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Abstract: An investigation was conducted to determine the effects of operating parameters for
various electrode types on hydrogen gas production through electrolysis, as well as to evaluate
the efficiency of the polymer electrolyte membrane (PEM) electrolyzer. Deionized (DI) water was
fed to a single-cell PEM electrolyzer with an active area of 36 cm2. Parameters such as power
supply (50–500 mA/cm2), feed water flow rate (0.5–5 mL/min), water temperature (25−80 ◦C), and
type of anode electrocatalyst (0.5 mg/cm2 PtC [60%], 1.5 mg/cm2 IrRuOx with 1.5 mg/cm2 PtB,
3.0 mg/cm2 IrRuOx, and 3.0 mg/cm2 PtB) were varied. The effects of these parameter changes
were then analyzed in terms of the polarization curve, hydrogen flowrate, power consumption,
voltaic efficiency, and energy efficiency. The best electrolysis performance was observed at a DI water
feed flowrate of 2 mL/min and a cell temperature of 70 ◦C, using a membrane electrode assembly
that has a 3.0 mg/cm2 IrRuOx catalyst at the anode side. This improved performance of the PEM
electrolyzer is due to the reduction in activation as well as ohmic losses. Furthermore, the energy
consumption was optimal when the current density was about 200 mA/cm2, with voltaic and energy
efficiencies of 85% and 67.5%, respectively. This result indicates low electrical energy consumption,
which can lower the operating cost and increase the performance of PEM electrolyzers. Therefore,
the optimal operating parameters are crucial to ensure the ideal performance and durability of the
PEM electrolyzer as well as lower its operating costs.

Keywords: polymer electrolyte membrane (PEM) electrolyzer; water electrolysis; parametric study;
energy efficiency; electrochemical reaction

1. Introduction

Hydrogen (H2) has been identified and recognized as a potentially clean, sustainable,
and storable alternative energy source. It is environmentally friendly and does not release
harmful gases [1,2]. Moreover, it can supply two to three times the energy of other alterna-
tive fuels, such as ethanol, methanol, biodiesel, liquefied petroleum gas, and natural gas.
Thus, hydrogen has the potential to replace or minimize gasoline consumption [3,4]. Vari-
ous methods of producing hydrogen from water are also available, such as thermochemical
methods, thermolysis, photolysis, and electrolysis. Among the available methods, water
electrolysis is the most environmentally friendly and produces ultrapure hydrogen gas
(99.999%). In water electrolysis, a direct current is applied across electrodes during electrol-
ysis to provide a potential gradient and driving force for ion diffusion in the cell, which
then splits water into hydrogen gas (cathode) and oxygen gas (anode) [5–8]. Electrolyzed
hydrogen can be utilized as an energy and power source for hydrogen fuel cells, whereas
oxygen can be used in various industrial processes or as a gas in the medical field [9].
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Three types of electrolyzers are currently available in the market, namely, alkaline elec-
trolyzers, solid oxide electrolyzers, and polymer electrolyte membrane (PEM) electrolyzers.
Of the three electrolyzer types, PEM electrolyzers are commercially available and are com-
monly used for producing “green-hydrogen” from renewable energy sources due to their
efficiency and adaptability [10,11]. PEM electrolyzers can operate at high current densities
(above 2 A/cm2) with high voltage efficiency. Other advantages of PEM electrolyzers are
the capacity to produce hydrogen with high purity, operate under high-pressure conditions,
and rapidly store hydrogen fuel [12,13]. Compared to others, PEM electrolyzers produce
hydrogen with higher impermeability and higher proton conductivity.

