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Abstract: This study aimed to analyze the production of poly(3-hydroxybutyrate) (PHB) from ligno-
cellulosic biomass through a series of steps, including microwave irradiation, ammonia delignification,
enzymatic hydrolysis, and fermentation, using the Bacillus megaterium ATCC 14581 strain. The ligno-
cellulosic biomass was first pretreated using microwave irradiation at different temperatures (180, 200,
and 220 ◦C) for 10, 20, and 30 min. The optimal pretreatment conditions were determined using the
central composite design (CCD) and the response surface methodology (RSM). In the second step, the
pretreated biomass was subjected to ammonia delignification, followed by enzymatic hydrolysis. The
yield obtained for the pretreated and enzymatically hydrolyzed biomass was lower (70.2%) compared
to the pretreated, delignified, and enzymatically hydrolyzed biomass (91.4%). These hydrolysates
were used as carbon substrates for the synthesis of PHB using Bacillus megaterium ATCC 14581 in
batch cultures. Various analytical methods were employed, namely nuclear magnetic resonance
(1H-NMR and13C-NMR), electrospray ionization mass spectrometry (EI-MS), X-ray diffraction (XRD),
Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA), to identify
and characterize the extracted PHB. The XRD analysis confirmed the partially crystalline nature
of PHB.

Keywords: poly(3-hydroxybutyrate); microwave irradiation; lignocellulosic waste; Bacillus megaterium
ATCC 14581

1. Introduction

Synthetic and non-biodegradable plastics derived from fossil fuels are widely em-
ployed in multiple sectors, including the packaging industry, technology, and medicine,
as well as everyday life. The extensive consumption of plastic has resulted in inefficient
disposal practices, contributing to environmental pollution. In this regard, serious con-
cerns exist regarding environmental pollution that should encourage the use of renewable
resources for the production of fuels and plastics [1,2].

Polyhydroxyalkanoates (PHAs) are aliphatic polyesters with structures based on
3-hydroxycarboxylic acid. Due to their chemical compositions and physical properties,
PHAs are defined as ecological, biocompatible, nontoxic, and thermostable plastics; there-
fore, they are a viable alternative to traditional synthetic plastics [3–5]. The physicochemical
characteristics of PHAs are determined based on the polyester chain’s composition, the
organism that produces it, the culture conditions, and the extraction method used. Based
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on the length of the polymeric chain, there are three types of PHAs: short-chain-length
PHAs (scl) with 3–5 carbon atoms, medium-chain-length (mcl) PHAs with 6–14 carbon
atoms, and long-chain-length (lcl) PHAs with more than 15 carbon atoms [6–10].

Polyhydroxyalkanoates are thermoplastic polyesters with different structures such as
poly(3-hydroxybutyrate) (PHB), polyhydroxy valerate (PHV), poly-hydroxybutyrate-co-
hydroxyvalerate (PHBV), etc. [9]. PHAs consisting of different monomers have a specific
melting points, hydrophobicities, and degrees of crystallinity. scl-PHAs species have
melting points greater than 170 ◦C and crystallinities that exceed 60%, whereas mcl-PHA
compounds have lower crystallinities (<40%), lower melting points, and high elasticities.
Yan et al. (2021) produced PHAs (620.7 mg COD/L) from lignocellulosic biomass (i.e., vari-
ous rubber wood types, sugarcane bagasse, sorghum stalk, cassava stalk) after pressurized
hot water pretreatment, enzymatic hydrolysis, and the anaerobic fermentation of sugars
with activated sludge [11]. The microbial strains used for the production of PHAs are
as follows: Ralstonia eutropha, Pseudomonas oleovorans, Azotobacter vinelandii, Actinobacillus
sp., Alcaligenes latus and Bacillus sp., Burkholderia sacchari, and Halomonas spp. [12,13]. The
unique feature of these polymers compared to other polymer types is their occurrence
inside of living organisms [14].

Gram-negative bacteria, mainly Protomonas, Pseudomonas, Vibrio, Xanthomonas,
Alcaligenes, Azotobacter, Burkholderia, Citrobacter, Cupriavidus, Enterobacter, Klebsiella, and
Methylobacterium; Gram-positive bacteria, mainly Bacillus, Corynebacterium, Streptomyces,
Rhodococcus, Nocardia, and Staphylococcus; cyanobacteria genera, mainly Spirulina, Syne-
chocystis, Nostoc, and Aulosira; and haloarchaea bacteria, mainly Halomonas, Halogranum,
Haloferax, Haloterringena, and Halopiger, are used for PHB production. Khomlaem et al.
(2023) documented the production of PHAs and astaxanthin from lignocellulosic biomass
using cultures of two strains: Bacillus megaterium ALA2 and Paracoccus sp. LL1. A concen-
tration of 101.7 g/L PHAs was reported in this study [15]. The production of PHAs from
lignocellulosic biomass requires various steps, such as pretreatment, enzymatic hydrolysis,
and fermentation with microbial strains. Cellulose, the first component of lignocellulosic
material, can be separated, and the monomer sugars can be fermented to form PHAs. Since
the carbon source is the main factor that affects the production of PHAs, the isolation of
carbon sources from wastes represents a solution to reduce the cost of PHA production. Sev-
eral carbon sources have been used as substrates for PHAs production, including fructose,
glucose, lactic acid, xylose, propionic acid, and different lignocellulosic biomasses [16].

