
Citation: Goci, M.C.; Leudjo Taka, A.;

Martin, L.; Klink, M.J. Chitosan-

Based Polymer Nanocomposites for

Environmental Remediation of

Mercury Pollution. Polymers 2023, 15,

482. https://doi.org/10.3390/

polym15030482

Academic Editor: Wei Zhang

Received: 15 November 2022

Revised: 19 December 2022

Accepted: 22 December 2022

Published: 17 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Chitosan-Based Polymer Nanocomposites for Environmental
Remediation of Mercury Pollution
Mvula Confidence Goci 1 , Anny Leudjo Taka 1,*, Lynwill Martin 2,3 and Michael John Klink 1,*

1 Department of Biotechnology/Chemistry, Vaal University of Technology, Andries Potgieter Boulevard,
Vanderbijlpark 1911, South Africa

2 Cape Point Global Atmosphere Watch Station, South African Weather Service, c/o CSIR,
Stellenbosch 7599, South Africa

3 Chemical Resource Beneficiation, Atmospheric Chemistry Research Group, North-West University,
Potchefstroom 2520, South Africa

* Correspondence: lytany04@yahoo.fr (A.L.T.); michaelk1@vut.ac.za (M.J.K.)

Abstract: Mercury is a well-known heavy metal pollutant of global importance, typically found
in effluents (lakes, oceans, and sewage) and released into the atmosphere. It is highly toxic to
humans, animals and plants. Therefore, the current challenge is to develop efficient materials
and techniques that can be used to remediate mercury pollution in water and the atmosphere,
even in low concentrations. The paper aims to review the chitosan-based polymer nanocomposite
materials that have been used for the environmental remediation of mercury pollution since they
possess multifunctional properties, beneficial for the adsorption of various kinds of pollutants from
wastewater and the atmosphere. In addition, these chitosan-based polymer nanocomposites are made
of non-toxic materials that are environmentally friendly, highly porous, biocompatible, biodegradable,
and recyclable; they have a high number of surface active sites, are earth-abundant, have minimal
surface defects, and are metal-free. Advances in the modification of the chitosan, mainly with
nanomaterials such as multi-walled carbon nanotube and nanoparticles (Ag, TiO2, S, and ZnO), and
its use for mercury uptake by batch adsorption and passive sampler methods are discussed.

Keywords: mercury pollution; chitosan; polymer nanocomposites; nanomaterials; passive sampler;
batch adsorption

1. Introduction

Mercury (Hg) is one of the most toxic trace elements released into the atmosphere and
is regarded as one of the “ten prominent chemicals of concern” due to its hazardous effects
on human health and the environment [1,2]. Mercury is generally found in geological
formations as sulfide ore (cinnabar–HgS), while as a trace element it is also found in other
naturally occurring deposits, e.g., coal [3]. Special properties of mercury include its high
vapor pressure; unlike other heavy metals, mercury can be vaporized into the surrounding
air at low temperatures. It occurs in the atmosphere in three main forms; gaseous elemental
mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM),
of which GEM is the predominant form in the atmosphere, accounting for 95–99% of all
mercury in the atmosphere [4–6].

Furthermore, mercury is found in wastewater as methylmercury, which is produced
from inorganic mercury through methylation (a microbial process controlled by certain
bacteria and enhanced by chemical and environmental variables such as the presence
of organic matter). Methylmercury affects many water bodies that do not have obvious
sources of mercury, and this is because mercury emissions travel far into the atmosphere
before being deposited on the Earth’s surface [6,7]. The toxicity of methylmercury is of
concern because it is highly soluble in water. Even at low concentrations in drinking water,
it can damage the central nervous system [8]. There is a huge and rapidly growing area of
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scientific literature on the distribution of mercury in multiple ecosystems. The atmosphere
is the main transport route for Hg emissions, while soil and water play significant roles
in mercury redistribution in multiple ecosystems [9]. Once mercury is released into the
atmosphere, it can be transported in its elemental form [Hg (0)]. The predominant route for
this elemental mercury is deposition in soil or water after oxidation to divalent mercury
[Hg(II)] [10]. Mercury deposited on land surfaces is mainly taken up by soil and vegetation,
but can also enter water bodies through drainage, runoff and erosion processes [11]. When
inorganic mercury compounds are deposited in water and/or soil, they undergo microbial
metabolism and are attenuated to methylmercury, which has the ability to bioaccumulate
and concentrate in the food chain, particularly in fish and marine mammals. In addition,
mercury has been shown to indirectly and directly affect human health and aquatic biota
due to its toxicity and carcinogenicity. It also causes bad taste, color or odor problems
in the water [12]. Anthropogenic events such as fuel use and artisanal gold mining dis-
charge high concentrations of mercury into the air, soil, and water [13]. Like other heavy
metals, mercury cannot be degraded in ecosystems, so remediation should be based on
removal or control processes. Thus, the World Health Organization (WHO) and the United
States Environmental Protection Agency (USEPA) have set the maximum permissible Hg
concentrations in drinking water at 0.002 mg L−1 and 0.001 mg L−1, respectively [14,15].

There are numerous techniques including adsorption, solvent extraction, chemical
precipitation, membrane filtration, solvent extraction, and ion exchange to remove mercury
from wastewater and atmosphere. Table 1 presents a summary of these techniques with
their advantages and limitations

Table 1. Mercury removal techniques with advantages and limitations.