The challenge of using commercial PEM electrolyzers is the high component cost of the
cell. Their membrane electrode assembly (MEA) component, iridium, is the rarest element
in Earth’s crust. It also has other applications. Thus, the high demand for iridium increases
its cost. Moreover, iridium oxide exhibits low activity, and ruthenium oxide has low
corrosion resistance, both of which affect the performance of PEM electrolyzers in oxygen
evolution reactions (OER). These limitations affect the durability of PEM electrolyzers
and lead to expensive and significant maintenance costs [14–16]. Therefore, the difference
in the operating conditions of PEM electrolyzers and the type of electrocatalyst used
through experimental or model development are crucial for improving PEM electrolyzer
performance and lifespan to lower operating costs.

Various studies have been conducted on the performance variance of PEM water
electrolysis. Many of these studies have shown that operation parameters such as current
density, flow field, pressure, temperature, and others can affect the performance of a PEM
water electrolyzer. Tijani et al. [17] developed a simulation model to investigate the effects
of the exchange current density and charge-transfer coefficient (CTC) on the performance
of PEM electrolyzers. They observed that the input power increases exponentially with in-
creasing current. In addition, analysis of the effect of temperature on the polarization curve
showed a significant decrease in the operating voltage in the 20 ◦C to 80 ◦C temperature
range. Selamet et al. [18] conducted a study using 100 cm2 single-cell and 10-cell stack PEM
electrolyzers to determine the effects of feed water flowrate, temperature, and pressure on
cell performance. The results showed that performance was enhanced at higher operating
temperatures and low pressure. They concluded that the water flowrate indirectly affects
the performance of PEM electrolysis even though the results are insignificant.

Meanwhile, Majasan et al. [19] used high-speed optical imaging to study the two-
phase anode flow-field flow behavior and gas-bubble dynamics of a PEM electrolyzer
under various operating settings and link the results to electrochemical performance.
They showed that a parallel flow field yielded better performance than a serpentine flow
field. The effect of water flow rate on performance depends strongly on the cell operating
temperature, and higher water flow rates delay bubbly-to-slug transition and lead to the
formation of smaller bubbles and shorter slugs. In studies conducted by Araya et al. [20],
a seven-cell PEM water electrolysis stack was built and tested under various operating
conditions. The voltage change and polarization curves were recorded under various test
settings, including current density, temperature, and pressure. The results showed that the
operating temperature had more obvious effects on the stack performance than the current
density and cathode pressure.

Xu and Scott [21] found that the Nafion ionomer contents of the anode and cathode
of MEAs affect the performance of single-cell PEM electrolyzers; they measured a current
density of 1 A/cm2 when the terminal voltage was 1.586 V, the temperature was 80 ◦C, and
Nafion 117, Pt/C was used as the cathode and Ru0.7Ir0.3O2 was the anode. In a study by
Rozain et al. [22], the effect of iridium oxide loadings at the anode of a PEM electrolyzer
on the overall electrochemical performance was studied using cyclic voltamperometry
and electrochemical impedance spectroscopy, under operating conditions of 80 ◦C and
atmospheric pressure and using a 25 cm2 single cell. They found that the cell voltage grad-
ually decreased as the anodic loading increased until a value of approximately 1 mg/cm2

IrO2 was reached; these results are due to improved OER kinetics. According to research
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conducted by Siracusano et al. [23], decreasing the Ir0.7Ru0.3Ox loading from 1.5 mg/cm2 to
0.5 mg/cm2 caused an increase in overpotential and modified the electronic configurations
of iridium and ruthenium sites on the surface. The stability for the MEA with a total noble
metal catalyst loading of 1.6 mg/cm2 was excellent when steady-state durability tests were
performed for 1000 h at 1 A/cm2.

Despite the tremendous research on the operating conditions of PEM electrolysis, the
conditions for the long-term application of this method have yet to be determined as most
researchers focus only on the cell voltage and CTC to identify the optimum operating
conditions. Thus, this research focuses on the effects of operating conditions such as current
density, water flowrate, operating temperature and electrode type, i.e., electrocatalyst type
and electrocatalyst loading, on the performance of the electrolyzer, particularly in terms
of hydrogen production, cell electrical energy consumption, voltaic efficiency, and energy
efficiency, to reduce the operating costs.

