 0.0054 0.0033 - -

EXP/FE 1.02 1.02 1.02 0.92 0.95 - -

Strengthened specimens

SW1 EXP 39.43 33.15 0.0033 0.0050 0.0049 - −0.0092
FE 40.65 34.60 0.0035 0.0050 0.0041 - −0.0098

EXP/FE 0.97 0.96 0.94 1.01 1.19 - 0.94
SW2 EXP 55.96 41.11 0.0034 0.0043 0.0038 NA NA

FE 58.98 44.56 0.0035 0.0044 0.0038 0.0033 −0.0099
EXP/FE 0.95 0.92 0.98 0.98 1.00 - -

SW3 EXP 51.89 36.92 0.0027 0.0028 0.0034 NA −0.0099
FE 49.41 34.63 0.0027 0.0031 0.0039 0.0038 −0.0099

EXP/FE 1.05 1.07 0.97 0.88 0.87 - 0.99
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Table 4. Cont.

Column
ID Results

f’
c−avg

(MPa)
f’
c−act

(MPa)
εc−pu εcu εs−pu εs,NSM−pu εFRP,u

SW4 EXP 48.70 33.62 0.0030 0.0031 0.0043 NA −0.0081
FE 49.41 34.63 0.0027 0.0031 0.0039 0.0038 −0.0099

EXP/FE 0.99 0.97 1.10 0.97 1.08 - 0.81

* f
′
c−avg = peak average concrete strength; f

′
c−act = peak actual concrete strength; εc−pu = axial concrete strain at

peak stress (compression is +ve); εcu = ultimate axial concrete strain (compression is +ve); εs−pu = axial strain in
longitudinal steel rebars at peak load (compression is +ve); εs,NSM−pu = axial strain in NSM steel rebars at peak
load (compression is +ve); εFRP,u = peak horizontal strain in FRP laminates (compression is +ve); εsp,u = peak
horizontal strain in steel plates (compression is +ve); EXP = experimental; FE = finite element; NA = not available
data.

However, the peak actual concrete strength is computed from

f
′
c−act =

Pu − Ast fy−st − ANSM fy−NSM

Ag − Ast − ANSM
(2)

where Pu is the maximum load; Ag and Ast are, respectively, the area of column section and
main steel rebars; fy-st and fy-NSM are, respectively, the yield strength of longitudinal and
NSM rebars; and ANSM is the area of NSM rebars.

Figure 11 shows the load-displacement plots of the tested specimens. Figures 12 and 13
present the modes of failure for unstrengthened and strengthened columns, respectively.
Following is a discussion of the experimental results for control and strengthened RC
wall-like column specimens.
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3.1. Unstrengthened Columns

As illustrated in Figure 11 and Table 3, the maximum load achieved for the two control
(i.e., unstrengthened) columns CW1 and CW2 was 1862 and 2006 kN, respectively, with an
average load of 1934 kN. After reaching the peak, there was a continuous decrease in the
axial capacity until it dropped to almost zero. Comparing the load-displacement plots for
the two columns shown in Figure 11 indicates that the test results are consistent. Figure 12
presents the failure mode of the unstrengthened columns CW1 and CW2. The failure of the
two columns showed typical brittle failure, which was initiated by concrete cover spalling
when the axial compressive strain exceeded the crushing strain of concrete. This led to
the buckling of longitudinal column rebars and consequent total failure owing to concrete
crushing in the central portion of the column height (Figure 12).

3.2. Strengthened Columns
3.2.1. Column Strengthened with Scheme-1 (SW1)

As mentioned previously, specimen SW1 was strengthened by the external wrapping of
three layers of CFRP sheets within the middle 600 mm portion of the column. As depicted in
Figure 11 and Table 3, the maximum load attained for this column was 2451 kN, which is 27%
higher than the average peak load of unstrengthened columns. As the axial load increased, the
concrete expanded laterally, owing to Poisson’s effect. At the peak load of 2451 kN, excessive
concrete dilation occurred so that the CFRP sheets could not control the concrete expansion
due to the large depth-to-width ratio of the column section. Accordingly, bulging of the CFRP
sheets was noticed in the upper part of the middle 600 mm portion of the column. Subsequently,
there was a rapid decrease in the axial capacity of the column, but it stopped at about 1400 kN
and remained almost flat (see Figure 11). The bulging of the column section resulted in the
buckling of longitudinal column rebars, which caused the rupture of CFRP sheets at a corner of
the column section (Figure 13a).