The available strategies of biomass waste pretreatment are classified as physical,
chemical, physical–chemical, and biological. Recently, acetic acid was used as a carbon
source for poly-β-hydroxybutyrate using Bacillus cereus L17 strain [17]. In some studies,
Halomonas sp., a Gram-negative bacterium belonging to the Halophile family that can
tolerate a saline medium, was used for the production of PHB from glycerol and glucose [18].
This bacterial strain can be isolated from hypersaline meromictic waters, like those of Fără
Fund Lake [19].

Bacillus megaterium is a Gram-positive bacterium with the ability to use glucose, galac-
tose, fructose, xylose, maltose, lactose, and sucrose as its sole carbon sources for growth. [20].
In the past, Bacillus megaterium was used for the production of vitamins and proteins [21].
Nevertheless, the production of poly(3-hydroxybutyrate-co-4-hydroxybutryate) copolyester
has also been reported [22]. Israni et al. (2020) used Bacillus megaterium sp. Ti3 for the pro-
duction of PHAs from cheddar cheese whey and reported a productivity of 0.05 g/L/h [22].
In a previous study, poly(lactic acid) (PLA) production from renewable lignocellulosic
wastes was documented [23]. In this context, the current study seeks to obtain another
biodegradable polymer, using Bacillus megaterium as a strain for microbial fermentation.
The aim of this study was to investigate (a) the microwave pretreatment of fruit cutting
wastes, (b) ammonia delignification, (c) the enzymatic hydrolysis of pretreated biomass
with complex enzymes, (d) the fermentation of sugars with Bacillus megaterium in order
to obtain PHB, (e) purification, (f) the and chemical and structural characterization of the
obtained PHB.
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2. Materials and Methods
2.1. Reagents and Strains

All the chemicals used in the methodology were of analytical grade. Sodium chlorite
(80%) (NaClO2) was purchased from Alfa Aesar GmbH and Co. (Karlsruhe, Germany).
Ammonia, 3.5-dinitrisalycilic acid (DNS), sodium hydroxide (NaOH), 3-hydroxybytyric
acid (C4H8O3), 3-hydroxypentanoic acid (C5H10O3), dipotassium phosphate ((K2HPO4),
D(+)-glucose (C6H12O6), magnesium sulphate (MgSO4), calcium chloride (CaCl2), ammo-
nium sulphate ((NH4)2SO4), sodium phosphate dibasic dodecahydrate (Na2HPO4.12H2O),
ammonium ferric citrate (NH4)5[Fe(C6H4O7)2], boric acid (H3BO3), cobalt(II) chloride
hexahydrate (CoCl2.6H2O), zinc sulfate heptahydrate (ZnSO4.7H2O), sodium molybdate
dihydrate (NaMoO4.2H2O), nickel(II) chloride hexahydrate (NiCl2.6H2O), copper(II) sul-
fate pentahydrate (CuSO4.5H2O), magnesium chloride hexahydrate (MgCl2.6H2O), sodium
azide (NaN3), meat extract, peptone, sulfuric acid (H2SO4), and chloroform (CHCl3)
were purchased from Merck (Darmstadt, Germany). Trichoderma reesei ATCC 26921 and
β-glucosidase derived from almonds used for hydrolysis were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Bacillus megaterium ATCC 14581 was purchased from Micro-
biologics (Cooper Avenue North, St. Cloud, MN, USA). All the solutions were prepared
using ultrapure water (18.2 MΩcm−1 at 20 ◦C) obtained using a Direct-Q3 UV Water Purifi-
cation System (Millipore, Molsheim, France). The cherry orchard biomass was purchased
from the “Ion Ionescu de la Brad” University of Life Sciences of Iasi, Romania.

2.2. Microwave Irradiation of Biomass Using Response Surface Methodology (RSM)

The pretreatment method’s experimental design involved the application of a central
composite design (CCD), which assessed the interplay between dependent and independent
variables through RSM. Both RSM and CCD were applied in this study to determine the
optimal conditions for the high recovery of cellulose and solid yield from the lignocellulosic
biomass. The Minitab software 17.0 (Minitab, LLC, State College, PA, USA) was used.
Four response variables, namely solid yield, cellulose, hemicellulose, and lignin, with
three levels, namely high (+1), midpoint (0), and low (−1), were used in combination, and
they are shown in Table 1. The quadratic model and regression equations were applied
according to the method of Gunalan et al. (2023) [24].

