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Abstract: Nowadays, in the automation and aircraft industries, there is a challenge in minimizing the
weight of components of vehicles without losing the original properties. In this study, we fabricate
hybrid composites based on fiber metal laminates; these materials could be promising composites for
high-performance applications. This work is focused on analyzing the effect of high temperature
(175 ◦C) on the mechanical properties of these kind of materials, by introducing NaOH and silane
adhesion treatments between metal and prepreg layers and by using vacuum molding processes.
Fabricated FML (NaOH treatment) shows a significant improvement in tensile strength in comparison
with the ARALL and GLARE reported by ESA. Moreover, developed FMLs at 175 ◦C kept more than
70% of their tensile strength and modulus and kept 4% of tensile strain at room temperature. The
prominent conclusion achieved in this work has been that excellent candidates have been obtained
for a wide range of applications, including but not limited to space and aerospace applications.

Keywords: FML; composite; epoxy; carbon fiber; aluminum; temperature

1. Introduction

The demand for lightweight, strong and durable structures has increased in recent
years [1,2]. That is why fiber metal laminates are gaining popularity in different appli-
cations: automotive, aircraft and space [3–6]. Fiber metal laminates (FMLs) are hybrid
composite structures based on thin metal sheets and layers of fiber-reinforced resin. The
main advantages of FMLs are an excellent fatigue resistance, damage tolerance, and impact
resistance compared to monolithic metal alloys [7,8].

The reinforcement in the composite material is the fiber. In the case of FMLs, there
are several types of fibers that can be used as reinforcement. In the 1980s, aramid-fiber-
reinforced aluminum alloy laminates (ARALLs) [9,10] were implemented in the aerospace
industries due to their impact strength, fatigue resistance and anti-corrosive nature that
remained stable. In the late 1990s, glass-reinforced aluminum laminates (GLAREs) [11–13]
were used in the aerospace industry due to their excellent properties. According to the cited
literature study, glass fiber produces good results in mechanical properties [14,15]. Glass
fibers are used as a reinforcing agent for many polymeric products to form a very strong
fiber-reinforced polymer (FRP) composite material [16]. Multiple parts of American C-17
aircraft, Airbus A380 and aircraft fuselages were fabricated using ARALL and GLARE FMLs
as a new structural material [17–20]. It is important to note that carbon-fiber-reinforced
aluminum laminates (CARALLs) have received less attention than the previous ones.
Despite their excellent impact resistance [21,22], one of the main disadvantages is their
harder production process [23]. CARALLs provide superior material properties compared
to metals and thus enable lighter structural designs to be achieved [24–27]. For space
applications, these types of FMLs are usually fabricated by continuous carbon fiber with
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an epoxy matrix. The possibility of providing a structural performance with a very low
weight, which represents important economic savings, has been the main driver for the use
of reinforced polymer composites with carbon fiber [28–31].

Nowadays, the scope of these investigations is to find the behavior of aluminum foils
to increase the mechanical properties [32,33], such as tensile strength and impact resistance;
for example, the study conducted by Dhanaraj investigates the applicability of glass fibers
as a reinforcement material for structural elements through experimental characterization,
such as durability and mechanical properties (bending) [34]. To increase good bonding and
adhesion between the fiber, metal and epoxy resin, circular holes with a 3 mm diameter
were drilled in an aluminum foil at a pitch distance of 25 mm.

Epoxy resin [35,36] has an excellent adhesion to different materials, high strength,
toughness, resistance to chemical attack, humidity, moisture resistance, better electrical
insulation property, is odorless, is non-toxic, has a negligible shrinkage, etc. This resin reacts
with itself in the presence of catalysts or with many co-reactants, such as amines, phenol,
thiol, thiols, etc. Epoxy resin has many industrial applications for a variety of purposes.
It has higher mechanical properties and more thermal and chemical resistance than other
types of resin. Therefore, it has an important use in the manufacture of aircraft [37,38] and
space [39,40] components.

To carry out the preparation of these FML composites, carbon fiber epoxy prepreg and
aluminum foils have been used It is important to note that fabricated FMLs demonstrated
promising properties due to adhesion treatments, and the FMLs at 175 ◦C maintained more
than 70% of their tensile properties at room temperature.