3.2.2. Column Strengthened with Scheme-2 (SW2)

As outlined previously, this column was upgraded by 14 ф10 mm continuous NSM
steel rebars in combination with the wrapping of three CFRP layers around the middle
portion of the column. As seen from Figure 11 and Table 3, the enhancement in maximum
load for this scheme was about 80% compared to the average peak load of control columns.
The maximum load achieved for the strengthened column was 3478 kN, which is 42% higher
than the load-carrying capacity of the column strengthened using the CFRP wrapping
scheme (i.e., SW1). Thus, this strengthening scheme is quite efficient at enhancing the axial
compression response of RC wall-like columns.

Figure 13b shows the mode of failure of the wall-like column SW2. As the axial load
increased, the concrete expanded laterally, owing to Poisson’s effect. At the peak load
of 3478 kN, excessive concrete dilation occurred so that the CFRP sheets and the NSM
rebars could not control the concrete expansion due to the large aspect ratio of the column
section. Accordingly, buckling of NSM rebars and bulging of the CFRP sheets were noticed
in the upper part of the middle 600 mm portion of the column. Owing to NSM rebar
buckling, there was a rapid drop in the axial capacity of the column to about 2000 kN
(close to the average peak load of control specimens), but it stopped at about 1700 kN and
remained almost flat (see Figure 11). Increasing the axial displacement of the specimen
caused concrete crushing and buckling of main steel rebars, which led to the rupture of
CFRP laminates on the smaller side of the column section (see Figure 13b).

3.2.3. Column Strengthened with Scheme-3 (SW3)

As detailed before, this strengthening scheme is the same as scheme-2 except that
two of the three CFRP wrapping layers were bonded to the inside surface of the NSM
grooves before the installation of the NSM rebars, and the remaining CFRP layer was later
bonded to the outer column surface. As seen from Figure 11 and Table 3, the enhancement
in maximum load for this scheme was about 67% compared to the average peak load of
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control columns. The peak load achieved for the strengthened column SW3 was 3225 kN,
which is 32% higher than the maximum load of upgraded specimen SW1; however, it was
less than the peak load of upgraded specimen SW2 by about 7%. Thus, this strengthening
scheme is more effective than the wrapping scheme-1; yet it is slightly less effective than
scheme-2. The reduced efficiency of this scheme compared to scheme-2 is attributed to the
less confinement provided to the column section by CFRP wrapping. The area of the NSM
grooves (about 18% of the column section) was only confined by a single layer of CFRP
laminates, and the remaining 82% of the section was confined by three CFRP layers.

Figure 13c presents the failure mode of strengthened column SW3. As the axial load
increased, the concrete expanded laterally, owing to Poisson’s effect. At the peak load of
3225 kN, excessive concrete dilation occurred so that the CFRP sheets and the NSM rebars
could not control the concrete expansion due to the large aspect ratio of the column section.
Consequently, buckling of NSM rebars and bulging of the CFRP sheets were noticed in the
middle 600 mm portion of the column. This caused a sudden drop in the axial capacity of the
column to about 2000 kN (close to the average peak load of control specimens) but stopped
at about 1700 kN and remained almost flat up to an axial displacement of about 5 mm (see
Figure 11). Increasing the axial displacement of the column caused the crushing of both concrete
and epoxy adhesive mortar and buckling of main rebars, which led to the rupture of CFRP
laminates that started on the smaller side of the column section and subsequently spread out to
the longer side as illustrated in Figure 13c.