2. Methodology
2.1. Single-Cell PEM Electrolyzer

A single-cell PEM electrolyzer was used throughout the studies. A PEM electrolyzer
consists of several basic components, including an MEA, which is the core of a cell, and
other components such as a gas diffusion layer, bipolar plate, gaskets, and a compression
plate. The MEA, which has an active area of 36 cm2 (6 cm × 6 cm) and anode and cathode
catalysts, is the main component. Nafion 115 was used as the MEA electrolyte membrane.
The MEA is reinforced with two bipolar plates. Platinum coated titanium plate (1 µm in
thickness) was used as a bipolar plate. The anode flow field design for bipolar plate was
pin type, while plane bipolar plate with titanium felt was used at the cathode side. Between
the MEA and the bipolar plate are layers of gaskets whose number depends on the desired
dimensions. Figure 1 shows the single-cell components of the PEM electrolyzer. Table 1
shows the specifications for the different types of MEA used.
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Figure 1. Components of a single-cell stack electrolyzer.

A single-cell stack was connected to the peristaltic pump, hydrogen flowmeter, and
power supply. Figure 2a,b show the schematic diagram and actual photo of the experimen-
tal setup in this study, respectively.
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Table 1. MEA Specifications.

Characteristic Specification

Active area 6.0 cm × 6.0 cm
Electrolyte membrane Nafion®® 115

Electrocatalyst at the cathode side 3.0 mg/cm2 Platinum Black (PtB)

Electrocatalyst at the anode side

• 0.5 mg/cm2 Platinum Carbon (PtC) (60%)
• 1.5 mg/cm2 Iridium Ruthenium Oxide (IrRuOx)

and 1.5 mg/cm2 Platinum Black (PtB)
• 3.0 mg/cm2 Iridium Ruthenium Oxide (IrRuOx)
• 3.0 mg/cm2 Platinum Black (PtB)
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2.2. Operation of the PEM Electrolyzer

The performance of the PEM electrolyzer in the production of hydrogen gas under the
different power supplies, water feed flowrate, temperature conditions, and types of anode
electrocatalysts was evaluated. Deionized (DI) water was fed into the anode side of the
single-cell stack at the desired flowrate using a peristaltic pump to ensure the flow of water
into the PEM electrolyzer. The DI water was heated, and its temperature was maintained
at the desired point as it was fed into the electrolyzer at a constant flowrate for 30 min.
The experiment was conducted by varying the current density within the 50 mA/cm2

to 500 mA/cm2 range. The cell voltage was measured and recorded after 30 min to plot
a polarization curve (also known as a V−I curve). The flowrate of hydrogen produced
through the PEM electrolyzer was also recorded.

The flowrate was varied within the 0.5 mL/min to 5 mL/min range by keeping the
temperature constant at 30 ◦C. The experiment was repeated by varying the operating tem-
perature from 25 ◦C to 80 ◦C while the water flowrate was maintained at 2 mL/min. A
commercial MEA was used when these two parameter modifications were performed. Lastly,
the effects of the type of anode electrocatalyst were investigated by using an MEA that has a
Nafion®®115 membrane as the electrolyte, and the anode side of the electrolyzer was covered
with different electrocatalysts, such as 0.5 mg/cm2 PtC (60%), 1.5 mg/cm2 IrRuOx with
1.5 mg/cm2 PtB, 3.0 mg/cm2 IrRuOx, and 3.0 mg/cm2 PtB. At the same time, 3.0 mg/cm2 of
PtB was applied on the cathode side of all MEAs used as the cathode catalyst.

2.3. Determination of PEM Electrolyzer Performance

The performance of the PEM electrolyzer was evaluated according to the energy
consumption, voltaic efficiency, and electrical efficiency based on the cell voltage and
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amount of hydrogen produced. The equation that was used to determine the energy
consumption to produce 1 kg of hydrogen is shown below.