Techniques Advantages Limitations Reference

Adsorption

High efficiency
Cost effective

Availability of a wide selection
of adsorbents

High adsorption rates
Easy to operate

Low selectivity [16,17]

Solvent extraction High Hg(II) selectivity

Time consuming
Generation of secondary wastes

Requires post-treatment step because of low
separation efficiency

[17,18]

Chemical precipitation Simple and convenient
Not energy intensive

Large amounts of chemicals are needed
Usually uses corrosive chemical

Inefficient in wastewater with low concentrations
of Hg ions

Generation of sludge causing secondary
contamination

[19–21]

Photocatalytic Inexpensive depending on
catalyst used

Formation of volatile Hg(0), which is also toxic and
requires trapping [22]

Flotation
Highly efficient

High Hg selectivity
Low detention periods

High initial capital costs [23]

Ion exchange

Simple
Cost-effective

Efficient when thio based resins
are used

Tends to be cheap when natural
zeolites are used

Requires a pretreatment step
High cost of resins

Resins used during the process require chemical
regeneration that creates secondary pollution

[17,21]

Phytoremediation bio-remediation
Low cost

Formation of less harmful
by-products

For live microorganisms, the method is ineffective
when metal concentration is high

May affect plant growth and photosynthesis ability
Sensitive to operational environment

[18]

The main objective of these techniques is to remove mercury from contaminated
media (water or atmosphere) or to convert toxic types of mercury into less toxic ones in
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order to comply with the permissible limits required by law [24]. Regardless of the fact
that these methods are effective, they are expensive, with high sludge production and
by-product formation [25]. One of the most promising techniques is adsorption due to its
affordability, high efficiency, and minimal use of chemicals, process flexibility, and ease of
implementation in wastewater treatment plants. For these purposes, selective, economical,
and ideal materials or adsorbents with high adsorptivity have to be developed [25].

Almost all previous studies found that the main disadvantage of the uptake rate of
mercury from wastewater is the limited surface area of the adsorbent and complicated
conjugation chemistries. A passive mercury sampler was affected by meteorological factors
such as temperature, humidity and wind speed [26–28]. In addition, these conventional
adsorbents are not environmentally friendly and have demonstrated poor recyclability,
require a significant number of sample preparation steps and large volumes, limiting their
application as adsorbents and passive samplers for mercury removal. Furthermore, these
adsorbents have shown limitations such as their high operational cost and incapability to
remove mercury contaminants from wastewater and atmosphere to acceptable concentra-
tion levels (0.002 mg L−1 and 0.001 mg L−1). The search for an ideal adsorbent material,
which is cheap, inexpensive, earth-abundant, green, and is capable of selectively trapping
mercury, remains a challenge.

Hence, nanotechnology is currently regarded as the most promising method for water
decontamination and removal of environmental pollutants. The application of nanotech-
nology in environmental decontamination involves the use of nanomaterials as adsorbent
materials which are called nano sorbents to remove or adsorb the pollutants from water
or air. These nano sorbents are nanostructured materials with pore sizes between 1 and
100 nm onto which the pollutant molecules (inorganics, organics, antimicrobials, pathogens,
and microorganisms can be adsorbed [29,30]. Among the various nanomaterial adsorbents,
chitosan-based polymer nanocomposite materials have attracted great research attention
because they possess multifunctional properties, useful for the adsorption of various kinds
of pollutants from wastewater and the atmosphere. In addition, these chitosan-based
polymer nanocomposites are made of non-toxic or less toxic materials that are environ-
mentally friendly, highly porous, biocompatible, biodegradable, and recyclable. They have
a high number of surface active sites, are earth-abundant, have minimal surface defects,
and are metal-free. These green properties of chitosan-based polymer nanocomposites
make them efficient nano sorbent materials for the environment [31–34]. Such biopolymer-
based nanocomposites have emerged as a promising adsorption material for the uptake of
mercury from wastewater and the atmosphere. These biopolymer-based nanocomposite
materials (e.g., chitosan-based polymer nanocomposites) have attracted much research
attention. They consist of several phases, with one of the phases containing additives in
the nano range. They also possess excellent multifunctional properties resulting from the
combination of the individual components. These biopolymer-based nanocomposites have
been shown to improve adsorption efficiency due to the electron-rich functional groups
present on the polymer backbone [35].

Therefore, the focus of this paper is to review the advances in the modifications of chi-
tosan mainly with nanomaterials such as multi-walled carbon nanotube and nanoparticles
(Ag, TiO2, S, and ZnO) to obtain chitosan-based polymer nanocomposites. Additionally,
the potential of these chitosan-based polymer nanocomposites, respectively, as adsorbents
in batch adsorption techniques for the removal of mercury from contaminated water and
as passive samplers for gaseous mercury removal from the atmosphere, is discussed.

2. Mercury as an Environmental Pollutant and Occurrence in the Atmosphere

Mercury is identified by the symbol Hg, derived from hydrargyrum, its Latin name,
meaning silver water [36]. In its elemental form, it exists as a silver liquid at room tempera-
ture, since Hg has a melting point of −38.87 °C [36,37]. Mercury occurs naturally in the
environment, with more than 25 Hg-containing minerals known to occur in the Earth’s
mantle [37]. The most abundant Hg-bearing ore is cinnabar (HgS) [36,38,39]. Mercury as
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an environmental pollutant poses a global threat due to its known toxicology and its ability
to bioaccumulate in ecosystems [4,40]. Humans are susceptible to this potent toxin, mainly
through eating contaminated fish, which can cause severe neurological defects [41,42]. In
addition, mercury is very volatile and exists in the gaseous state in the atmosphere and
is easily reduced to the elemental form (Hg), thus being relatively unreactive and not
very soluble in water. These particular properties allow mercury to have an atmospheric
residence time of around 6–12 months, which could allow mercury to travel thousands of
kilometers before being removed through either wet or dry deposition, thus acting as a
global pollutant [4,6].

Additionally, mercury is a naturally occurring metal that combines with other el-
ements to form inorganic pollutants found in wastewater. Mercury deposited on land
surfaces is mainly taken up by soil and vegetation, but can also enter water bodies through
drainage, runoff and erosion processes [11]. When inorganic mercury compounds are
deposited in water and/or soil, they undergo microbial metabolism and are attenuated
to methylmercury, which has the ability to bioaccumulate and concentrate in the food
chain, particularly in fish and marine mammals. In addition, mercury has been shown
to indirectly and directly affect human health and aquatic biota due to its toxicity and
carcinogenicity. It also causes bad taste, color or odor problems in the water [12].

The global total of mercury pollutant released into the atmosphere is estimated at
about 7527 t.y-1 [43]. South Africa is currently considered the sixth largest emitter of
mercury worldwide [43], with estimated anthropogenic emissions between 27.9 t.y-1 and
50 t.y-1 [44–47]. In 2013, South Africa became a signatory to the Minamata Convention
on Mercury, a global agreement to reduce global mercury emissions [47]. Therefore, it is
expected that mercury could be considered a critical pollutant in South Africa’s National
Ambient Air Quality Standards (NAAQS) in the near future [48]. According to the United
Nations Environment Program (UNEP) report (UNEP, 2018), global mercury emissions from
anthropogenic sources to air amounted to about 2220 tons in 2015. Among anthropogenic
sources, stationary burning of fossil fuels accounts for 24% of the estimated emissions,
mainly from coal burning (21%). It is estimated that the concentration of mercury in the
atmosphere has increased 3 to 5 times over the past century as a result of anthropogenic
activities and has tripled in the surface waters of the oceans [49]. Streets et al. (2019)
estimated that global anthropogenic mercury emissions increased from about 2188 t in 2010
to about 2390 t in 2015 (9.2% increase) [50].