3.2.4. Column Strengthened with Scheme-4 (SW4)

As noted previously, this strengthening scheme is the same as scheme-4 except that
the 14 ф10 NSM steel rebars were disconnected from the top and bottom bases. As seen
from Figure 11 and Table 3, the enhancement in maximum load for scheme-4 was about
57% compared to the average peak load of control columns. The maximum load achieved
for the strengthened column SW4 was 3027 kN, which is 24% higher than the axial capacity
of strengthened column SW1; however, it is less than the peak load of upgraded specimens
SW2 and SW3 by about 13% and 6%, respectively. The reduced efficiency of this scheme
compared to scheme-2 is attributed to the less confinement provided to the column section
by CFRP wrapping. However, compared to SW3, the 6% reduction in the peak load of
specimen SW4 could be owing to the reduced compressive strength of the epoxy mortar
used in the NSM grooves.

Figure 13d presents the failure mode of strengthened specimen SW4. It is identified
that the failure modes of specimens SW3 and SW4 are almost identical. As the axial load
increased, the concrete expanded laterally, owing to Poisson’s effect. At the peak load of
3027 kN, excessive concrete dilation occurred so that the CFRP sheets and the NSM rebars
could not control the concrete expansion due to the large aspect ratio of the column section.
Accordingly, buckling of NSM rebars and bulging of the CFRP sheets were noticed in the
middle 600 mm portion of the column. This caused a sudden drop in the axial capacity
of the column to about 1900 kN (close to the average peak load of control specimens) but
stopped at about 1700 kN and remained almost flat up to an axial displacement of about
9 mm (see Figure 11). The further increase in the compression of the column caused the
crushing of concrete and epoxy adhesive mortar in the NSM grooves and buckling of the
main longitudinal steel rebars of the column, which led to the rupture of CFRP sheets in
the middle 600 mm portion of the column, as shown in Figure 13d.

3.3. Comparison of Strengthening Schemes

The effect of the strengthening scheme on the enhancement in maximum load, stiffness,
and energy dissipated is illustrated in Figure 14. It is identified that the external wrapping
of three CFRP layers in scheme-1 was not effective at enhancing the axial capacity of
wall-like specimens, as the increase was only moderate by about 27%. However, using
vertical NSM rebars in combination with the wrapping of three CFRP layers (schemes 2,
3, and 4) was very efficient at enhancing the axial capacity of the wall like-columns by
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about 57% to 80%, as seen in Figure 14a. The largest ultimate load increase of 80% was
provided by scheme-2, in which the three CFRP layers were attached to the outer column
surface, and the vertical NSM rebars were anchored to the top and bottom RC boxes, as
detailed earlier. For scheme-3, the peak load increase was 13% less than scheme-2. This
is because the wrapping scheme used in scheme-3 (bonding two CFRP layers inside the
NSM rebars and one layer on the outer column surface) was less efficient and gave less
confinement than that used in scheme-2 (wrapping three CFRP layers on the outer column
surface). It was also clarified that even though scheme-4 is the same as scheme-3 except
that the NSM rebars were disconnected from the top and bottom RC bulbs, the peak load
increase of scheme-4 was 10% less than scheme-3. As noted from the test observations,
the disconnected NSM rebars in specimen SW4 were fully activated during the loading
process and continued to share in carrying the axial load until their buckling, as discussed
earlier. Therefore, the 10% reduction in the peak load of scheme-4 compared to scheme-3
could be owing to the low strength of the adhesive mortar in specimen SW4 compared
with specimens SW2 and SW3.
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mum load; (b) stiffness; and (c) energy dissipated.

As seen from Figure 14b, the external wrapping of three CFRP layers in scheme-1 had
a minor effect on enhancing the secant stiffness of the wall-like column as the increase was
limited to 7%. However, using vertical NSM rebars in combination with the wrapping of
three CFRP layers (schemes 2, 3, and 4) was very efficient at enhancing the secant stiffness of
the wall like-columns by about 38% to 45%, as seen in Figure 14b, with the highest increase
of 45% provided by scheme-2. It should be mentioned that it is favorable to increase the
axial stiffness of upgraded wall-like columns at service loads because it will decrease the
creep deformation and hence axial shortening in RC buildings.

As detailed before, the energy dissipated at the ultimate state was computed for each
specimen, and its percent increase owing to strengthening was evaluated, as seen in the bar
chart of Figure 14c. It is identified that for scheme-1 with the external wrapping of three
CFRP layers, the increase in the dissipated energy was limited to 17%. Nevertheless, for
schemes 2, 3, and 4, in which vertical NSM rebars were combined with CFRP wrapping, the
enhancement in the energy dissipated varied from 28% to 40%, with the highest increase
provided by scheme-2 (see Figure 14c).