E =
Icell × Vcell
FH2× ρH2

(1)

where:

E = electrical energy consumption (kWh/kg H2)
Icell = cell current (A)
Vcell = cell voltage (V)
FH2 = hydrogen flowrate (L/h)
ρH2 = density of hydrogen (0.0813 kg/m3) at 1 bar, 25 ◦C

The standard electrochemical potential that corresponds to a high heating value (HHV)
is 1.48 V/cell. This value represents a thermoneutral voltage at which hydrogen and oxygen
are produced with 100% thermal efficiency. It is the voltage required to split liquid water
and the voltage at which a cell operating at 25 ◦C can operate without producing excessive
heat. Therefore, the formula for calculating the cell voltaic efficiency is as follows.

η =
VTN
Vcell

(2)

where:

η = cell voltaic efficiency (%)
VTN = thermoneutral voltage = 1.48 V
Vcell = cell voltage

While the cell operates, an electrochemical reaction draws heat from the cell com-
ponents and cools the cell until it stops operating. Therefore, to maintain temperature,
sensible heat must be supplied to the cell components from an external source. In the case
of global system efficiency, both electrical input and heat input from external sources must
be included. Energy efficiency can be calculated using the following equation:

energy efficiency (%) =
HHV of H2 production

electrical energy consumption (kWh/kg H 2)
× 100 (3)

where HHV of H2 production = 39.4 kWh/kg.

3. Results and Discussion
3.1. Effect of Water Feed Flowrate

The effect of the water feed flowrate was determined to identify the most optimal water
feed flowrate for operating the PEM electrolyzer. The power supply was varied within the
50 mA/cm2 to 500 mA/cm2 range. The feed water flowrates used in this study ranged from
0.5 mL/min to 2 mL/min. A polarization curve, which is a graph that shows the relationship
between cell voltage and current density, was then plotted. Figure 3 shows the polarization
curve that represents the effect of water flowrate on PEM electrolyzer performance.

Based on Figure 3, the cell voltages at different current densities are nearly the same
for the 0.5, 1, 2, 3, and 4 mL/min flowrates at low current densities of 50 mA/cm2 to
200 mA/cm2. However, a clear difference can be seen as the current density increases.
Cell performance was better for the 2 mL/min water flowrate compared to other flowrates
when the current density was higher, as it contributed to lower cell voltages. This result
is reasonable because higher current densities can increase the reaction kinetics at both
electrodes and thus lead to lower charge-transfer resistance, which contributes to better
cell performance [20]. Therefore, based on the polarization curve, the optimal flowrate is
2 mL/min. The flowrate of water fed into the water electrolysis unit can affect the rate of
hydrogen production. Figure 4 shows the performance of the PEM electrolyzer as evaluated
in terms of voltaic efficiency.
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The voltaic efficiency is calculated through the electrochemical potential that corre-
sponds to the HHV, which is equivalent to 1.48 V. The voltage efficiency decreased as the
current density increased because, according to the equation for voltage efficiency, the cell
voltage is inversely proportional to the voltage efficiency. Figure 4 shows that the voltage
efficiency at a water flowrate of 2 mL/min and a current density of 200 mA/cm2 is the
highest at 83.15%.