2. Materials and Methods
2.1. Materials

The prepreg used for the study was MTM®46-38%-12KT700SC60E-2X2T-660-1250,
(Cytec Engineered Materials (Wrexham) Ltd., Sinclair, Heanor, UK) which meets the ESA
(European Space Agency) outgassing requirements under the ECSS-Q-ST-70-02C regulation.
This material was manufactured by Cytec Engineered Materials. This prepreg is composed
of high modulus carbon reinforcement and epoxy resin. This prepreg exhibits an excellent
retention of Tg under wet conditions, and it can be processed via low pressure vacuum-bag
Out-of-Autoclave (OoA) molding or autoclave molding. Moreover, it can be cured at
temperatures as low as 80 ◦C, allowing the use of low cost tooling for prototypes and
short production runs. This material was purchased from Solvay. The aluminum used was
AW6082, which was supplied by Alu-stock. This aluminum is a medium-strength alloy
with an excellent corrosion resistance and high mechanical properties. Sodium hydroxide
(≥97%) was purchased from Sigma Aldrich, and Chemlok 144 from Lord. All materials
were used as received.

2.2. Ansys Simulation

It is important to note that prior to the development of the manufacturing process,
a simulation of the stresses generated in the hybrid material due to the different thermal
expansion coefficients of the materials when subjected to thermal cycles in a simplified
2/1 structure, formed by two layers of aluminum and one of carbon composite, was carried
out. The stresses generated in both the carbon composite and the aluminum have been
analyzed when increasing the temperature up to 175 ◦C. The thickness corresponding to
the aluminum sheets was 1 mm, and that of the prepreg sheet was 0.6 mm. The parameters
used in the simulation of the FML composite are shown in Table 1.

2.3. Measurements

A scanning electron microscopy (SEM) Zeis EVO 50 microscope at 20 kV and an energy
dispersive X-ray (EDX) (INCA, Oxford Instruments, Abingdon, Oxfordshire) were used to
analyze morphological and elemental compositional data, respectively. All samples were
gold-palladium-coated by a sputter Leica EM SCD005 before the measurements. Moreover,
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a 3D optical profiler PLµ NEOX (Sensofar, Barcelona, Spain) was used to analyze the
surface topography.

Table 1. Parameters used in Ansys simulation.

Property Temperature Aluminum
Epoxy Carbon Prepreg

Plane Perpendicular to
the Plane

Density (kg·m3) RT 2770 1420

Coefficient of thermal
expansion (◦C−1) RT 23 × 10−6 2.2 × 10−6 10 × 10−6

Young’s modulus
(MPa) RT 71000 61300 6900

Poisson’s ratio RT 0.33 0.04 0.3

A universal testing machine (Autopraph AG-X 100kN, Shimadzu, Kyoto, Japonia) was
used to obtain the mechanical properties of the FML composites, including the modulus
and flexural strength. Samples for flexural measurements were prepared according to UNE
EN ISO 14125 and loaded to fail at a speed rate of 2 mm/min for flexural measurements.
The sample dimensions were 12 × 1.5 × 3 mm. In the case of tensile tests, samples were
loaded to fail at a speed rate of 2 mm/min. The rectangular samples’ dimensions were
10 × 1 × 3 mm according to ASTM B557-15. It is important to note that a thermal chamber
was used for mechanical testing at 175 ◦C; samples were introduced in the chamber at
175 ◦C 30 min before testing. In both cases, measurements were carried out with a load cell
of 5 kN at room temperature and 175 ◦C. For each composite, three samples were tested,
and the average value was reported.

The sanding cycles performed on the surface of the aluminum were: 20, 60 and
120 cycles. In order to observe its effect on the surface, confocal microscopic characterization
was carried out. One of the problems encountered in the manufacture of the FML materials
was a poor adhesion, mainly due to the different thermal expansion coefficients of the
materials: aluminum and epoxy prepreg with carbon fiber. Therefore, we proceeded to
the study of different treatments of the sanded aluminum by chemical attack with NAOH
and silanes. The morphology and composition generated on the surface of the aluminum
was analyzed by confocal microscopy studying the topography (roughness) and SEM-EDX
microscopy analyzing the surface composition.

2.4. Fabrication of FML Composites

To carry out the processing of the FMLs, the following symmetrical arrangement was
carried out: aluminum 6082 foil—3 layers of prepreg (reference MTM 46)—aluminum 6082 foil.
The aluminum sheets are preconditioned with the aid of an automatic sander (P400 sandpaper)
in order to facilitate adhesion between layers. A vacuum molding press (-SUB 3D, Global
vacuum presses) was used for manufacturing plane coupons of hybrid material. The material
temperature was monitored by themopar. Composite plates were fabricated and were 300 mm
long and 300 mm wide, with a thickness of around of 3 mm.

