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Abstract: Polyisocyanate and caprolactone were used to chemically functionalize nanocellulose (CNF).
Composites of CNF, caprolactone-modified nanocellulose (CNF–CL) and polyisocyanate-modified
nanocellulose (CNF–JQ)/MC nylon were fabricated by anionic ring-opening polymerization. The
effects of the crystal structure, crystal morphology and crystallization process of MC nylon composites
have been characterized by wide-angle X-ray diffraction (WAXD), polarized optical microscopy(POM)
and differential scanning calorimetry (DSC). Isothermal crystallization kinetics were analyzed using
the Avrami equation, and the crystallization rate, half-time, and Avrami exponent were calculated.
The results show that the nucleation effects of CNF–JQ/MC nylon composites is increased with
the CNF–JQ increase, and it is best compared with MC nylon, CNF/MC nylon and CNF–CL/MC
nylon composites, so CNF–JQ can play the role of effective nucleating agent in MC nylon. We also
discussed the non-isothermal crystallization of the composites. Analysis of the Jeziorny and Mo model
demonstrates that the Zc values of CNF, CNF–CL, CNF–JQ/MC nylon composites increase, and the
F(T) values decrease in order. This indicates that CNF–JQ can better promote the crystallization rate
of non-isothermal crystallization of MC nylon. The results of this work demonstrate that CNF–JQ
can be an effective nucleation agent and increase the crystallization rate of MC nylon compared with
CNF–CL. The activation energy of the composites was studied using the kissing method, and the
results showed that CNF–CL decreased the activation energy of MC nylon, and CNF and CNF–JQ
increased the activation energy of MC nylon.

Keywords: nanocellulose; MC nylon; crystallization kinetics; activation energy

1. Introduction

Monomer Casting Nylons, called MC nylons, are important engineering plastics. It is
widely used because of its excellent properties, including high mechanical and corrosion
resistance, self-lubricating properties and modulus, as well as wear resistance and good
molding and processing abilities. Among the polyamide nylons, MC nylon is not only the
representative and most common, but also the most popular semi-crystalline engineering
plastic because of its excellent mechanical properties, self-lubricity, high strength and
good corrosion resistance [1]. The crystallization of MC nylon polymers ultimately affects
their properties. Many scholars have studied the crystallization mechanism of MC nylon,
and it is still the subject of many scientific studies [2]. MC nylon is polymerized while
crystallizing and crystallizes rapidly. As a result, product shrinkage and dimensional
instability can occur, which can adversely affect the performance of the polymer and its use.
Therefore, it is important to study the crystallinity and crystallization parameters of MC
nylon. The Avrami equation is the classical theory for the study of polymer crystallization
kinetics; however, it was originally developed for isothermal crystallization processes
and cannot be applied to non-isothermal processes that are more closely related to the
actual molding of composites, so a lot of research has been conducted to modify the Avrami
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equation [3]. Nakamura and Ziabicki with Jarecki extended the Avrami equation to calculate
non-isothermal crystallization kinetic parameters using isothermal crystallization data,
and Ozawa extended the Avrami equation to non-isothermal processes with isothermal
cooling by considering the effect of cooling rate. By correlating Avrami’s equation and
Ozawa’s equation, Mo obtained a new crystallization kinetic model, which overcomes
the shortcomings of each of the above two methods and achieves better applications
in the study of non-isothermal crystallization kinetics of various polymers. Isothermal
crystallization is the process of crystallization of a polymer at a constant temperature and is
often described by the Avrami equation, which is a common experimental method used to
characterize the crystallization behavior of polymers. Non-isothermal crystallization refers
to the process of crystallization at different rates of temperature and is often described by
Jeziorny’s method and Mo’s method. The current research on MC nylon is basically focused
on synthesis, structural characterization, mechanical properties and thermal stability, and
there are few systematic studies on crystallization behavior [4,5].