Figure 5 shows the effect of water flow rate on the hydrogen production and the energy
consumption against current density (Figure 5) was constructed to study the effect of the
water flowrate on the PEM electrolyzer performance. Based on Figure 5a, the significant
difference in the hydrogen production under different water flow rate conditions is not
clearly shown. When water was fed into the PEM electrolyzer at 3 mL/min, the hydrogen
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produced was slightly higher at densities between 50 and 300 mA/cm2 compared to the other
DI water flow rate. At current densities greater than 300 mA/cm2, the hydrogen flowrate
increased as the water flowrate increased from 1 mL/min to 5 mL/min. However, overall,
the water feed flowrate of 3 mL/min is the optimal condition for hydrogen production using
an PEM electrolyzer. Although 3 mL/min can be said to be optimal in terms of hydrogen
gas production, the energy consumption from 250 mA/cm2 to 500 mA/cm2 increased based
on Figure 5b. Figure 5b also shows that the consumption of electricity was the highest at
5 mL/min water flowrate compared with those at other water flowrates. This result is due to
the role of water as a cooling agent, which means that less heat is supplied through the higher
enthalpy of the water flow and results in the availability of less efficient reactants to the anode
electrodes [19]. The water flowrate at 2 mL/min is arguably optimal after 250 mA/cm2 due
to the low energy consumption. The cell voltage at a low 2 mL/min water flowrate is directly
proportional to the electrical energy consumption of the PEM electrolyzer, which leads to less
electrical energy used for cell operation compared with those at other feed water flowrates.
The lowest energy consumption is about 54.22 kWh/kg H2 when the flowrate was 3 mL/min
and a current of 7.2 A was supplied to the electrolysis unit.
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The performance of the electrolyzer was further evaluated in terms of energy efficiency,
as shown in Figure 6. Based on Figure 6a, the energy efficiency shows a fluctuating trend
at current densities of less than 250 mA/cm2. When the current density was less than
250 mA/cm2, the water flowrate at 3 mL/min resulted in the highest energy efficiency.
However, the energy efficiency shows a downward trend for 3 mL/min at current densities
greater than 300 mA/cm2. At this point, i.e., above 300 mA/cm2, 2 mL/min showed lower
electrical energy consumption as result in highest energy efficiency. Meanwhile, Figure 6b
shows the plot of the energy efficiency and energy consumption against the feedwater
flowrate at a constant current density of 250 mA/cm2.

When the current density was kept constant at 250 mA/cm2 and the water flowrate
was 3 mL/min, the hydrogen produced was highest, and the energy consumption was
low. Meanwhile, electricity consumption shows no definite trend against water flowrate,
whereas the energy consumption and hydrogen production increased in the water flowrate
order of 3, 0.5, 2, and 4 mL/min, followed by 5 mL/min when the current density was kept
constant. The performance of the PEM electrolyzer was also evaluated in terms of energy
efficiency. As shown in Figure 6b, the water flowrate of 3 mL/min resulted in the lowest
energy consumption with the highest energy efficiency. The difference between the energy
efficiencies obtained at 2 and 3 mL/min when the current density was 250 mA/cm2 is small.
However, the performance of the PEM electrolysis unit is evaluated, not only in terms of
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energy efficiency and energy consumption, but also in terms of voltage efficiency, hydrogen
flowrate, energy consumption, and energy efficiency at different power supply voltages.
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Overall, the water flowrate can affect the performance of the electrolysis unit in
various aspects. Based on the results obtained, 2 mL/min is the optimal water flowrate
for operating the PEM electrolyzer. According to a study by Choi et al. [24], the cooling
rate increases as the flowrate increases. Therefore, the operating temperature of a single
cell decreases. This result means that the outlet temperature at the anode part of the cell is
low when the flowrate is high. This phenomenon reduces ion conductivity and causes the
activation overpotential to increase with decreasing operating temperature. Therefore, in
the current study, the water flowrate was kept constant at 2 mL/min to study the effect of
the operating temperature and type of electrode catalyst on the PEM electrolyzer.

3.2. Effect of Operating Temperature

To identify the effect of the operating temperature on the performance of water elec-
trolysis PEM and determine the optimal operating temperature for the PEM electrolyzer,
the effect of the operating temperature was investigated by heating the water at temper-
atures that range from 25 ◦C to 80 ◦C. Figure 7a,b show the polarization curve and (b)
voltaic efficiency, respectively, that represent the effect of the operating temperature on
PEM electrolyzer performance.