Table 1. Central composite design of the lignocellulosic biomass pretreatment.

Input Variables Symbols
Levels

Low Factorial (−1) Center Point (0) High Factorial (+1)

Temperature (◦C) X1 180 200 220
Time (min) X2 10 20 30

RSM was used for the analysis of variance for each dependent variable. The linear,
square, and two-way interaction models were applied for the interactions between input
variable. For each dependent variable, a 3D surface plot was generated that illustrated its
relationship with the independent variables. Additionally, principal component analysis
was performed to construct a correlation matrix. Each experiment was carried out in
triplicate and standardized to obtain the maximum cellulose component. The pretreat-
ment components’ experimental values were compared to the values predicted using the
model [25].

2.3. Delignification of the Pretreated Biomass with Ammonia

The pretreated lignocellulosic biomass was reacted with 20% (w/v) ammonia for 12 h
at 80 ◦C according to the method of Thuoc et al. (2021), albeit with modifications [26]. The
solid fraction was dried at 105 ◦C and used for the enzymatic hydrolysis step. The chemical
composition of the delignified biomass was analyzed to determine its components.
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2.4. Enzymatic Hydrolysis of the Delignified Biomass

The enzymatic hydrolysis of the pretreated and delignified biomass was carried out
in a 250 mL Erlenmeyer flask loaded with 0.05 M citrate buffer (pH 4.8). In order to
prevent contamination, sodium azide (5 mg/mL) was added to the mixture, and cellulase
enzymes were used for enzymatic hydrolysis. The concentration of cellulase was 25 FPU/g
of substrate in all the tests. The temperature was set at 50 ◦C for 24, 48, and 72 h. The
reducing sugars content were analyzed using the Miller method [27]. After saccharification,
the mixtures were heated at 80 ◦C in order to deactivate the enzyme and concentrate the
solution used for further PHB production.

2.5. PHA Production via Fermentation with Bacillus Megaterium ATCC 14581
2.5.1. Preparation of Stock Culture and Cultivation Conditions

The Bacillus megaterium ATCC 14581 lyophilized culture was purchased from Microbio-
logics (Cooper Avenue North, St. Cloud, MN, USA). For reactivation and routine growth, a
liquid nutrient broth (NB) containing (g/L) 3.0 meat extract and 5.0 peptone was used. For
PHB production, a broth medium was used that had the following composition (g/L): 10 g
glucose, 1.5 g KH2PO4, 4.45 g Na2HPO4.12H2O, 0.2 g MgSO4, 0.01 g CaCl2, 1 g(NH4)2SO4, 5 g
Fe(III)-NH4 citrate, 1 g yeast extract, and trace elements (300 mg H3BO3, 200 mg CoCl2.6H2O,
100 mg ZnSO4.7H2O, 30 mg NaMoO4. 2H2O, 20 mg NiCl2.6 H2O, 10 mg CuSO4.5H2O, and
30 mg MgCl2.6H2O). The strain was grown in flasks in NB for 8 h at 35 ◦C and centrifuged at
250 rpm. The medium was selected according to the method of Dietrich et al. (2020) [28]. The
pH was maintained at 6.8 with 2N H2SO4 or 5% NaOH (w/v).

2.5.2. PHB Production from Lignocellulosic Biomass

The hydrolysates obtained after the enzymatic hydrolysis of the pretreated biomass
were subjected to fermentation with Bacillus megaterium bacteria. The experiments were
performed in a 1.7 L bioreactor (Lambda Minifor, Lambda Laboratory Instruments, Brno,
Czech Republic). The experiments were conducted at 35 ◦C for 48 h. The volume of the
inoculum in the bioreactor was 10% (v/v).

2.5.3. PHB Isolation and Purification

The PHB extraction was carried out according to the protocol previously described by
Kucera et al. (2018) [29] and Hathi et al. (2022) [30]. After the fermentation, the culture was
centrifuged at 5000 rpm for 30 min. The obtained pellets were resuspended in 10 mL of
chloroform and heated at 100 ◦C for 1 h. The solvent was evaporated, and the polyester
was precipitated with cold methanol. The polyester was filtered and purified through
dissolution in chloroform and hexane (1:1, v/v). The PHB productivity rate was calculated
by dividing the final PHB quantity (g/L) by the fermentation period (48 h). The PHB
yield coefficient obtained using the cell biomass was calculated by dividing the final PHB
quantity (g/L) by the dry cell weight (g/L). The dry cell weight (DCW) was quantified by
weighting the cells after centrifugation and drying.