4. Finite Element Analysis

In addition to the experimental program, 3D nonlinear finite element analysis (FEA) was
carried out to predict the response of concentrically loaded unstrengthened and strengthened
RC wall-like columns. For this purpose, the commercial software LS-DYNA [52] was utilized.
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4.1. Model Geometry and Mesh Generation

Figures 15–17 present the FE mesh for RC wall-like column specimens. It should be
noted that one-quarter of the column was numerically simulated, considering its symmetry
about both XZ and YZ planes. It should also be noted that the top and bottom boxes at the
ends of the specimen were not included in the FE model geometry. This is because these
boxes were heavily reinforced, and their behavior was linear elastic throughout the testing
with no concrete cracking and/or crushing. This was also done to reduce the number of
elements and therefore save the solution time. For capturing the actual performance of
test specimens, 3D FE models were developed for the columns. In this regard, one-point
integration solid elements of eight nodes were utilized for epoxy mortar and concrete. For
transverse and main rebars, two-node beam elements were employed. FRP sheets were
represented by four-node shell elements of the Belytschko-Tsay algorithm [53]. As slippage
at rebars-to-concrete interaction was not noticed during the testing of wall-like columns,
the perfect bond was modeled at the interface of concrete with transverse and main steel
rebars. Since FRP wrapping of RC columns is considered a contact-critical application,
the full bond behavior was simulated at the concrete-to-FRP interaction. Additionally, in
strengthened specimens SW2, SW3, and SW4, slippage was ignored at the interaction of
concrete with epoxy adhesive mortar. For control column CW, the mesh size ranges from
9.3 mm to 12.5 mm; however, for strengthened columns, the mesh size varies from 2.3 to
25 mm. It has been found that more reduction in the size of elements beyond that illustrated
in Figures 15–17 has a minor influence on the outputs; nevertheless, it may greatly increase
the solution time, which is unfavorable.
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and (c) CFRP sheets.
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Figure 17. FE mesh for strengthened columns SW2, SW3, and SW4: (a) concrete volume; (b) epoxy
adhesive mortar; (c) reinforcement cage; (d) NSM rebars; (e) CFRP sheets for specimen SW2; and
(f) CFRP sheets for specimens SW3 and SW4.
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4.2. Material Modeling

The concrete damage model (type 72R3) was utilized to represent both epoxy mortar
and concrete materials. This model was developed in Refs. [54–56]. In this constitutive
model, three individual failure surfaces are employed to define the deviatoric strength of
concrete material. The different model parameters can be automatically calculated by the
software from the uniaxial compressive concrete strength. For simulating steel rebars, the
plasticity model type 24 was employed, and the stress versus strain behavior in this model
was simulated by a bilinear curve. The FRP composite laminates were represented using
the enhanced composite damage model (type 54–55). The failure criterion of Chang and
Chang [57] was used along with this model. Table 2 shows the material properties used in
the FE modeling.

4.3. Loading Protocol and Boundary Conditions

The extreme bottom nodes of each column were prevented from displacement in the
X, Y, and Z directions to simulate the test boundary conditions. However, for the extreme
top nodes, the displacements in the X and Y directions only were prevented in order to
allow for the vertical Z-displacement. As presented in Figure 15, boundary conditions
simulating symmetry were assigned for the two symmetry planes of the one-quarter model.
A prescribed, Z-displacement versus time history curve was assigned for the extreme top
nodes of the model to simulate the displacement-controlled loading employed in the tests,
as illustrated in Figure 18.
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5. Discussion of FEA Results