The polarization curve in Figure 7a shows that the voltage decreased as the tempera-
ture of the DI water increased. It shows that the operating temperature of 80 ◦C recorded a
low cell voltage value. This result suggests that the higher temperature of 80 ◦C helped
increase the rate of electrocatalytic hydrogen evolution and oxygen evolution at both elec-
trodes and reduced the charge-transfer resistance on both sides [20]. Therefore, the kinetics
of the charge-transfer reaction improved at the electrode membrane interface, which led
to better cell performance at higher temperatures. The activation overpotential decreases
with increasing operating temperature [24]. In addition, the conductivity of the proton
exchange membrane increases with increasing temperature, which results in lower ohmic
overvoltage at higher temperatures [25].

Moreover, the polarization curve in the lower current density region is steeper than
that in the higher current region. This result may be due to the reaction kinetics dominating
the entire stack process at lower current density areas, and the charge-transfer resistance
is high when reaction kinetics are lower, which, in turn, results in a steeper polarization
slope. The higher current density reduced the charge-transfer resistance on both sides, and



Polymers 2023, 15, 560 9 of 15

the ohmic resistance dominated the high-current density area. Therefore, the slope of the
polarization curve in the area of high current density is smaller. Meanwhile, in Figure 7b, the
lowest voltage efficiency is 25 ◦C, and the value increased when the operating temperature
was increased. This result is due to the increased voltage efficiency when the cell voltage
decreased. A voltage efficiency of 85% was achieved when the operating temperature and
current density were 80 ◦C and 200 mA/cm2, respectively.
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Figure 8a,b show the effects of the operating temperature of the PEM electrolyzer on
hydrogen production rate and energy consumption, respectively. The hydrogen flowrate
increased as the current supplied to the PEM electrolyzer increased. An increase in the
current density results in the availability of the overpotential for the subsequent process,
leading to a faster breakdown of water molecules in hydrogen and oxygen compared
to those in lower current densities [26]. According to Figure 8a, the hydrogen flowrate
increased with increasing operating temperature. An increase in cell temperature results
in an increase in cell performance as a result of a decrease in cell polarization at a certain
current. In turn, these phenomena result in less power consumption for certain hydrogen
production rates. Energy consumption can be calculated from the voltage and hydrogen
flowrates of the PEM electrolyzer. The optimal energy consumption was observed when
the current density was 200 mA/cm2 for all operating temperatures, and the energy
consumption decreased with increasing stack temperature.

Figure 9 shows the effect of the operating temperature on energy efficiency. As can
be seen in Figure 9a, the energy efficiency shows an increasing trend as the operating
temperature increases, at different applied current densities. This result indicates that the
energy efficiency reached its peak of about 67.5% at 80 ◦C and 200 mA/cm2. The hydrogen
flowrate increased as the operating temperature increased, indicating that the optimal
operating temperatures to achieve the best PEM electrolyzer performance are 70 and 80 ◦C.
At 70 and 80 ◦C, the energy consumption is the minimum at 58.37 kWh/kg H2, whereas at
25 ◦C, higher energy of 63.26 kWh/kg H2 was used at 200 mA/cm2 (Figure 9b). The low
energy consumption means that the operating cost of the PEM electrolyzer can be reduced;
this reduction meets the objectives of this study.
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The performance of the PEM electrolyzer was also evaluated in terms of energy efficiency.
When the current density was 200 mA/cm2, the energy efficiency and energy consumption at 70
and 80 ◦C are nearly the same at 67.5% and 58.37 kWh/kg H2, respectively. However, at 80 ◦C,
the PEM electrolyzer performed well in terms of voltage efficiency and hydrogen production.
Hence, the differences in the voltage efficiency and hydrogen production rate observed at 70
and 80 ◦C are less significant. The use of electrical energy for heating DI water should be
emphasized; that is, the higher electrical energy required to heat water to 80 ◦C compared to
heating to 70 ◦C is relatively insignificant because, as shown in Figure 9b, the electrical energy
consumption and energy efficiency achieved by the cell are the same when the current density
is 200 mA/cm2. Therefore, the optimal operating temperature and power supply are 70 ◦C and
200 mA/cm2 current density.
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3.3. Effect of Electrode Type