2.6. Chemical Characterization
2.6.1. Chemical Characterization of the Raw and Pretreated Biomass

The cellulose, hemicellulose, and lignin contents from the raw and the pretreated and
delignified biomass were determined according to the method of Senila et al. (2020) [31].
The total nitrogen (N), carbon (C), hydrogen(H), and sulfur (S) contents were determined via
combustion using a Flash EA 2000 CHNS/O analyzer (Thermo Fisher Scientific, Waltham,
MA, USA). The samples’ moisture contents were determined after drying in a universal
oven (UFE 400, Memmert, Germany) at 105 ◦C for 24 h until constant mass. The ash
contents were determined after the samples were calcinated at 550 ◦C.
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2.6.2. Reducing Sugar Analysis

The reducing sugar analysis was performed according to the dinitrosalicylic acid
(DNS) method [27], including the reaction of glucose with 3,5-dinitrosalycilic acid, the
formation of gluconic acid and 3-amino-5-nitrosalycilic acid, and the variation in the color
from yellow to intense red.

2.6.3. PHB Analysis via Gas Chromatography (GC)

The analysis of PHB was carried out via gas chromatography coupled with a flame ionization
detector (FID, Agilent Technologies 7683, Santa Clara, CA, USA). The method was developed
based on the method of Bhati et al. (2010), albeit with modifications [32]. Methyl esters of 3-
hydroxybytyric acid and 3-hydroxypentanoic acid standards were injected into GC-FID. The ester
contents were determined using GC-FID (Agilent Technologies 6890 N, Santa Clara, CA, USA)
equipped with a Zebron ZB-WAX capillary column (30 m × 0.25 mm × 0.25 µm). Helium was
used as a carrier gas with a constant flow rate of 1 mL/min. The initial oven temperature was set
to 50 ◦C for 1 min, before being increased to 200 ◦C at a rate of 10 ◦C min for 2 min, and, finally,
the temperature was increased to 220 ◦C at a rate of 5 ◦C min−1 for 20 min. The FID and injector
temperatures were set at 250 ◦C.

2.7. Structural Characterization of the Obtained PHB
2.7.1. Electrospray Ionization High Resolution Mass Spectrometry (ESI-HRMS), Proton
Nuclear Magnetic Resonance (1H-NMR), Carbon Nuclear Magnetic Resonance (13C-NMR)

Proton nuclear magnetic resonance (1H NMR) and carbon nuclear magnetic resonance
(13C NMR) spectra were recorded at room temperature using a Bruker Advance spectrom-
eter (Billerica, MA, USA) in CDCl3. The high-resolution mass spectrometer experiment
was carried out using an ion-trap tandem mass spectrometer (Thermo Scientific LTQ Orbi-
trap XL, Waltham, MA, USA) equipped with an ESI source. The ESI-HRMS spectra were
acquired in a positive mode.

2.7.2. TGA/DTG Analysis

The thermal behavior of the PHB was investigated using a TA Instrument SDT O 600
(TA Instruments, New Castle, DE, USA) under air atmosphere from 30 ◦C to 1000 ◦C and
at a heating rate of 10 ◦C/min. The weight loss was determined from the curve (DTG).

2.7.3. X-ray Diffraction (XRD)

The X-ray diffraction pattern was conducted using a Bruker D8 Advance diffractometer
with CuKα anode (λ = 1.54060 Å) in the range 2θ = 10–40◦. A silicon zero-background plate
was used to ensure that there was no peak related to the sample holder. The crystallinity
degree was calculated as the ratio of the total area under the crystalline peaks to the total
area under the crystalline and amorphous area [33].

2.7.4. FT-IR Spectroscopy

The FT-IR spectra of the PHB were obtained using a Bruker Vector 22 FT-IR spectrome-
ter (Bruker, USA) in the range of 600 to 4000 cm−1. The samples were prepared by mixing
the sample with KBr at a 1:100 ratio. The pellets were kept in vacuum desiccators.

3. Results
3.1. Chemical Compositions of the Raw Biomass

The elemental analysis of the raw biomass showed the following results: 1.01% N,
45.7% C, 5.75% H, and 0.18% S. The content of ash was 4.86%. Biomass contains 40.0%
cellulose, 21.95% hemicellulose, and 29.62% lignin. The content of 62% holocellulose is
shown to be a great source of sugars that can be extracted and transformed via selective
fermentation into PHB. The moisture content was 6.86%.
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3.2. Chemical Compositions of the Pretreated Biomass Using Response Surface Methodology

During the microwave irradiation procedure, the biomass changed from white to
yellow, before changing to brown; the color intensity increases along with the temperature
and the reaction time. The solid yield and chemical composition of the pretreated biomass
are presented in Table 2.

Table 2. Chemical compositions of pretreated biomass at various temperatures and reaction times
(data represent mean ± standard deviation, n = 3).