In recent decades, MC nylon composites with excellent properties have been exten-
sively studied by many scholars. Nanofillers can make MC nylon produce good mechanical
and thermal properties [6]. Nanofillers greatly influence the crystallization kinetics of
MC nylon composites. The physical and mechanical properties of MC nylon composites
depend not only on the dispersion and content of the filler, but are also closely related to
the crystallization conditions. Previously, it has been shown that the filler as a nucleating
agent can increase the rate and density of crystallization of MC nylon. For example, Yao
Huimei et al. [7] analyzed the crystallization kinetics of PPES/MC nylon composites by
Jeziorny model and found that primary and secondary crystallization mechanisms existed
in all samples. The Zc values of in situ composites were lower than those of MC nylon,
and the F(T) values of composites were generally higher than those of pure MC nylon.
Moreover, the crystallization activation energy of in situ composites was lower than that
of MC nylon, indicating that PPES can be used as an effective nucleating agent for MC
nylon, and the movement of MC nylon chain segments is hindered during the nucleation
process. MC nylon/SiO2 composites were prepared by an in situ polymerization method
by Kim H B et al. [8]. The addition of SiO2 resulted in higher melting and crystallization
temperatures and increased crystallinity. The crystallization induction time was reduced,
which promoted the crystallization process of MC nylon and increased the crystal growth
rate. Crystallization analysis showed that SiO2 particles acted as a crystallization promoter
mainly by accelerating the nucleation of crystals. Qiu S C et al. [9] used toluene diisocyanate
(TDI) to modify multi-walled carbon nanotubes containing hydroxyl groups and used the
functionalized carbon nanotubes to prepare MC nylon/carbon nanotube composites. It
was shown that carbon nanotubes acted as an effective nucleating agent in MC nylon,
and the crystallization peak temperature of MC nylon increased and the crystallization
temperature interval decreased, indicating that carbon nanotubes acted as a heterogeneous
nucleating agent for MC nylon. The isothermal and non-isothermal crystallization kinetics
of MC nylon and MC nylon/PAM composites were investigated by Xiongwei Qu by DSC.
The Avrami equation was used to describe the isothermal crystallization stages in the
composites, and the values of Avrami index obtained ranged from 1.70 to 3.28, indicating
that different types of nucleation occurred simultaneously. The equilibrium melting point
of MC nylon was enhanced with the addition of a small amount of PAM. A convenient
method for analyzing the kinetics of non-isothermal crystallization of composites was
obtained using the Mo method, a combination of Avrami and Ozawa equations [10].

Nanocellulose is nanoparticles up to a few micrometers in length, derived from wood
and cotton, and is widely used for its remarkable properties and reproducibility. The high
entanglement density allows it to demonstrate superior mechanical reinforcement potential
in polymers. In addition, nanocellulose has the ability to improve thermal properties and
gas barrier properties. Nanocellulose has a high specific surface area and volume, making it
favorable for nucleation. As a heterogeneous nucleating agent, its dispersion in the polymer
matrix is also important, and the compatibility of CNF with the matrix is even more so.
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Poor compatibility of CNF with the matrix leads to minimal aggregation and crystallization
efficiency. The compatibility of nanocellulose with the substrate can be improved by various
modifications. In our study, the modification of CNF uses hydroxyl groups present on the
CNF surface, which can achieve uniform dispersion in MC nylon [11–16].

In many reports, MC nylon composites have been successfully prepared [17,18]; how-
ever, the effect of filler content on the properties of MC nylon composites has been thor-
oughly investigated, as well as on its crystallization kinetics, is lacking. In this paper, CNF
was modified with isocyanate and caprolactone to improve the dispersion of CNF in the
MC nylon. The crystallization kinetics of MC nylon was studied by differential scanning
calorimetry, and the effects of the introduction of the third monomer on the crystallization
behavior and melting behavior of MC nylon, as well as the effects of different modified
fillers, filler content and crystallization conditions on the crystallization of MC nylon,
were investigated.