The effects of the type and loading of the electrocatalyst were studied to identify the
appropriate type of catalyst and ensure the optimal operation of the PEM electrolyzer. The
types and loadings of the electrode catalyst used at the anode side were 0.5 mg/cm2 PtC
(60%), 1.5 mg/cm2 IrRuOx with 1.5 mg/cm2 PtB, 3.0 mg/cm2 IrRuOx, and 3.0 mg/cm2

PtB. The catalyst for the cathode part, 3.0 mg/cm2 PtB, was the same for all experiments.
The effects of electrode catalyst type and loading on the flowrate of hydrogen generated
from water electrolysis, energy consumption, voltaic efficiency, and energy efficiency are
discussed, along with the polarization curves that represent these effects. Figure 10a,b
show the polarization curves and the effect of the anode electrocatalyst type and loading
on voltaic efficiency, respectively.
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Figure 10a shows that the highest cell voltage value was achieved using the MEA,
which has the lowest electrocatalyst load of 0.5 mg/cm2 PtC (60%) at the anode side.
For MEAs with a catalyst loading of 3 mg/cm2, the voltage obtained using an IrRuOx
catalyst was lower than that obtained using PtB. The MEA that has 1.5 mg/cm2 IrRuOx and
1.5 mg/cm2 PtB produced higher voltage than the 3 mg/cm2 PtB. According to a study by
Stefania et al. [23], a decrease in the load of the anode catalyst results in a significant increase
in polarization resistance due to changes in the charge-transfer resistance associated with
oxygen evolution. A decrease in anode load has a greater effect, particularly in the activation
region at low current densities. This result is due to the decreased number of catalyst sites
when thinner electrodes are used [23].

The use of IrO2 as a catalyst in PEM electrolyzers is limited by its high cost and
relatively low activity for oxygen evolution., However, high RuO2 activity and high IrO2
stability can be maintained by using a combination of RuO2 and IrO2. Thus, a better
electrolysis performance was observed for the MEA using 3.0 mg/cm2 IrRuOx compared
with that using 3.0 mg/cm2 PtB. Conductive carbon such as carbon black, nanofibers, or
nanotubes that are commonly used as catalyst supports undergo rapid electrochemical
oxidation at high anode potentials in PEM electrolysis [27]. Therefore, long-term use of
carbon materials as catalyst supports is not possible. To use nanostructured catalysts
(d < 10 nm) efficiently, other supporting materials that are more resistant to oxidation are
required. Moreover, the lower electrocatalytic activity of Pt is due to the high-resistance
oxide film that forms on the Pt surface. By contrast, RuO2 and IrO2 exhibit high electronic
conductivity [28]. This ability reduces the overpotential of the cell and can improve the
performance of the PEM electrolyzer.
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Meanwhile, Figure 10b shows that the cell voltage efficiencies of the different anode
electrocatalysts are in the order of 0.5 mg/cm2 PtC (60%) > 1.5 mg/cm2 IrRuOx and
1.5 mg/cm2 PtB > 3.0 mg/cm2 PtB > 3.0 mg/cm2 IrRuOx. This result indicates that the
voltaic efficiency is influenced by the cell voltage.

Figure 11a,b show the hydrogen flowrate and energy consumption, respectively,
observed for the different types and loading of electrode catalysts. In terms of hydrogen
production, commercial MEA produces the lowest hydrogen volume. Figure 11a shows
that the hydrogen flowrates measured using 3.0 mg/cm2 IrRuOx and 3.0 mg/cm2 PtB are
nearly the same, and no highly significant difference was observed when compared with
that obtained using 0.5 mg/cm2 PtC (60%). The hydrogen flowrate produced when using
the MEA covered with 1.5 mg/cm2 IrRuOx and 1.5 mg/cm2 at the anode side is less than
that of commercial MEA. Hydrogen production is lower for commercial MEA due to the
high voltage and ohmic loss [29]. A reduction of hydrogen ions through the membrane
occurred and resulted in a decrease in the rates of electrochemical reactions.
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In terms of energy consumption, the MEA that has a low catalyst loading of 0.5 mg/cm2