Temperature (◦C) 180 180 180 200 200 200 220 220 220

Time (min) 10 20 30 10 20 30 10 20 30
Solid yield (% of raw
material, dry biomass) 75.2 ± 2.1 68.3 ± 1.8 64.2 ± 1.5 70.5 ± 2.3 62.1 ± 3.2 56.3 ± 2.1 58.2 ± 2.6 50.1 ± 2.1 42.3 ± 1.8

Cellulose (% of
autohydrolyzed
biomass, dry biomass)

38.4 ± 1.1 40.2 ± 1.5 42.3 ± 1.4 35.4 ± 1.6 37.5 ± 1.8 43.2 ± 2.0 42.2 ± 2.1 46.2 ± 1.5 41.2 ± 1.6

Hemicelluloses (% of
autohydrolyzed
biomass, dry biomass)

20.1 ± 1.1 18.2 ± 1.1 14.3 ± 1.2 17.3 ± 0.9 10.1 ± 0.8 7.6 ± 0.06 4.2 ± 0.02 2.1 ± 0.01 1.8 ± 0.02

Lignin (% of
autohydrolyzed
biomass, dry biomass)

37.2 ± 1.3 38.6 ± 1.2 41.6 ± 1.6 44.6 ± 1.4 48.2 ± 1.2 46.8 ± 1.5 46 ± 1.8 45.6 ± 2.1 42.2 ± 1.7

Solid compositions (%
of autohydrolyzed
biomass, dry biomass)

95.7 ± 2.1 97 ± 3.2 98.2 ± 3.1 97.3 ± 2.5 95.8 ± 2.4 97.6 ± 2.8 90.4 ± 1.7 91.8 ± 1.9 97.6 ± 2.4

The solid yield decreased with the increase in the pretreatment temperature and
the reaction time from 75.2% to 42.3%. Lower temperature and microwave power had a
positive influence on the yields. At high temperatures, the hemicelluloses break down,
and the cellulose partially dissolves, leading to thermal degradation and a reduction in the
solid yield [34]. The depolymerization of hemicelluloses and the relocation of crystalline
cellulose are caused by hydronium ions from water during microwave pretreatment at high
temperatures. The solid phase resulting from the pretreatment was analyzed to determine
the cellulose, hemicellulose, and lignin contents.

The Minitab software was used to fit the obtained data via a multiple regression
analysis of the studied variables’ interaction. The results were presented using contour plots
and surface plots. Two factors (temperature and time) were used for the central composite
design. The model summary is presented in Table 3. The model fits the experimental data
with a high correlation coefficient. The analysis of variance for the solid yield is presented
in Table 4, and the analysis of variance for cellulose, lignin, and hemicellulose is presented
in Supplementary Tables S1–S3. Due to its solubilization in the liquid fraction, the content
of hemicellulose decreases upon increasing the temperature and reaction time. According
to the high R2 values (95.95%, 91.29%, 90.68%, and 91.25%, respectively), the accuracy of
the RSM model was accepted. The 3D response surface plots of the effects of cellulose on
temperature and time content are presented in Figure 1. The optimal solution predicted
using the model for the high cellulose content in the solid fraction is a temperature of
190.16 ◦C and a reaction time of 30 min.

Table 3. Summary for the RSM model.

s R2 (%) R2 (adj) (%) R2 (Predicted) (%)

Solid yield 1.31 99.20 98.40 95.95
Cellulose 1.09 94.68 93.50 91.29

Hemicelluloses 1.84 95.30 92.94 90.68

Lignin 1.34 95.71 91.41 91.25
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Table 4. Analysis of variance for solid yield.

Source DF Adj SS Adj MS F-Value p-Value

Model 5 1980.73 396.15 10.40 <0.0001
Linear 2 1917.99 959.00 25.18 <0.0001

X1 1 1073.39 1073.39 28.18 <0.0001
X2 1 844.61 844.61 22.17 <0.0001

Square 2 44.73 22.37 0.59 0.565
X1 X1 1 17.57 17.57 0.46 0.504
X2 X2 1 27.16 27.16 0.71 0.408

Two-Way
Interaction 1 18.01 18.01 0.47 0.499

X1 X2 1 18.01 18.01 0.47 0.499
Error 21 799.93 38.09

Lack-of-Fit 3 180.21 60.07 1.74 0.194
Pure Error 18 619.72 34.43

Total 26 2780.66
DF—degree of freedom; SS—sum of squares; MS—mean sum of squares.
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Figure 1. Three-dimensional response surface plots of the effect of temperature and time content on
the cellulose yield.

The model was optimized to achieve the maximum cellulose content. The data
were fitted to linear, interactive square, and two-way interaction methods. The accuracy
of the model, the sum of squares, and the lack of fit were determined. The effects of
temperature and time on cellulose recovery were analyzed. The temperature and reaction
rate have implications for the solid yield, whereas time has no significant influence on the
pretreated composition. A higher pretreatment temperature causes increased cellulose and
lignin contents and a decreased hemicellulose content. Temperature is a critical parameter
involved in controlling the microwave process of biomass. The model is statistically
significant if the p-value is less than 0.05. The linear model’s p-value for solid yield and
hemicellulose is <0.0001. The p-value of the square and two-way interaction for cellulose,
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hemicellulose, and lignin contents are significant for the temperature and insignificant for
the reaction time.