2. Materials and Methods
2.1. Materials

Industrial grade ε-caprolactam was purchased from Ube, Japan. Sodium hydroxide
(NaOH 95%) was supplied by Maclin, which was analytically pure product and poly-
isocyanate as activator supplied by Hongshan Chemical Co., Ltd. (Liaoning, China).
ε-caprolactone (ε-CL 97%), tin2-ethylhexanoate [Sn(Oct)2 95%], and nanocellulose (CNF)
were purchased from Shanghai Macklin Biochemical Co., Ltd. tetrahydrofuran (THF, p.a.),
benzyl alcohol (BnOH 99%), acetone (99.8%), and methanol were purchased from DaMao
Chemical Reagent Factory.

2.2. Sample Preparation
2.2.1. Preparation of Polyisocyanate Modified CNF

In the first step, 5 g CNF was added to toluene and dispersed well using ultrasound.
In the second step, 15 g polyisocyanate was added to the solution drop by drop and the
solution was stirred at 58 ◦C for 4 hours. Finally, the sample was washed with acetone to
remove the unreacted polyisocyanate and dried, and then the modified CNF was obtained.
Figure 1 shows the reaction mechanism of modified CNF(CNF-JQ).

Polymers 2023, 15, x FOR PEER REVIEW 3 of 19 

and gas barrier properties. Nanocellulose has a high specific surface area and volume, 
making it favorable for nucleation. As a heterogeneous nucleating agent, its dispersion in 
the polymer matrix is also important, and the compatibility of CNF with the matrix is even 
more so. Poor compatibility of CNF with the matrix leads to minimal aggregation and 
crystallization efficiency. The compatibility of nanocellulose with the substrate can be im-
proved by various modifications. In our study, the modification of CNF uses hydroxyl 
groups present on the CNF surface, which can achieve uniform dispersion in MC nylon 
[11–16]. 

In many reports, MC nylon composites have been successfully prepared [17,18]; how-
ever, the effect of filler content on the properties of MC nylon composites has been thor-
oughly investigated, as well as on its crystallization kinetics, is lacking. In this paper, CNF 
was modified with isocyanate and caprolactone to improve the dispersion of CNF in the 
MC nylon. The crystallization kinetics of MC nylon was studied by differential scanning 
calorimetry, and the effects of the introduction of the third monomer on the crystallization 
behavior and melting behavior of MC nylon, as well as the effects of different modified 
fillers, filler content and crystallization conditions on the crystallization of MC nylon, were 
investigated.  

2. Materials and Methods
2.1. Materials

Industrial grade ε-caprolactam was purchased from Ube, Japan. Sodium hydroxide 
(NaOH 95%) was supplied by Maclin, which was analytically pure product and polyiso-
cyanate as activator supplied by Hongshan Chemical Co., Ltd. (Liaoning, China). ε-capro-
lactone (ε-CL 97%), tin2-ethylhexanoate [Sn(Oct)2 95%],and nanocellulose (CNF) were 
purchased from Shanghai Macklin Biochemical Co., Ltd. tetrahydrofuran (THF, p.a.), ben-
zyl alcohol (BnOH 99%), acetone (99.8%), and methanol were purchased from DaMao 
Chemical Reagent Factory. 

2.2. Sample Preparation 
2.2.1. Preparation of Polyisocyanate Modified CNF 

In the first step, 5 g CNF was added to toluene and dispersed well using ultrasound. 
In the second step, 15 g polyisocyanate was added to the solution drop by drop and the 
solution was stirred at 58 °C for 4 hours. Finally, the sample was washed with acetone to 
remove the unreacted polyisocyanate and dried, and then the modified CNF was ob-
tained. Figure 1 shows the reaction mechanism of modified CNF(CNF-JQ). 

Figure 1. Preparation of CNF–JQ. Figure 1. Preparation of CNF–JQ.