Comparisons between experimental and FEA results are summarized in Table 3 for
test columns with regard to load and axial displacement at the yielding of main rebars,
peak load, axial displacement at service load level, axial displacements at maximum load
and ultimate state, stiffness at service load level, and dissipated energy. As clarified from
the table, the errors in the prediction of yield and peak loads are 2% to 8% and 2% to 6%,
respectively. For displacement at service load, displacement at yield load, displacement at
maximum load, and displacement at ultimate state, the prediction errors varied from 1%
to 10%, 1% to 14%, 2% to 10%, and 1% to 12%, respectively. Nevertheless, the prediction
errors of stiffness at service load level and dissipated energy are 0% to 5% and 0% to 11%,
respectively. Comparisons of experimental and FE load versus displacement plots for
unstrengthened and strengthened columns are presented in Figures 19 and 20, respectively.
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Table 4 displays comparisons between the experimental and numerical stress-strain
results for test columns with respect to peak average concrete strength ( f

′
c−avg), maxi-
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mum actual concrete strength ( f
′
c−act), axial concrete strain at peak stress (εc−pu), ulti-

mate axial concrete strain (εcu), axial strains in main and NSM steel rebars at peak load
(εs−pu & εs,NSM−pu), and peak horizontal strain in CFRP laminates of strengthened speci-
mens (εFRP,u). As illustrated from the table, the errors in the numerical assessment of peak
average and actual concrete strengths ranged from 1% to 6% and 2% to 8%, respectively.
For concrete strain at ultimate stress and ultimate concrete strain, the prediction errors
varied from 2% to 10% and 1% to 12%, respectively. The strain in the longitudinal steel
rebars at maximum load was numerically predicted with an error ranging from 0% to 19%.
As seen from Table 4, for strengthened specimens, the peak horizontal strains in CFRP
laminates were numerically predicted with errors varying from 1% to 19%.

Following is a detailed discussion of the experimental versus FEA results for control
and strengthened specimens.

5.1. Unstrengthened Columns

The predicted failure mode of unstrengthened column CW is presented in Figure 21.
The predicted failure modes are presented in terms of damage contours for concrete
elements and axial stress contours for beam elements of reinforcement cage (longitudinal
and transverse steel rebars). For concrete elements, the damage contours are represented
by the effective plastic strain contours, and they range from 0 (shown in blue for the case
of no damage) to 2 (shown in red for the case of full damage). As seen in Figure 21, the
numerically predicted modes of failure matched well the test results detailed previously
for columns CW1 and CW2. It is identified that failure occurred due to concrete crushing
(Figure 21a) and buckling of longitudinal rebars (Figure 21b) in the middle 600 mm portion
of the column.
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Figure 21. FE mode of failure for control specimen CW: (a) effective plastic stress contours for
concrete elements; (b) axial stress contours for rebar elements.

Experimental versus FE load-displacement curves for control columns CW1 and CW2
are illustrated in Figure 19a,b, respectively. As noted, a good match was obtained between
the experimental and predicted load-displacement curves for unstrengthened specimens
CW1 and CW2. The softening behavior was successfully modeled, which proves the
precision of the constitutive models used for concrete and steel rebars.

5.2. Strengthened Column SW1

Figure 22 presents FE failure modes for strengthened column SW1, in which the
middle 600 mm portion was upgraded by three CFRP layers. The predicted failure modes
are presented in terms of X-stress contours (in the local coordinate system) for CFRP
shell elements, damage contours for concrete elements, and axial stress contours for beam
elements of the reinforcement cage. As seen in Figure 22, the predicted failure modes
matched well the test observations detailed previously in Section 3. Column failure started
with bulging of the CFRP laminates in the top part of the central 600 mm length of the
specimen. The bulging was simultaneous with a sudden drop in the axial capacity of
the specimen. The ultimate failure mode was owing to concrete crushing followed by
the buckling of main steel rebars. With increased axial displacement, rupture of CFRP
laminates occurred near the corner of the column section, as illustrated in Figure 22.