First, the specimens are placed on the press bed, and pressure is exerted on them
with the aid of a vacuum membrane as can be seen in Figure 1. Once the desired vacuum
is generated, the (progressive) heating process is started until the target temperature is
reached. Then, the material was cooled before removing the coupon from the machine.



Polymers 2023, 15, 4380 4 of 10Polymers 2023, 15, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 1. The vacuum press curing process. 

3. Results 
The stresses generated in both the carbon composite and the aluminum are shown in 

Figure 2. 

 
Figure 2. Ansys simulation of FML composite. 

The following table shows the maximum tensile stresses generated in different 
materials present in the FML when this hybrid material is heated between room 
temperature to 175 °C. These data were obtained by simulation and compared with the 
tensile strength of the aluminum and the epoxy composite, individual materials, at 175 
°C, which were obtained in tests carried out in the laboratory (see Table 2). 

Table 2. Results of the tensile stresses generated when heating the hybrid material obtained by 
simulation and tensile strength of individual material obtained by laboratory tests. 

 Aluminum (Mpa) Composite (Mpa) 
175 °C Tensile stresses (simulation) 70 245 

175 °C Tensile strength 241 578 

Figure 1. The vacuum press curing process.

3. Results

The stresses generated in both the carbon composite and the aluminum are shown
in Figure 2.
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Figure 2. Ansys simulation of FML composite.

The following table shows the maximum tensile stresses generated in different materi-
als present in the FML when this hybrid material is heated between room temperature to
175 ◦C. These data were obtained by simulation and compared with the tensile strength
of the aluminum and the epoxy composite, individual materials, at 175 ◦C, which were
obtained in tests carried out in the laboratory (see Table 2).

Table 2. Results of the tensile stresses generated when heating the hybrid material obtained by
simulation and tensile strength of individual material obtained by laboratory tests.

Aluminum (Mpa) Composite (Mpa)

175 ◦C Tensile stresses (simulation) 70 245

175 ◦C Tensile strength 241 578
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In all cases, the maximum stresses suffered in the heating studied with Ansys do not
exceed the maximum strength of the individual materials under these conditions, so it
can be expected that if the adhesion between aluminum and metal is good, the FML will
withstand the temperature changes.

In order to ensure the correct adhesion between aluminum and epoxy composite, as a
first approximation, different attacks through wear processes with sandpaper measuring
600 and 1000 were carried out.

After carrying out the characterization, it was observed that the surface roughness did
not decrease with the increase of the wear cycle; thus, taking into account this property, we
defined 20 wear cycles as the optimum, since the roughness hardly varied with a higher
number of cycles, as can be seen in Figure 3.
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Figure 3. Roughness of Al after different sanding cycles.

The treatments carried out not only chemically modify the surface but also increase
the roughness, which will facilitate mechanical adhesion between the two materials. As
can be seen in Figure 4, the elements incorporated in each treatment are detected, verifying
their deposition on the surface and therefore certifying the modification of the chemical
composition of the aluminum interface.

Figure 4. Confocal microscopy and SEM-EDX images of the analyzed Al surfaces. (a) Reference
sample, (b) NaOH chemical attack, and (c) silanes chemical attack.
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Once the stress simulation study on the hybrid material was carried out, the different
processes were compared, and the vacuum press curing was optimized. The fine-tuning of
the FML manufacturing process in the vacuum press focused on the following points, as
can be seen in Figure 5:

• Adjustment of vacuum temperature and times in the three process stages: heating,
curing and cooling.

• Monitoring of material heating. Temperature deviation from the heating program.
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The process variables introduced into the vacuum press are as follows:

• Temperature: 80 ◦C (dome and bottom plate).
• Exerted pressure: 920 millibars.

First, the specimens are placed on the press bed, and pressure is exerted on them with the
aid of a vacuum membrane. Once the desired vacuum is generated, the (progressive) heating
process is started until the target temperature is reached at a heating rate of 3 ◦C/min. The
samples are kept in the equipment for approximately 5 h. Finally, the cooling step is carried
out, maintaining the vacuum pressure, at a cooling rate of 0.2 ◦C/min, and the specimens are
allowed to cool for 2 to 3 h (the temperature drops to approximately 50 ◦C). FML composites
were fabricated under the same vacuum (920 mmHg).