The literature discloses several types of adsorbents that have been studied for mercury
concentration monitoring or mercury remediation in wastewater or in the atmosphere.
Conventional adsorbents such as zeolites [51], clay minerals [52], natural and modified
bentonite [53], and impregnated activated carbon [28], have been used to remove mercury
pollution in wastewater and gaseous mercury in the atmosphere. For example, researchers
from Peking University and the University of Toronto used sulfur-impregnated activated
carbon for a passive mercury sampler [28,54]. These materials, although effective adsor-
bents, are cost-prohibitive. Abbas et al. (2018) synthesized a novel mesoporous conjugated
adsorbent based on pentasil zeolite (ZSM-5 type) for adsorption of mercury in aqueous
solution, and the maximum adsorption capacity reached 172.6 mg/g. Bao et al. (2017) used
silica-coated magnetic nanoparticles to extract mercury from wastewater. Li and co-workers
have designed and implemented ZnS nanoparticles (NPs) in various approaches to remove
mercury from polluted environments [55].

3. Chitosan and its Modifications

Chitosan is a partially deacetylated polymer derived from the fundamental deacetyla-
tion of chitin, an unbranched, glucose-based polysaccharide that is abundant in the major
components of cell-wall of fungi, crustaceans, and insect exoskeletons, as well as some
bacterial and fungal cell walls [56–58]. Chitosan consists of linear β-(1, 4)-linked N-acetyl-
glucosamine units as shown in Figure 1. The quality of chitosan depends on the source of
chitin and its separation and degree of deacetylation [59].
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In addition, depending on the origin of the polymer and treatment during the extrac-
tion process, chitosan shows crystallinity and polymorphism. Chitin, or 0% deacetylated
and fully deacetylated chitosan, or 100% deacetylated, had the highest crystallinity. In
acidic environments, chitosan with straight, unbranched morphology and increased molec-
ular content enhances viscosity [60]. The chemical structure of chitosan compared to other
polysaccharides (cellulose or starch) allows particular modifications due to a large elec-
trostatic attraction mechanism to build polymers for specific applications [61]. Chitosan
polymers are non-toxic, antimicrobial, biodegradable, biocompatible, and they are natural
amino-polysaccharides with unique structures, multidimensional properties, excellent
functions and wide-ranging applications in biomedical and other industrial fields [34].

However, in most organic solvents and water at neutral pH, chitosan is insoluble
in its original form (pristine). This insolubility of pristine chitosan limits its applications
to some extent [58,62]. Hence, physical or chemical modification is crucial to improve
solubility (over a wide pH range in water and organic solvents) and develop properties
useful for further chemical reactions and applications [63]. Therefore, various modification
methods have been developed such as physical and chemical modifications [64,65]. Func-
tionalization (or modification) of chitosan has been demonstrated to introduce the desired
mechanical, chemical, and physical properties, which are vital for enhancing its reactivity
with nanomaterials in further reactions [56,58,64–69].

Chemical methods involve the direct preparation of the inorganic nanoparticles (NPs)
(metal oxide and metal) in the polymer matrix solution used as the reaction medium.
Chemical methods involve techniques such as cross-linking, surface grafting, and introduc-
ing coordination atoms with different supporting materials [56,58,65,67,70]. For instance,
uniform size and shape of chitosan-based polymer nanocomposites are often obtained
when using chemical methods. This chemical modification is beneficial for their use in
water purification and environmental remediation. Physical methods first necessitate the
preparation of the NPs, followed by their addition to the polymer matrix used as the disper-
sion medium [63,71]. For example, functionalization of chitosan using physical methods
includes ultraviolet irradiation, electron beam irradiation, ultrasonication, physical mixing,
Y-ray irradiation, mixing, plasma irradiation, sputtering, and coating processes [67]. In
addition, this method includes the fabrication of beads, membranes, and chitosan nanocom-
posite films [63]. Among these two techniques, chemical methods are preferred because
during the preparation of the polymer nanocomposites, the polymer matrix helps to control
the size and shape of the NPs by acting as a capping agent or stabilizer to avoid agglom-
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eration of NPs [31,72]. Moreover, the chemical modification of chitosan to produce new
functionalized chitosan-based polymer composite materials is of primary interest because
such procedure would generate novel properties and functions of functionalized chitosan
favorable for their use in various applications especially in water treatment and removal in
gaseous mercury from the atmosphere [33].

Depending on the nature of the polymer, various techniques can be used to effect
crosslinking. Crosslinking can occur through polymerization of monomers with more than
two functionalities (through condensation) or through covalent bonding between polymer
chains through irradiation or chemical reactions by the addition of various chemicals
in conjunction with heating and sometimes pressure [73]. The addition of crosslinking
between polymer chains affects the physical properties of the polymer depending on the
degree of crosslinking and the presence and absence of crystallinity. Crosslinking leads
to elasticity, decrease in viscosity, insolubility of the polymer, increase in strength and
toughness, decrease in melting point and conversion of thermoplastics to thermosets [31].

4. Progress on the Synthesis of Chitosan Functionalized with Nanomaterials

The research progress in the synthesis of chitosan-based polymer nanocomposites
has attracted a high level of awareness due to their intriguing chemical and physical
properties that offer various potential applications. In particular, chitosan-based polymer
nanocomposites containing carbon nanotubes and/or NPs such as Ag, TiO2, S, and ZnO
fixed in the biopolymer matrix have been developed for their use as adsorbents to remove
mercury from wastewater and the atmosphere [74–76].