Figure 20a shows a comparison between experimental and predicted load versus
displacement plots for column SW1. It is clear that the two curves agreed well with each
other. The softening behavior was successfully modeled, which proves the precision of
the used constitutive models for concrete, steel rebars, and CFRP sheets. As seen from
Table 3, this strengthening scheme was predicted to have a limited enhancement in the
axial capacity, as the maximum predicted load of specimen SW1 was only 29% more than
that of control specimen CW.
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5.3. Strengthened Column SW2

Figure 23 shows the numerically predicted failure modes for strengthened column
SW2, in which the middle 600 mm portion was strengthened by a combination of three
CFRP layers and 14 ф10 continuous NSM rebars. The predicted failure modes are presented
in terms of X-stress contours (in the local coordinate system) for CFRP shell elements,
effective plastic strain contours for concrete elements, and axial stress contours for beam
elements of the reinforcement cage. As seen in Figure 23, the predicted failure modes
matched well the test observations detailed in Section 3. The failure of specimen SW2
started by bulging of the CFRP layers in the top part of the middle 600 mm portion of the
column. The bulging was concurrent with a rapid decrease in the axial capacity of the
column. The ultimate failure was located in the top part of the middle 600 mm portion of
the specimen, and it was owing to concrete crushing followed by a buckling of main and
NSM steel rebars. With increased axial displacement, rupture of CFRP laminates occurred
in the short side of the column section, as seen in Figure 23. This was evidenced by the
predicted peak horizontal strain in the CFRP sheets listed in Table 4, as it was almost the
same as the rupture strain of the CFRP composite system.

Experimental versus FE load-displacement curves for strengthened column SW2 are
shown in Figure 20b. As noted, a good match was obtained between the experimental
and FE load-displacement curves. The softening behavior was efficiently modeled, which
proves the precision of the used constitutive models for concrete, steel rebars, and CFRP
sheets. As seen in Table 3, this strengthening scheme was predicted to be very efficient at
enhancing the ultimate load of wall-like columns. The FE peak axial load of the upgraded
specimen SW2 showed increases of almost 87% and 45% over the unstrengthened column
CW and the strengthened specimen SW1, respectively.
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5.4. Strengthened Columns SW3 and SW4

As detailed before, specimen SW3 is the same as SW2 except that two of the three
CFRP wrapping layers were bonded to the inside surface of the NSM grooves before the
installation of the NSM rebars, and the remaining layer was later bonded to the outer
surface of the column. Additionally, specimen SW4 is the same as SW3 except that the
14 ф10 NSM steel rebars were disconnected from the top and bottom bases. As noted
from the FE results, the disconnected NSM rebars in specimen SW4 were fully activated
during the loading process and continued to share in carrying the axial load until the end
of the analysis. Accordingly, the FE results of specimens SW3 and SW4 are identical, as
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seen in Tables 3 and 4. Experimental versus FE load-displacement curves for strengthened
columns SW3 and SW4 are shown in Figure 20c,d, respectively. As noted, good agreements
were obtained between the experimental and predicted load versus displacement curves.
The softening behavior was efficiently modeled, which proves the precision of the used
constitutive models for concrete, steel rebars, and CFRP sheets. As seen from Table 3,
schemes 3 and 4 were predicted to be efficient at enhancing the ultimate load of wall-like
columns. The predicted maximum load of specimens SW3 and SW4 showed an increase of
almost 56% and 22% over the unstrengthened column CW and the strengthened specimen
SW1, respectively. However, schemes 3 and 4 were predicted to be less effective than
scheme-2 as the numerically predicted peak loads of specimens SW3 and SW4 were less
than specimen SW2 by about 16%, as depicted in Table 3. The reduced efficiency of this
scheme compared to scheme-2 is attributed to the less confinement provided to the column
section by CFRP wrapping.

Figure 24 illustrates the predicted modes of failure for columns SW3 and SW4. As
seen in Figure 24, the predicted failure modes agreed well with the experimental results
shown earlier in Figure 13c,d. The failure of specimens SW3 and SW4 started with the
bulging of the CFRP layers in the middle 600 mm length of the specimen (see Figure 24a).
The bulging was concurrent with a sudden drop in the axial capacity of the specimen. The
ultimate failure was located in the middle 600 mm portion of the specimen, and it was
owing to concrete crushing (Figure 24b) followed by buckling of main and NSM steel rebars
(Figure 24c,d). With increased axial displacement, rupture of CFRP laminates occurred in
the short side of the column section (Figure 24e). This was confirmed from the predicted
peak horizontal strain in the CFRP sheets listed in Table 4, as it was nearly the same as the
rupture strain of the CFRP material.
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Figure 24. FE mode of failure for strengthened specimens SW3 and SW4: (a) bulging of CFRP sheets
at peak load; (b) effective plastic stress contours for concrete elements; (c) axial stress contours for
main rebar elements; (d) axial stress contours for NSM rebar elements; and (e) X-stress contours for
shell elements of CFRP sheets.