PtC (60%) exhibited a high consumption. The high voltage obtained from this MEA caused
an increase in energy consumption due to the directly proportional relationship between
energy consumption and cell voltage. Based on Figure 11b, the energy consumption for
commercial MEA and the MEA covered with 1.5 mg/cm2 IrRuOx and 1.5 mg/cm2 PtB
are nearly the same. When the current density was less than 300 mA/cm2, the MEA
with 1.5 mg/cm2 IrRuOx anode electrode catalyst and 1.5 mg/cm2 PtB recorded a higher
energy consumption than commercial MEA due to higher cell voltage. However, its energy
consumption is lower than that of commercial MEAs when the current density was high
(>300 mA/cm2) due to the increased difference in hydrogen flowrates between the two
MEAs. Thus, the 3.0 mg/cm2 IrRuOx is the optimal catalyst because it uses the least energy.
For all cases in Figure 11b, the optimal current density is 200 mA/cm2, which represents
the lowest energy consumption.

Figure 12a,b show the effect of the type and loading of the anode electrocatalyst
on energy efficiency and the energy efficiencies and energy consumption of different
electrocatalyst types, respectively, at a current density of 200 mA/cm2. The electrode
catalyst with 3.0 mg/cm2 IrRuOx exhibited the highest energy efficiency, followed by
3.0 mg/cm2 PtB. The electrical energy consumption of the 3.0 mg/cm2 IrRuOx is lower than
that of 3.0 mg/cm2 PtB, which leads to higher energy efficiency for the PEM electrolyzer.
The energy efficiency of 0.5 mg/cm2 PtC (60%) was the lowest because the low metal
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loading increased overpotential. Thus, the degradation rate increased with decreasing
anode load [30].
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Figure 12. Effects of electrode types on (a) the energy efficiency versus current density and (b) energy
efficiency and energy consumption at 200 mA/cm2.

Based on Figure 12, using 3.0 mg/cm2 IrRuOx as the electrode of the anode part
resulted in low energy consumption with high energy efficiency and hydrogen production
rate. Moreover, energy efficiency of 80.38% and energy consumption of 49 kWh/kg H2 was
achieved. The operating temperature was set at 30 ◦C during the study for safety purposes.
The same trend is expected to be obtained if the optimum temperature of 80 ◦C was used.
Overall, the 3.0 mg/cm2 IrRuOx catalyst was the most suitable electrode catalyst type to
use to achieve the optimal conditions in this study.

4. Conclusions

This study focused on the effects of operating conditions on PEM electrolyzer perfor-
mance. The effects of the power supply (50 mA/cm2 to 500 mA/cm2 range), water flowrate
(0.5 mL/min to 5 mL/min), operating temperature (25 to 80 ◦C), and four different types of
anode electrode catalysts were determined. The results show that optimal conditions can
be achieved when water is fed at a rate of 2 mL/min at a temperature of 70 ◦C, possibly
due to improved kinetics of the charge-transfer reaction as well as increased membrane
conductivity. These phenomena can result in a lower ohmic overvoltage and reduce the
charge-transfer resistance on both sides of the electrode. Thus, the electrocatalytic reac-
tion rates of hydrogen evolution and oxygen evolution are increased at both electrodes,
increasing the voltaic efficiency of the electrolyzer. The low energy consumption of the
PEM electrolyzer leads to an increased energy efficiency of up to 80%. Electrodes with
the 3.0 mg/cm2 IrRuOx catalyst are most suitable for use due to their high conductivity
and absence of MEA degradation issues. All these results indicate the importance of deter-
mining the effects of the operating parameters and types of anode electrocatalysts on the
performance and durability of PEM electrolyzers to expand their application.
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