These chitosan-based polymer nanocomposites have shown to improve adsorption
and degradation of pollutants, as well as having antibacterial activity. This can be proved
via the excellent mechanical and physico-chemical properties offered by these nanopar-
ticles and carbon nanotubes, which are also valuable for enhancing the properties of
chitosan [27,33,77–81]. For instance, functionalized chitosan modified with nanomaterials
to obtain chitosan-based nanocomposites improve chemical stability, diffusion properties,
surface area, number of adsorption sites and porosity, as well as adsorption capacity and
reusability [31,34,80–83]. Table 2 presents a properties comparison of different adsorbents
with their advantages and disadvantages.

Table 2. Properties comparison of different adsorbents for mercury remediation.

Materials Advantages Disadvantages Reference

MnCe/zeolite High thermal stability
Superior and high activity High cost operation [84]

Ag-SBA-15

Multi-functional materials
Outstanding regeneration capability
Strong tolerance to complex flue gas

High thermal and mechanical stability

High operating cost
High operating temperatures. [85]

Ag nanoparticles
High removal rate,

Ultrahigh Ag atom utilization (150%)
High selectivity and stability

High cost [86]

MWCNTs High efficiency Low selectivity
High cost [87]

SiO2–TiO2 High stability Poor photocatalytic activity [88]

Activated carbon Good adsorption capacity popular for the
removal of pollutant from waste water.

They are costly (the higher the
quality the greater the cost)

Low selectivity
[29]

4.1. Chitosan Modified with Carbon Nanotubes

Carbon nanotubes (CNTs) were discovered by Lijima in 1991 [89]. Carbon nanotubes
are carbon allotropes (which include diamond, graphite, and graphene) and emerged
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in the field of nanotechnology because of their nano-size and unique properties. They
are of great interest due to their simplicity and easy synthesis [90]. In general, CNTs are
classified into three main types: single-walled carbon nanotubes (SWCNTs), double-walled
carbon nanotubes, and multi-walled carbon nanotubes (MWCNTs). SWCNT is defined as
a layer of graphene sheet rolled into a single cylinder, DWCNT is a two-layer graphene
sheet rolled into a double cylinder, while MWCNT is a multiple-rolled layer of graphene
sheets as shown in Figure 2. These rolled graphene sheets are held together by van der
Waals interactions, which cause CNTs to bundle together and lead to the formation of large
aggregates [91–93].
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CNTs can be produced by laser ablation, arc discharge, and chemical vapor deposition
(CVD) [95–97]. The CNTs, when produced, are insoluble and less dispersive substances.
Therefore, it is essential to improve their surface properties for enhanced solubility in most
solvents, increased chemical reactivity, biocompatibility, and reduced cytotoxicity [33,34,96].
Functionalization of CNTs can be achieved using various approaches such as covalent and
non-covalent methods, as illustrated in Figure 3. For example, the functionalization by
covalent method can be conducted by acid treatment which favours the introduction of
functional groups such as carbonyl, hydroxyl, and carboxylic groups on the surface of
CNTs. These functional groups are useful for the further modification of CNTs with other
chemical moieties or materials (eg. chitosan) [31,93,96,98].
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Therefore, to overcome the limitations of CNTs, a surface modification process is
essential to improve their surface properties by changing the surface of the materials [100].
For instance, the properties of functionalized CNTs make them good adsorbents for the
selective removal of specific pollutants.

Modified CNTs have gained recognition as attractive adsorbents for wastewater treat-
ment and environmental remediation applications. This is due to their remarkably high
sorption capacity resulting from the efficiency, affinity and interaction between CNT sur-
face’s functional groups and pollutants [101,102]. In addition, CNTs have high surface-
to-volume ratio, uniform pore distribution, and highly porous and hollow structures
which make them good candidates as superior adsorbents for removal of heavy metal
ions [103,104] dyes [105], and organic pollutants [102] from aqueous solution.

Carbon nanotubes, especially multi-walled carbon nanotubes (MWCNTs), are known
as superior adsorbents and have been used as one of the components in chitosan-based poly-
mer nanocomposites. Because of their excellent mechanical, electronic, and optical proper-
ties, MWCNTs are among the most widely studied and synthesized new materials [106].
Chitosan-CNTs based nanocomposites have attracted great interest in a variety of research
activities due to their high adsorption capacities [106–111]. For example, the strength
imparted to the polymer nanocomposite by MWCNT ensures good stability, supports good
adsorption capacities at low concentration, and improves the recyclability and recovery of
the synthesized polymer [112].

Salam and co-workers synthesized homogeneous MWCNTs/chitosan nanocomposites
by cross-link polymerization of MWCNTs using glutaraldehyde as a cross-linking agent.
The synthesized MWCNTs/chitosan nanocomposites were evaluated for the uptake of
metal ion impurities (Cd, Cu, Zn, Hg, and Ni) from aqueous solution by column adsorption.
Their study proved that MWCNTs/chitosan nanocomposite can efficiently remove metal
ions from aqueous solutions due to the beneficial effect of cross-linking MWCNTs with
chitosan [78]. Mbianda and co-workers modified the oxidized CNTs obtained after acid
treatment with an aminophosphonate together with amino-alcohol to produce phospho-
rylated CNTs (pCNTs) [107]. Zhu et al. (2013) report the fabrication of chitosan-modified
magnetic graphitized multi-walled carbon nanotubes (CS-m-GMCNTs) using a suspension
cross-linking method [113].

4.2. Chitosan Modified with Metal Nanoparticles: Silver, Titanium Dioxide, Sulfur, and
Zinc Oxide

Nanoparticles have two key properties that make them particularly attractive as sor-
bents. On a mass basis, they have much larger surface areas than bulk particles. Nanopar-
ticles can be classified as either organic or inorganic, and they can also be functionalized
with different chemical groups to increase their affinity for target compounds [114]. Fur-
thermore, depending on the functionalization or charges on the nanoparticle (NP) shells,
ordered thin-film or 3D structures can also be designed by drop-casting, which is one of
the simplest and cheapest deposition techniques [115], although it is rarely able to build
up homogeneous layers, especially on large surfaces, mainly due to different evaporation
rates through the substrate or fluctuations in concentration, which can lead to variations in
the internal structure and film thickness.

These nanoparticles have been used to remove heavy metal ions (chromium, mercury
and lead), organic and micro-organism pollutants from wastewater [116,117]. However,
the literature has demonstrated that using these NPs on their own as adsorbent materials
usually results to agglomeration and is not environmentally green [118]. Hence, the
immobilization of these NPs onto a carbon nanomaterial or polymer matrix (chitosan),
before they can be used for environmental remediation, is crucial.