The regression equations for dependent variables (Equations (1)–(5)) are presented
below:

Solid yield (%) = −49 + 1.45 X1 + 1.39 X2 − 0.00428 X1
2 − 0.0213 X2

2 − 0.000612 X1X2 (1)

Cellulose (%) = 610 − 5.82X1 + 0.16 X2 + 0.01467 X1
2 + 0.0002 X2

2 + 0.00013 X1X2 (2)

Hemicellulose (%) = −43.6 + 1.093 X1 − 1.447 X2 − 0.00387 X1
2 + 0.00751 X2

2 + 0.00424 X1X2 (3)

Lignin (%) = −451 + 4.76X1 + 0.01 X2 − 0.01146 X1
2 − 0.0003 X2

2 +0.001 X1X2 (4)

Solid compositions (%) = 66 +0.61 X1 − 2.60 X2 − 0.0022 X1
2 + 0.0234 X2

2 + 0.00904 X1X2 (5)

The compositions of the raw and pretreated biomass can be seen in Figure 2.
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3.3. Composition of Delignified Biomass

In this study, ammonia pretreatment was applied in order to improve the sugar yield
for PHB production. According to Sipponen et al. (2019), the aqueous ammonia pre-
treatment of biomass favors the isolation of lignin and facilitates the enzymatic hydrolysis
of the cellulosic fraction [35].

The results show that the solid yields (47.5–36.2 g/100 g delignified biomass) decrease
as the pretreatment temperature increases due to the solubilization of the lignin fraction
in the liquid phase (Figure 3). The delignification method eliminates almost 75% of the
lignin content. The lignin content decreases (12.05–7.5%) with the increase in temperature
(Figure 4). At 200 ◦C, all the hemicelluloses were eliminated. The cellulose content of the
delignified biomass (80.4%) is higher than that of the raw biomass. The dissolution of lignin
takes place via the removal of an acetyl group from the lignin structure. Pretreatment with
20% ammonia led to a loss of almost 40% of the biomass, and our results are in agreement
with those of Tsafrakidou et al. (2023) [36]. Also, Park and Kim (2012) [37] reported rice
straw and barley pretreatment via soaking in aqueous ammonia.
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3.4. Enzymatic Hydrolysis of Pretreated and Delignified Biomass

The cherry orchard biomass was treated with Trichoderma reesei ATCC 26921 and β-
glucosidase enzymes. Figure 5 presents the yield of the obtained reducing sugars during the
24, 48, 72, and 96 h hydrolysis time points. The biomass was used for sugar solubilization
in the presence of cellulase enzymes. The hydrolysis yields increased substantially when
a delignified substrate was used for enzymatic hydrolysis (Figure 5). This indicates that
the substrate compositions affect the hydrolysis process [38]. The presence of lignin in
hydrolysate acts as an inhibitor of the enzymatic hydrolysis process. The pretreated (at
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200 ◦C) and delignified biomass provided the highest hydrolysis yield (91.4%). After a
hydrolysis period of 72 h, the pretreated biomass could reach a peak in the enzymatic
hydrolysis yield of 70.2%. In all the experiments conducted, the prolonged enzymatic
hydrolysis decreased the enzymatic hydrolysis yield, which was explained by the formation
of inhibitory compounds.
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3.5. PHB Production by Bacillus Megaterium ATCC 14581

The production of PHB from lignocellulosic wastes as a renewable source has the
advantage of decreasing the final production cost. However, sterilizing the culture medium
is necessary [39]. The hydrolysates obtained after the enzymatic hydrolysis of the solid
fraction, resulting from microwave irradiation pretreatment, were treated with Bacillus
megaterium. The source of carbon determines the yield of the PHB obtained. According
to Yamane (1992), if the carbohydrates are used as a carbon source, the yield of PHB is
86/180 = 0.478 [40]. Fermentation was carried out using the hydrolysates generated from
the hydrolysis of delignified biomass, which contains glucose as its main component. The
initial hydrolysate concentration was 10 g/L. During the enzymatic hydrolysis, some
degraded substances, like hydroxymethyl furfural, acetic acid, and lignin degradation
product, are formed, which further effects the fermentation process. Bacillus megaterium
ATCC 14581 does not have the ability to ferment pentoses to create PHB, although it
can produce PHB in the presence of fermentation inhibitors. In the first 10–30 h, the
sugar consumption remains constant, then it rapidly increases due to PHB formation. The
maximum DCW was 4.2 g/L, the PHB accumulation was 72%, PHB titer was 2.7 g/L,
and the PHB productivity was 0.063 g PHB/L/h. After 48 h of fermentation, the PHB
concentration was 3.024 g/L. The residual biomass was 1.176 g/L. The maximum PHB
formation was obtained after 48 h of fermentation.