5.5. Comparison of Strengthening Schemes

Based on the FE results of the studied columns, Figure 25 was plotted to illustrate the
percent of peak load increase for each strengthening scheme with respect to the control
specimen CW. The FE results confirmed that schemes 1 and 2, respectively, provided the
lowest and highest peak load increase. Based on the results of the FE modeling, the contri-
bution of each part of the strengthening scheme is also shown in Figure 25. It is generally
assumed that the load enhancement due to strengthening is divided into three parts: an
increase provided by NSM rebars, an increase due to the increased compressive strength of
epoxy mortar, and an increase provided by section confinement. The contribution of each
part was approximately calculated from the following equations.

∆Pu = % of peak load increase due to strengthening =
Pu − Pu−CW

Pu−CW
× 100 (3)

∆Pu−NSM = % of peak load increase due to NSM rebars =
ANSM fy−NSM

Pu−CW
× 100 (4)

∆Pu−mortar = % of peak load increase due to mortar =
0.85

(
f
′
m − f

′
c

)(
Agrooves − ANSM

)
Pu−CW

× 100 (5)

∆Pu−CFRP = % of peak load increase due to confinement =∆Pu − ∆Pu−NSM − ∆Pu−mortar (6)

where Pu = peak load of strengthened specimen; Pu−CW = peak load of control specimen
CW; Agrooves = cross-sectional area of NSM grooves; and f

′
m = compressive strength of

mortar = 65 MPa.
It should be noted that, in Equations (3)–(6), a linear superposition of the effect

of different parts is assumed, and the possible interaction among various components
is completely ignored. It is clarified from Figure 25 that in scheme-1 the wrapping of
three CFRP layers around the column was predicted to enhance the peak load by about
29%. However, scheme-2 was predicted to increase the peak load by about 87%, and
this enhancement ratio was divided into: 30% owing to NSM rebars; 16% due to the
increased compressive strength of epoxy mortar compared to the column concrete, and the
remaining 41% provided by section confinement. It is noted that in scheme-2, the column
section is confined by both CFRP laminates and NSM rebars as both helped in reducing
the lateral expansion of the concrete core; however, in scheme-1, the confinement of the
column section was only provided by the CFRP laminates. Accordingly, the predicted
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confinement contribution in SW2 (41%) was larger than that predicted for specimen SW1
(29%). As discussed earlier, connected and disconnected NSM in specimens SW3 and SW4,
respectively, provided the same axial load enhancement. Schemes 3 and 4 were predicted to
have the same peak load enhancement ratio of 56%. As seen in Figure 25, this enhancement
ratio is divided into 30% provided by NSM rebars, 16% owing to the increased strength of
epoxy mortar, and the remaining 10% due to section confinement. Compared to schemes 1
and 2, the less confinement provided in schemes 3 and 4 could be owing to the use of one
CFRP layer to confine the NSM grooves instead of the three layers used in specimen SW2.

Polymers 2023, 15, x FOR PEER REVIEW 29 of 32 
 

 

 

Figure 25. Comparison of strengthened columns with respect to percent enhancement in maximum 

load (based on FE results). 

It should be noted that, in Equations (3)–(6), a linear superposition of the effect of 

different parts is assumed, and the possible interaction among various components is 

completely ignored. It is clarified from Figure 25 that in scheme-1 the wrapping of three 

CFRP layers around the column was predicted to enhance the peak load by about 29%. 