4.2.1. Chitosan Modified with Silver Nanoparticles

Silver nanoparticles (AgNPs) have gained popularity due to their high stability and
enhanced antimicrobial activities. This could be attributed to their small size and large
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surface-to-volume ratio, making them an improvement over their large counterparts. They
have been shown to have effective antimicrobial activity even against resistant microbial
strains at very low concentrations [119]. Hence, a variety of methods such as chemical,
physical, photochemical, and biological methods have been employed to synthesize silver
nanoparticles, which are recrystallized and purified [120]. For example, the chemical
method is the most common method used to synthesize silver nanoparticles (as depicted in
Figure 4), and it uses silver salt, stabilizer, and capping agent as the three main components
to control the growth of Ag-NPs. Among these, silver nitrate is a silver salt that is widely
used due to its chemical stability and low cost.
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The stabilizers include surfactants and ligands or polymers containing functional
groups such as polyvinyl pyrrolidone, poly (ethylene glycol) and poly (methacrylic acid).
In addition, polymers (e.g., collagen, chitosan) can also serve as stabilizers and capping
agents for the synthesis of the polymer nanocomposites based silver nanoparticles [122].
For example, Al-Sherbini (2019) have prepared chitosan/poly (vinylidene chloride)/Ag
(CS/PVDC/Ag) nanocomposite film using a chemical reduction method. The prepared
CS/PVDC/Ag nanocomposite was used as an antibacterial agent against G. Bacillus and
E. coli in water treatment. The synthesized chitosan/PVDC/Ag was also applied as a
adsorbent for the removal of metal ions (Pb, Hg, Fe). Moreover, silver intercalation into
the chitosan structure can boost antimicrobial efficacy and antibacterial action, opposing
all types of bacteria [123]. Tyliszczak et al. (2017) synthesized hydrogel materials based
on chitosan and modified with silver nanoparticles for measuring the swelling capacity
and in vitro tests in distilled water. The study by Hani and Hui reported the synthesis of
AgFeO2 and AgFeO2-modified chitosan (AgFeO2@CTS-NPs) using a hydrothermal method
and was applied to the separation of biothiols [124].

4.2.2. Chitosan Modified with Titanium Dioxide

Titanium dioxide, also known as titania, is widely used as a photocatalyst for envi-
ronmental remediation because it is environmentally friendly and has excellent photo-
catalytic and antimicrobial properties [125–127]. In addition, TiO2 mostly exists in three
phases, namely anatase, rutile and brookite, with anatase being the most favourable dom-
inant phase [126]. Among the nano photocatalysts used in the treatment of wastewater,
TiO2 has been extensively studied; previous studies have shown that TiO2 nanoparticles
have the potential to degrade wastewater contaminants [128]. Nowadays, the metal and
metal oxide nanoparticles are synthesized by both chemical and physical methods such as
hydrothermal [81], microwave [129], and sol-gel method [130]. Among all these synthesis
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techniques, the sol-gel method is mostly used for the synthesis of titanium dioxide as
shown in Figure 5.

Polymers 2022, 14, x FOR PEER REVIEW 11 of 27 
 

 

 
Figure 5. Preparation of TiO2 nanoparticles by sol-gel method [131], with permission from 
Springer Nature, 2022. 

Moreover, new developments on the synthesis of chitosan-based TiO2 nanocompo-
sites have been achieved by Bahal and co-workers. They have accomplished the synthesis 
of the chitosan-TiO2 nanocomposites using both chemical and physical methods. This syn-
thesis was achieved as a result of a free radical polymerization reaction in the presence of 
potassium persulfate through grafting of acrylic acid unto chitosan. Then, the grafted 
acrylic acid/chitosan was modified with TiO2 nanoparticles by the ultrasonication tech-
nique [132].  

Accordingly, Karthikeyan et al. (2017) reported the photocatalytic and antimicrobial 
activities of chitosan-TiO2 nanocomposite. It was effective against both Gram positive and 
Gram negative bacteria and a zone of inhibition between 10.333 ± 0.5773 and 25.667 ± 
1.5275 (mm) was observed [133]. In a study by Dhanya and Aparna, they synthesized 
TiO2/chitosan-based hydrogel and almost completely removed azo and anthraquinone 
dyes from the wastewater [134]. 

4.2.3. Chitosan Modified with Sulfur Nanoparticles 
Sulfur nanoparticles (SNPs) constitute a chemically and biologically active element, 

with behaviours ranging from antioxidant action to antimicrobial properties [135]. In ad-
dition, sulfur and its abundance of chemically diverse organic and inorganic compounds 
are known to exhibit a broad and often diverse spectrum of biological activities, ranging 
from antioxidant effects to antimicrobial and even anticancer properties. SNPs are widely 
used as antimicrobial agents and are used in lithium-sulfur batteries and in sulfur-based 
photocatalysts, sulphuric acid production, and carbon nanotube modification [136–138].  

Sulfur nanoparticles can be prepared by different methods such as acid hydrolysis of 
sodium thiosulphate, ultrasonic treatment of sulfur-cystine solution, and aqueous surfac-
tant solutions [139,140]. Despite the existence of many exciting methods, there are only a 
few mentions in the recent literature that deal with the synthesis of sulfur nanoparticles. 
Deshpande et al. (2008) prepared sulfur nanoparticles from H2S gas using biodegradable 
iron chelate catalyst in reverse micro-emulsion technique, and Shankar et al. (2018) syn-
thesized sulfur nanoparticles (SNPs) using chitosan as a capping and stabilizing agent 

Figure 5. Preparation of TiO2 nanoparticles by sol-gel method [131], with permission from Springer
Nature, 2022.

Moreover, new developments on the synthesis of chitosan-based TiO2 nanocomposites
have been achieved by Bahal and co-workers. They have accomplished the synthesis
of the chitosan-TiO2 nanocomposites using both chemical and physical methods. This
synthesis was achieved as a result of a free radical polymerization reaction in the presence of
potassium persulfate through grafting of acrylic acid unto chitosan. Then, the grafted acrylic
acid/chitosan was modified with TiO2 nanoparticles by the ultrasonication technique [132].