From 100 ± 1.5 g of lignocellulosic biomass, 62.1 ± 3.1 g of the solid phase was
separated after microwave irradiation. After ammonia delignification, 25.8 ± 1.8 g of
the solid part was recovered. The enzymatic hydrolysis process produced 21.3 ± 1.1 g
of glucose, which was then fermented with Bacillus megaterium ATCC 14581 to generate
7.3 ± 1.1 g of PHB. The fermentation yield was 72%.

The results obtained and the previous literature data are presented in Table 5.
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Table 5. PHB obtained in the current study compared with the results from the literature.

Carbon Source Pretreatment Used Microorganism
PHB

Reference
C (g/L)

Rice straw Sulfuric acid
pretreatment Bacillus megaterium B-10 1.496 [41]

Lignocellulosic biomass
(soybean husk, sunflower

husk, wood straw)
Alkaline pretreatment Ralstonia eutropha

ATCC 17699

11.42 g/L
PHB accumulation

74.45%
[42]

Rapeseed meal hydrolysates Acid hydrolysis Bacillus megaterium
DSM 319 15.0 g/L [43]

Lignocellulosic substrates
(rice straw, corn husk,

sugarcane bagasse,
newspaper, wheat bran)

Biological pretreatment
(Pleurotus ostreatus
MTCC 142)

Bacillus megaterium Ti3 1 g/L (57.8% after 48 h) [44]

Marine environment - Bacillus megaterium 5.61 g/L [45]

Sugar beet molasses Bacillus
megateriumuyuni S29

60 g P(3HB)/100 g cell
dry biomass [46]

Cherry orchard waste
Microwave irradiation
and ammonia
delignification

Bacillus megaterium
ATCC 14581 3.02 g/L This study

According to Schmid et al. (2019) [46], bacteria from the Bacillus genera have the
ability to form endospore, which affects the fermentation process.This study demonstrates
that Bacillus megaterium ATCC 14581 can successfully produce PHB from the hydrolysates
obtained from the lignocellulosic biomass.

3.6. Structural and Termal Characterization of PHB

The chemical structure of the PHB is presented in Scheme 1.
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3.6.1. Proton Nuclear Magnetic Resonance (1H-NMR)
1H-NMR is a remarkable procedure used for confirming the chemical structure of

PHB. [47]. The 1H-NMR of the obtained PHB can be seen in Figure 6. In accordance with
the literature, three signals can be observed: at 1.27 ppm (doublet, CH3), at 2.48–2.58 ppm
(double quadruplet, CH2), and at 5.25 ppm (multiplet, CH), respectively. The obtained
results are consistent with the 1H-NMR reported for the PHB produced by Bacillus spp. [48]
and the PHB produced via the fermentation of fructose using Cupriavidus necator [16].
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Figure 6. The 1H-NMR spectrum of PHB produced by Bacillus megaterium ATCC 14581 using
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3.6.2. ESI-HRMS Spectra

The 1H-NMR and 13C-NMR provide information about the polymer’s structure, but
little information about its molecular mass is available. In this regard, the ESI-HRMS offers
additional information about the shape/size selectivity and m/z [49]. Various techniques
can be employed to analyze low-molecular-weight polymers, providing a lot of information
about the polymer’s structure [49,50]. In this study, the sample was prepared by dissolving a
small quantity in chloroform and via simple methanol dilution, followed by direct injection
into the ESI source at a rate of 5 mL/min. The spectrum shows the mass of each polymer
formed, as well as its degree of polymerization. In Figure 7, m/z 621.41778 can be attributed
to the n = 7 (M + H) polymer. The signals belonging to the main series occur in the spectrum,
with a mass difference of 58 Da between the m/z values, which can be attributed to the
loss of a neutral molecule, namely 2-propanone, from the end of the polymer chain [47].
The ESI-HRMS spectrum of the obtained oligomer is presented in Figure 8. Due to their
varying degrees of oligomerization and composition, single-charged ions are grouped in
multiple clusters in the spectrum.
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Figure 8. ESI (+)-HRMS/MS spectrum (positive-ion mode) of the oligomers’ parent ion m/z 1841.

The ESI-HRMS/MS spectrum shown in Figure 8 was attained from the precursor ions
at m/z 1841, leading to the formation of two series of product ions. The first main series
of ions (m/z 1764, 1706, 1648, 1590, etc.) corresponds to the PHB oligomers (Figure 7),
while the second set of product ions (1782, 1724, 1666, 1608, etc.) corresponds to another
fragmentation pattern; in this case, the mass difference is also 58 Da. The functionalization
and end groups of PHB polymer were analyzed using the ESI-MS technique. The presence
of carboxylic and unsaturated groups was not confirmed via NMR analysis.