The mechanical characterization of the material developed in the project has been
carried out by studying the flexural and tensile behavior of the materials and analyzing
how extreme temperature affects the mechanical performance. This is why the mechanical
tests were conducted at room temperature and 175 ◦C. It is observed that working at very
high temperatures decreases the modulus and the tensile and flexural strength. However,
the deformation that the material can withstand before failure is greater than at room
temperature, as shown in the table below. The Tables 3 and 4 show the average flexural
modulus and strength of the fabricated FMLs. It was not possible to conduct tensile and
flexural characterization without treatments; all samples broke down before starting the
mechanical test.
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Table 3. Tensile results.

Tensile Strength/Mpa Tensile Modulus/Gpa Tensile Strain/%

Ambient
temperature

175 ◦C
temperature

Ambient
temperature

175 ◦C
temperature

Ambient
temperature

175 ◦C
temperature

FML NaOH
treatment 530 ± 36 472 ± 29 52.7 ± 1.7 37.8 ± 9.4 4.0 ± 0.4 4.1 ± 0.5

FML Silane
treatment 467 ± 77 333 ± 47 55.3 ± 4.2 52.7 ± 11.2 4.3 ± 0.1 4.4 ± 0.3

Table 4. Flexural results.

Flexural Strength/MPa Flexural Modulus/GPa Flexural Deflection/mm

Ambient
temperature

175 ◦C
temperature

Ambient
temperature

175 ◦C
temperature

Ambient
temperature

175 ◦C
temperature

FML NaOH
treatment 571 ± 13 132 ± 21 50.5 ± 1.6 15.1 ± 1.6 3.4 ± 0.3 3.5 ± 0.6

FML Silane
treatment 586 ± 15 104 ± 15 48.9 ± 3.1 17.1 ± 7.6 3.5 ± 0.5 3.6 ± 0.5

It should be noted, as shown in Figure 6, that the prepreg and aluminum layers did
not peel off, so there was not an adhesion failure between the composite and metal but a
cohesive failure of the composite material. This characterization was carried out at 175 ◦C
and room temperature.
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Figure 6. Flexural test piece.

In accordance with ESA documentation “Structural materials handbook ECSS-E-HB-32-20
Part 7A, the hybrid materials aluminum aramid fiber composite (ARALL) and aluminum glass
fiber composite (GLARE) are used. The applications where these materials can be used are
as follows. These hybrid materials are of particular interest for applications in shear panels
and firewalls. If single curvature structures are required, the cold-forming capabilities of
FML panels may be attractive, and they could also be attractive in applications where good
acoustic damping is needed. In addition to these properties, the carbon FMLs developed in
the project could provide an enhanced mechanical performance for different applications.

Figure 7 compares the mechanical performance of the materials reported in ECSS-
E-HB-32-20 Part 7A [41] with the properties of the material developed in this work. The
characteristics of the compared materials are as follows:

• ARALL 2: 2024-T6/UD aramid/epoxy
• GLARE 3: 2024-T3/UD R-glass/epoxy
• FML (NaOH treatment): 6082/0/90 carbon/epoxy
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Figure 7. Comparison of tensile properties of ARALL, GLARE and fabricated FML.

The material developed in this work presents a significant improvement in tensile
strength in comparison with the aramid and glass systems. However, the tensile modulus
is slightly lower than the other two materials. As for the deformation capacity before
breakage, the developed FML shows a significantly higher deformation than the aramid
material and a lower one than the glass fiber system. The mechanical strength of the studied
materials decreased when the test temperature increased until 175 ◦C, as was expected.
However, the flexural deflection and tensile strain were not affected by this temperature
rise, presenting around 3.5 mm of flexural deflection and around 4% of tensile strain.

These are preliminary results, and it will be necessary to continue with the study of
aluminum-carbon hybrid material by analyzing its different structures and geometries, as
well as its behavior against fatigue and vibration, amongst other factors.

4. Conclusions

In summary, we developed promising hybrid materials that could have a positive
impact in diverse areas, including polymer and metal research areas. FML composites
have been fabricated with different adhesion treatments by using the vacuum molding
process. The structural changes related to adhesion treatments were clearly reflected by
the SEM-EDX and confocal microscopy. In addition, the mechanical properties of the FML
composites demonstrated promising properties in terms of the tensile and flexural modes at
ambient and high temperatures. It is important to note that thanks to adhesion treatments,
the FMLs at 175 ◦C maintained more than 70% of their tensile properties at room temperature.
Based on these characteristics, the developed composites represent excellent candidates for a
broad range of applications, including space and aircraft, among others.
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