Accordingly, Karthikeyan et al. (2017) reported the photocatalytic and antimicro-
bial activities of chitosan-TiO2 nanocomposite. It was effective against both Gram pos-
itive and Gram negative bacteria and a zone of inhibition between 10.333 ± 0.5773 and
25.667 ± 1.5275 (mm) was observed [133]. In a study by Dhanya and Aparna, they syn-
thesized TiO2/chitosan-based hydrogel and almost completely removed azo and an-
thraquinone dyes from the wastewater [134].

4.2.3. Chitosan Modified with Sulfur Nanoparticles

Sulfur nanoparticles (SNPs) constitute a chemically and biologically active element,
with behaviours ranging from antioxidant action to antimicrobial properties [135]. In
addition, sulfur and its abundance of chemically diverse organic and inorganic compounds
are known to exhibit a broad and often diverse spectrum of biological activities, ranging
from antioxidant effects to antimicrobial and even anticancer properties. SNPs are widely
used as antimicrobial agents and are used in lithium-sulfur batteries and in sulfur-based
photocatalysts, sulphuric acid production, and carbon nanotube modification [136–138].

Sulfur nanoparticles can be prepared by different methods such as acid hydrolysis of
sodium thiosulphate, ultrasonic treatment of sulfur-cystine solution, and aqueous surfac-
tant solutions [139,140]. Despite the existence of many exciting methods, there are only a
few mentions in the recent literature that deal with the synthesis of sulfur nanoparticles.
Deshpande et al. (2008) prepared sulfur nanoparticles from H2S gas using biodegradable
iron chelate catalyst in reverse micro-emulsion technique, and Shankar et al. (2018) synthe-
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sized sulfur nanoparticles (SNPs) using chitosan as a capping and stabilizing agent [141,142].
Figure 6 illustrates the process of synthesizing sulfur nanoparticles, whereby dimethyl
sulfoxide (DMSO) was used as the solvent to dissolve the sulphur.
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Moreover, Xiurong Zhai et al. (2017) synthesized nitrogen, phosphorus, and sulfur
co-doped porous carbons (N,P,S@PC) dispersed in the chitosan (CS) acid solution, par-
ticularly through covalent interaction, which could avoid N,P,S@PC aggregation in most
solvents [143]. Shankal prepared sulfur nanoparticles (SNPs) using sodium thiosulfate
and hydrochloric acid capped with chitosan to show potent antibacterial activity against
Escherichia coli and Staphylococcus aureus [144]. Yuezhong Wen et al. (2015) developed car-
bonaceous sulfur-containing chitosan–Fe (III) for the removal of copper (II) from water. The
adsorbent showed excellent copper removal performance due to its fast kinetic behaviour,
high adsorption capacity and relatively good ability to withstand acidic conditions [145].

4.2.4. Chitosan Modified with Zinc Oxide

Zinc oxide (ZnO) is mostly exploited in nano dimensions due to its exceptional
scientific properties attributed to its band gap and large excitonic binding energy [146]. In
addition, ZnO possesses very characteristic chemical and physical properties such as higher
physicochemical stability, high chemical coupling ability, broad spectrum of radiation
absorptivity and higher photostability [147,148]. It is commonly added to sunscreens,
coatings and paints to absorb UV light and plays an important role in various industries.
ZnO is a white to off-white crystalline powder that is nearly soluble in water. Its most
common structures are wurtzite (hexagonal) and zinc blender [149].

Zinc oxide nanoparticles (ZnO NPs) can be derived or synthesized from various zinc
salts using various techniques including vapour deposition, water precipitation methods,
hydrothermal synthesis, sol-gel methods, and mechanical size reduction [150]. Among
these techniques, sol-gel is mostly used due to many advantages such as low operational
cost, and ease of the process, with reliability, and reproducibility of a similar product. The
reaction also requires milder conditions for nanoparticle fabrication [151,152].

Qiu and co-workers prepared nitrogen-doped ZnO for photocatalytic degradation of
bisphenol under visible light [153]. Yue et al. (2013) synthesized ZnO NPs using the sol–gel
technique with zinc 2-ethylhexanoate as precursor salt and Propan-2-ol as a solvent [148].
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In addition, Taghavi Fardood et al. (2019) fabricated ZnO nanoparticles using zinc acetate
and aluminium nitrate as precursors by a sol-gel method [154]. The aluminium nitrate was
dissolved in zinc acetate drop wise, followed by centrifugation, drying, and calcination at
200 °C, yielding zinc oxide nanoparticles as shown in Figure 7.
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Figure 7. Preparation of zinc oxide (ZnO) nanoparticles by sol-gel method employing zinc acetate
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Moreover, previous work has also reported on the modification of ZnO with chitosan.
For instance, Hassan et al. reported the use of a chitosan-silica composite to immobilize
zinc oxide (ZnO) nanoparticles into a chitosan/silica/ZnO nanocomposite [156]. Shahram
Moradi Dehaghi and co-workers synthesized chitosan–ZnO nanoparticles (CS–ZnONPs)
composite beads by a polymer-based method [157]. The study by Selvaraj Preethi et al. (2020)
report an eco-friendly synthesis of chitosan/zinc oxide (CS/ZnO) nanocomposite using
S. lycopersicum leaf extract by a bio-inspired method [158].

5. State of Art on Chitosan Modified with Nanomaterials for Environmental
Remediation to Mercury Pollution

Table 3 summarizes recent work on the use of chitosan-based polymer for environ-
mental remediation mainly focused on mercury. Based on the literature search, one can
notice that since the past ten years, research studies on the synthesis of chitosan-based
polymer nanocomposites, mainly resulting from the modification of chitosan with either
CNTs, TiO2, Ag, ZnO or S nanoparticles, for application on environmental remediation to
mercury have been scarce. Hence more work is still needed in this area.

Table 3. Enhancement in modification and applications as a result of chitosan composite formation.

Chitosan-Based Nanomaterial Techniques Target Media
(H2O or atm) Removal Capacity Reference

Sulfur-doped reduced graphene
oxide@chitosan composite Batch adsorption H2O 0.125 to 6 µM Hg2+ with a

detection limit of 1.6 nM.
[159]

Ch functionalized Au@S-g-C3N4 Passive sampling atm Limit of detection 0.275 nM [160]
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Table 3. Cont.