3.6.3. Carbon Nuclear Magnetic Resonance (13C-NMR)

Figure 9 shows the 13C-NMR spectrum of the obtained PHB with the following
signals: 169.9 (CO), 67.8 (-CH-), 40.9 (CH2), and 19.9 (CH3) ppm. The signal at 77 ppm
was attributed to solvent. The 13C-NMR results are in agreement with those obtained by
Shaw et al. (1994) [51].
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3.6.4. FT-IR Spectrum

The FT-IR spectrum of the PHB presented in Figure 10 displays the presence the
characteristic peaks: two intense peaks at 2976 and 2934 cm−1 corresponding to the C-H
stretching of -CH3 and -CH2 groups; three intense peaks at 1743, 1724, and 1287 cm−1

assigned to the ester carbonyl groups C=O and asymmetric O-C stretching vibrations;
and three peaks at 1381, 1466, and 3440 cm−1 attributed to the -CH3, -CH2, -CH, and
O-H groups. The peaks from 1132 cm−1 to 826 cm−1 were associated with the stretching
vibrations of C-O and C-C, while that at 1183 cm−1 was associated with the asymmetric
stretching vibration of the C-O-C group. The peaks at 1300 and 1100 cm−1 correspond to
the symmetric stretching of the C-O-C group, according to Heitmann et al. (2016) [52], who
reported the characterization of a nanostructured niobium oxyhydroxide dispersed PHB
film, and Selvaraj et al. (2021) [53].
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The band at 839.2 cm−1 was assigned to the crystalline phase of PHB, whereas the
band at 1056 cm−1 indicated the amorphous phase in the sample. The ratio between the
C-O (intensity at 1218 cm−1) and -CH2 (intensity at 1455 cm−1) bands was low in PHB,
resulting in the low crystallinity of the product.

3.6.5. TGA/DTG Analysis

Figure 11 shows the obtained TGA/DTG curves of the PHB. The PHB white powder
was heated up to 1000 ◦C in nitrogen atmosphere at a rate of 10 ◦C/min. The melting
point of PHB appears at a high temperature (279.14 ◦C) as an isolated peak, indicating
that the compound is of high purity. The melting temperature confirms the presence
of butyrate units, with no additional residues being detected. The total mass loss was
98.86%, which highlighted the high purity of the PHB. A TGA was conducted to observe
the thermal stability of the synthesized PHB. The polymer was degraded completely at
300 ◦C. The same results were obtained for PHB derived from whey, as reported by
Israni et al. (2020) [22].
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3.6.6. XRD Analysis

The XRD pattern of the PHB sample presented in Figure 12 shows six intense peaks
centered at 2θ = 13.37, 16.79, 19.63, 22.21, 25.60, 27.01, and 30.03◦, attributed to the (020),
(110), (021), (111), (121), (040), and (002) planes, respectively, indicating an orthorhombic
unit cell [54,55]. The XRD patterns are almost identical to the PHB synthetized microbial
fermentation by Bacillus megaterium and Cupriavidus necator: the peaks at around 22◦ (2θ) in-
dicate the presence of a significant PHB fraction in a crystalline state, while those at around
25◦ and 27◦ (2θ) confirmed the partial crystalline nature of PHB [52]. The crystallinity
degree of PHB (43.1%) produced by Bacillus megaterium ATCC 14581 is comparable to those
reported for PHB obtained using Bacillus megaterium (MTCC 453) [56]. Previous studies
suggested that the polymer matrix has a helical conformation with two anti-parallel chains
in the rhombic unit cell within a crystalline unit cell [57].
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4. Conclusions

In this study, a microwave irradiation pretreatment was used for cellulose and lignin
separation, delignification was performed with ammonia for cellulose separation, and en-
zymatic hydrolysis was performed using Trichoderma reesei ATCC 26921 and β-glucosidase
enzymes. The fermentation of soluble sugars to PHB was carried out using the Bacillus
megaterium ATCC 14581 strain. The optimized microwave pretreatment conditions were
determined using response surface methodology. The enzymatic hydrolysis yield of the
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delignified biomass gives the highest sugar content compared to pretreated biomass. PHB
was produced from lignocellulosic biomass through various steps, namely pretreatment,
delignification, enzymatic hydrolysis, and fermentation. The current study provides a
sustainable technology for the conversion of wastes into high-value-added chemicals. The
production of PHB from lignocellulosic wastes has the advantage of decreasing the final
production cost. Further studies will be focused on reducing the production steps by
removing delignification and combining enzymatic hydrolysis and fermentation in the SSF
process in order to reduce costs and improve the scalability of the PHB.
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