However, scheme-2 was predicted to increase the peak load by about 87%, and this en-

hancement ratio was divided into: 30% owing to NSM rebars; 16% due to the increased 

compressive strength of epoxy mortar compared to the column concrete, and the remain-

ing 41% provided by section confinement. It is noted that in scheme-2, the column section 

is confined by both CFRP laminates and NSM rebars as both helped in reducing the lateral 

expansion of the concrete core; however, in scheme-1, the confinement of the column sec-

tion was only provided by the CFRP laminates. Accordingly, the predicted confinement 

contribution in SW2 (41%) was larger than that predicted for specimen SW1 (29%). As 

discussed earlier, connected and disconnected NSM in specimens SW3 and SW4, respec-

tively, provided the same axial load enhancement. Schemes 3 and 4 were predicted to 

have the same peak load enhancement ratio of 56%. As seen in Figure 25, this enhance-

ment ratio is divided into 30% provided by NSM rebars, 16% owing to the increased 

strength of epoxy mortar, and the remaining 10% due to section confinement. Compared 

to schemes 1 and 2, the less confinement provided in schemes 3 and 4 could be owing to 

the use of one CFRP layer to confine the NSM grooves instead of the three layers used in 

specimen SW2. 

6. Conclusions 

The core outcomes of this research are summarized as follows: 

1. The failure of unstrengthened columns was typical brittle failure caused by the spall-

ing of concrete cover leading to the buckling of main column rebars and consequent 

total failure owing to concrete crushing. 

2. The failure of the strengthened wall-like columns in all the strengthening schemes 

started with the bulging of the CFRP sheets due to the bulging of the column section 

and buckling of NSM rebars (if present) and longitudinal column rebars. The ulti-

mate failure of the upgraded columns was through the rupture of CFRP sheets. 

3. External wrapping of three CFRP layers in scheme-1 was not effective at enhancing 

the ultimate load of wall-like columns, as the increase was only moderate by about 

27% and 29% for experimental and FE results, respectively. This scheme also had a 

minor effect on enhancing the secant stiffness of the wall-like column as the increase 

was limited to 7% and 11% for experimental and FE results, respectively. 

Figure 25. Comparison of strengthened columns with respect to percent enhancement in maximum
load (based on FE results).

6. Conclusions

The core outcomes of this research are summarized as follows:

1. The failure of unstrengthened columns was typical brittle failure caused by the
spalling of concrete cover leading to the buckling of main column rebars and conse-
quent total failure owing to concrete crushing.

2. The failure of the strengthened wall-like columns in all the strengthening schemes
started with the bulging of the CFRP sheets due to the bulging of the column section
and buckling of NSM rebars (if present) and longitudinal column rebars. The ultimate
failure of the upgraded columns was through the rupture of CFRP sheets.

3. External wrapping of three CFRP layers in scheme-1 was not effective at enhancing
the ultimate load of wall-like columns, as the increase was only moderate by about
27% and 29% for experimental and FE results, respectively. This scheme also had a
minor effect on enhancing the secant stiffness of the wall-like column as the increase
was limited to 7% and 11% for experimental and FE results, respectively.

4. Using vertical continuous NSM rebars in combination with the wrapping of three
CFRP layers onto the exterior column surface (scheme-2) was very efficient at enhanc-
ing the axial capacity of the wall-like columns by about 80% and 87% for experimental
and numerical results, respectively. Scheme-2 was also very efficient at enhancing the
secant stiffness of the wall-like columns by about 45% and 49% for experimental and
FE results, respectively.

5. For scheme-3, which was the same as scheme-2, except that two of the three CFRP
wrapping layers were bonded to the inside surface of the NSM grooves before the
installation of the NSM rebars and the remaining CFRP layer was later attached to the
outer surface of the column, the peak load enhancement was about 67% and 56% for
experimental and FE results, respectively. However, for scheme-4, which was the same
as scheme-3 except that the NSM steel rebars were disconnected from the top and
bottom bases, the measured peak load increase was reduced to 57%. Nevertheless, the
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numerically predicted peak load enhancement for scheme-4 was the same as that for
scheme-3 (= 56%). Both schemes were also efficient at increasing the secant stiffness
of the unstrengthened column by about 38% to 49%.

6. A good agreement was obtained between the measured and predicted results of tested
columns with respect to modes of failure and characteristics of load versus axial dis-
placement for both unstrengthened and strengthened specimens. This demonstrates
the precision of the used material models for concrete, steel rebars, and CFRP sheets.
Hence, the developed models can be confidently used in future research on upgrading
wall-like columns with different parameters such as section aspect ratio, slenderness
effect, and different strengthening schemes.
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