Chitosan-Based Nanomaterial Techniques Target Media
(H2O or atm) Removal Capacity Reference

Chitosan/CNTs Batch adsorption H2O

148.7 mg/g (CS);
183.2 mg/g

(MWCNT-COOH-
impregnated CS beads);

167.5 mg/g
(MWCNT-impregnated CS

beads); and
172.7 mg/g

(SWCNT-impregnated CS
composite beads)

[161]

Thiol terminated chitosan capped
silver nanoparticles
(Mod-Ch-Ag NPs)

Batch adsorption H2O Detection limit is 5 ppb
and response time is 5 s [162]

Au-TiO2
nanoparticles/chitosan/gold

(Au–TiO2 NPs/Ch/Au)
Passive sampler atm

5.0–400.0 nM.
In addition, the limit of

detection is 1.0 nM with a
240 s preconcentration

[163]

Nano-SiO2-Crosslinked
chitosan-nano-TiO2

Microwave-assisted sorption H2O 8000 µmol g–1 [164]

Abbreviation: Ch—Chitosan; Au—Gold; TiO2—Titanium dioxide; CNTs—Carbon nanotubes; S—Sulfur;
SiO2—Silicon dioxide; H2O—Water; atm—atmosphere.

The mechanism of adsorption of these heavy metal (Hg, Pb, Cu, and Cr) and in-
organic contaminants turned out to be complex and the most commonly reported are:
electrostatic attraction, physical adsorption (mainly due to van der Waal forces), adsorption-
precipitation and chemical interaction (occurs between functionalized MWCNTs and metal
ion pollutants). Additionally, the adsorption mechanism can also be studied using the
kinetic models (first and second order pseudo-models) and the thermodynamic parameters
such as the changes in enthalpy (H), entropy and Gibbs energy. It has also been reported
that a combination of adsorption precipitation and electrostatic attraction can occur during
the uptake of metal ions [111]. The study by Amanulla and co-worker, observed that
besides the electron-hole pairs generated by light photons, hydroxide radicals also play an
important role in the mercury degradation mechanism. The study indicates that the photo-
catalysts produced were very stable at room temperature and can be recycled and reused
for up to four successful cycles without major loss of performance [160]. Moreover, the
mechanism of adsorption of pollutants (mercury) by the adsorbents has also been studied
using different adsorption isotherm models such as Langmuir, Freudlich, Redlich–Peterson,
Dubinin–Radushkevich and Temkin models. This is because these isotherm models are
essential for the design and operation of the adsorption system [111]. For instance, a study
by Mahmoud et al. (2018) has successfully explained the sorption of divalent mercury
and copper by three isotherm models (Langmuir, Freundlich and Dubinin–Radushkevich)
and shown favorable operations. The nanocomposite retained its selectivity and sorption
power for mercury and copper even in the presence of other interfering ions [164].

6. Adsorption Techniques for the Removal of Mercury from Contaminated Water
and Atmosphere

Adsorption is defined as the transport of certain compounds (adsorbates or pollutants)
from one phase (e.g., liquid) to adhere to the surface of another substance (e.g., solid
adsorbent). It is a surface chemical process that occurs at the interface between adsorbent
and adsorbate and mainly depends on the type of adsorbate, adsorbent and operating
conditions. It is important to note that liquid-solid, gas-solid, gas-liquid, and liquid-liquid
are the different interfaces normally involved in adsorption processes. However, in the
case of water purification, only the liquid-solid interface is considered [165,166].
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Currently, adsorption techniques have emerged as promising methods for water treat-
ment and environmental monitoring due to their simplicity, lower cost, and potential for
recycling the adsorbent materials [166,167]. Moreover, the adsorption process is considered
to be the most feasible method because it is likely used to remove all types of pollutants
including organic and inorganic matter from industrial wastewater, domestic wastewater,
synthetic water, sewage, groundwater, and surface water including drinking water, be-
cause this method is competent, inexpensive, flexible in design, user-friendly and utilises a
globally available adsorbent, with simple regeneration process of some used adsorbent and
low energy consumption [168].

There are different types of adsorption techniques such as fixed-bed adsorption, batch
adsorption, and passive samplers; and each adsorption technique has its advantages and
disadvantages. For example, fixed bed adsorption is widely used to purify liquid mixtures,
including mixtures from industrial effluents [169]. Therefore, the contact time is not as long
as in batch adsorption and hence equilibrium is not reached for a given adsorption. It can
be said that the results from batch studies may not be accurate due to the reduced contact
time for scale-up column adsorption [52]. Hence, it is crucial to study the practicality of
using adsorbents in continuous mode. Batch adsorption studies provide important data
and parameters for adsorbate removal, while passive samplers are an abiotic device used
to monitor for chemicals or pollutants in an environmental medium [98,170,171].

Among adsorption techniques, batch adsorption is preferred by researchers in
laboratory-scale studies because it consumes a small amount of material and is less time-
consuming. In addition, studies of adsorption by equilibrium in batch mode allow ad-
sorbent performance to be predicted prior to larger-scale application. The equilibrium
study also provides important information about the effectiveness of a particular adsorbate-
adsorbent system [172].

In this section, the attention is mainly on the application of chitosan-based nanocom-
posites as adsorbents for the removal of mercury from contaminated water by batch
adsorption techniques and the removal of gaseous mercury from the atmosphere using the
passive sampler adsorption method.

6.1. Removal of Mercury from Wastewater Using Batch Adsorption Study

Batch adsorption experiments are common for laboratory scale studies, and are per-
formed to evaluate the adsorption isotherms of metal ions (such as mercury) on the surface
of the adsorbent (Figure 8) [105,173].
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Thus, in this paper review, the focus is on chitosan-based polymer nanocomposites
used as adsorbents in batch adsorption studies, as this is a promising method for water
purification and environmental monitoring due to its simplicity, low cost, and potential to
recycle the adsorbent nanomaterials [27,31,57,116,175–177]. The adsorption by functional-
ized chitosan-based polymer nanocomposites is a remarkable process due to the natural
richness of the materials and non-toxic ability to exchange ions. The surface area has
been shown to be the key factor influencing the adsorption capacity and efficiency of the
adsorbent materials [107,110]. Moreover, chitosan also shows increased adsorption limits
towards metal particles and other ionic atoms due to its different functional groups [178].
Investigations in one study showed that chitosan adsorbents have very high adsorption
potentials for several types of heavy metals such as lead, chromium and mercury [179].
However, the adsorption of mercury has been demonstrated to be influenced by factors or
parameters such as pH, adsorbent dosage, the contact time, adsorbate concentration, and
temperature [180].

6.1.1. pH

The effect of pH is critical in the adsorption process and is one of the most important
process variables that can directly affect the uptake of Hg by adsorbents as it can affect the
extent of Hg ionization as well as the surface properties of an adsorbent. For example, pH
affects the overall charge on the adsorbent surface functional groups and their protonation,
and it also affects the extent of ionization and speciation of the pollutants (Hg, Pb, and Cr)
in the feed solution [181]. It has also been proved that the adsorption of pollutants such
as metal ions is small at a pH value lower than the pH value of the zero-charge point due
to the neutralization of the surface charge, while the pH value of the pollutant solution is
higher than the pH value of the zero-charge point [111].

6.1.2. Adsorbent Dosage

The adsorbent dose of solute adsorption increases with increasing concentration
of an adsorbent because increasing adsorbent concentration results in increased active
exchangeable adsorption sites. However, after increasing the adsorbent concentration, the
total adsorption of solutes per unit weight of an adsorbent may decrease due to interference
caused by the interaction of active sites of an adsorbent [182,183].

6.1.3. Temperature

The temperature of the solution mainly affects the enlargement of adsorbents. At
high operating temperature, it may be preferable for pollutant molecules to diffuse more
quickly into the adsorbent, allowing for rapid bed saturation and short breakthrough time.
Due to the increase in temperature, an endothermic process with an increase in adsorption
capacity was observed [167].

6.1.4. The Contact Time

The contact time can also influence the economics of the process and the adsorption
kinetics. Therefore, the contact time is another performance-determining factor in the
adsorption process and it significantly affects the adsorption process [184]. For instance,
equilibrium for Pb2+ is reached after 60, 50 and 20 min for the initial concentration of 30, 20
and 10 ppm, respectively, when TiO2/MWCNTs or MWCNTs are used as adsorbents [111].
The study by Mamba and co-workers confirmed that equilibrium was reached after 60 min
(for 4-CP) and 80 min (for Co2+) when pMWCNT-CD polymer was used at an initial
concentration of 10 ppm [107].

6.1.5. Initial Concentration of Pollutant

The influence of the initial concentration on the adsorption mechanism also depends
on the type of adsorbent used. The study by Mamba et al. (2013) showed that the CD
nanosponge polymer modified with functionalized CNTs performed much better than
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functionalized CNTs at low concentration (10 ppm). For example, removals by the polymer
of 68% and 67% were recorded for lead, and cobalt, respectively [107,110]. It has also
been reported that the concentration of anionic species in desorption solutions affects the
regeneration of the adsorbent [185].

6.2. Removal of Mercury from the Atmosphere Using a Passive Sampler Adsorption Method

Passive air sampling (PAS) is another common strategy for gaseous Hg adsorption
and measurement. PAS is widely used for environmental monitoring of mercury and other
airborne pollutants [186]. Although passive air samplers (PAS) are not real-time monitoring
systems, they overcome the limitations of other approaches such as active monitoring
systems because they allow simultaneous spatial Hg measurement in different areas and
thus create a map of the Hg concentration surrounding emission sources [187].

Typically, in this technique, the adsorbent material in a PAS is located in a container
protected by a membrane on a disc or columnar geometry surrounded by a cylindrical
diffusion barrier as shown in Figure 9b [188]. The PAS consisted of a clear borosilicate
vessel, a cap made of a nylon membrane for gas diffusion and particle stopping, a locking
ring to keep the adsorbent membrane on the vessel bottom, and finally the adsorbent
membrane on the quartz fibre substrate. The PAS used the axial diffusion path of the
gaseous mercury through a diffusion membrane along a glass vessel (diffusion path) until
it reached the adsorbing membrane (Figure 9a).
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Samplers based on chitosan nanomaterial thin films or nanoparticles (NPs) [191,192]
have been developed because of the strong electrostatic attraction mechanism. They
are based on the second most abundant biopolymer and are inexpensive, re-usable and
biodegradable; hence, they are used in passive mercury samplers for mercury uptake [61].
Moreover, chitosan-based polymer nanocomposites are used in water treatment because of
their good flocculation properties, heavy metals adsorption (mercury) and ability to reduce
the COD of organics; they have qualities such as fast removal rates and greater removal
efficiency [193].

Furthermore, the uptake or performance of chitosan-based polymer nanocomposites is
much more reliable when the nanostructured materials are incorporated into the matrix of
the polymer. Incorporation of these nanostructured materials into the polymer matrix helps
to control the shape, structural morphology, and size of the nanoparticles and improve the
uptake efficiency of pollutants from the atmosphere [31,82,83,194–199].

7. Conclusions

According to various studies, chitosan has several natural benefits, including high
porosity, biodegradability, structural integrity, and non-toxicity. The modification of chi-
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tosan with nanomaterials has been demonstrated to improve its properties and usefulness
for various applications. In particular, functionalised chitosan-based composite mate-
rials (e.g., chitosan-based polymer nanocomposites) have attracted much attention as
suitable adsorbents for dyes, oil spills, and heavy metal ions such as cobalt, mercury,
and copper. Furthermore, these chitosan-based composite materials have been shown to
possess excellent multifunctional properties resulting from the combination of the indi-
vidual components. They have also been shown to improve adsorption efficiency due
to the electron-rich functional groups present on the polymer backbone. In summary,
these chitosan-based nanocomposites, produced by modifying functionalized chitosan
with carbon nanostructured (carbon nanotubes) and nanoparticles (Ag, TiO2, ZnO, and S),
have shown exceptional qualities, making them strong candidates as a promising method
for environmental and wastewater remediation.

8. Future Perspectives

The research studies on the synthesis of chitosan-based polymer nanocomposites,
mainly resulting from the modification of chitosan with CNTs, TiO2, Ag, ZnO or S nanopar-
ticles, for application on environmental remediation to mercury have been scarce. Therefore,
it is highly recommended that more investigations are undertaken in this area.
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