2.2.2. Preparation of ε-Caprolactam-Modified CNF

First, 2 g of CNF and 40 g of ε-CL were uniformly dispersed in toluene using ultra-
sound. Then the initiator and catalyst Sn(Oct)2 were added, followed by three vacuums.
The reaction was stirred at 110 ◦C for 24 h. It was precipitated in cold methanol. Finally,
the soxhlet extraction was separated in THF at 80 ◦C and dried overnight. The modified
CNF, named CNF–CL, was obtained, as shown in Figure 2.
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2.2.3. Synthesis of pure MC nylon

First, in order to melt the monomer, a three-neck flask containing 200 g CL was heated
at 110 ◦C. The solution was refluxed under vacuum to remove the water from the solution.
Next, 0.42 g NaOH was added to the solution as a catalyst and refluxed again under
vacuum. After adding 7.06 g of polyisocyanate, the solution was stirred for 2 min and
finally the melt was poured into the mold at 180 ◦C. As a result, MC nylon products
were obtained.

2.2.4. Preparation of Modified CNF/MC Nylon Composites

The preparation process of MC nylon/modified CNF composite is the same as that of
pure MC nylon, except that the modified CNF can be added after the melting of CL.

2.3. Characterization

(1) Fourier Transform Infrared (FT-IR)

CNF, modified CNF and potassium bromide powder were blended and pressed into
tablets, and the structure of the modified CNF was characterized using Fourier transform
infrared spectrometer (Nicolet IS/10).

(2) Wide-angle X-ray diffraction (WAXD)

A tongda TD-300 WAXD (Dandong, China) was used to study the crystalline structures.
The diffraction angle (2θ) of the scan is from 5◦ to 80◦ and the scan rate is 5◦ × min−1.

(3) Polarized optical microscopy (POM)

The spherical crystal morphology of pure MC nylon and MC nylon composites was
observed by a polarized optical microscope (XP-201) equipped with an XPR-201 heating
table. All samples were first melted above the melting point of MC nylon, and then
crystallized at its crystallization temperature to observe the crystalline shape.

(4) Differential scanning calorimetry (DSC)

TA Instrument (Q-200) was used to studied the crystallization kinetics of the MC
nylon composites. MC nylon composites were heated to 260 ◦C and then cooled to var-
ious crystallization temperatures (Tc) at a cooling rate of 100 ◦C × min−1 were used to
study the isothermal crystallization kinetics. On the other hand, the specimens were main-
tained at 260 ◦C for 2 min and then cooled at different cooling rates. The specimens were
made to crystallize under a non-isothermal cooling process to discuss the non-isothermal
crystallization behavior of the composites..

3. Results and Discussion
3.1. Structural Analysis of Modified CNF

Figure 3 shows the FTIR spectra of CNF, polyisocyanate, and CNF–JQ. It can be
observed that no absorption peak of -C=O- appears in the infrared spectrum of CNF. On
the contrary, in the IR spectrum of CNF-JQ, the absorption peak at 1740 cm−1 appears
to represent -C=O-. The peak at 1520 cm-1 indicates -NH, indicating the reaction of
the isocyanate group with the carboxyl group. Peaks at 2341 cm−1 and 2361 cm−1 are
absorption peaks of -N=C=O, indicating the presence of additional isocyanate groups as
activators that can participate in the reaction of MC nylon [19].
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Figure 3. FTIR spectra of CNF, polyisocyanate, and CNF−JQ.

Figure 4 shows the FTIR spectra of CNF and CNF–CL. The FT-IR spectrum of CNF–CL
showed a new characteristic peak at 1730 cm−1, which is the absorption peak of C=O in the
grafted PCL ester group with stretching vibration, indicating the successful grafting of PCL
onto cellulose [20].

Polymers 2023, 15, x FOR PEER REVIEW 5 of 19 
 

 

3. Results and Discussion 
3.1. Structural Analysis of Modified CNF 

Figure 3 shows the FTIR spectra of CNF, polyisocyanate, and CNF–JQ. It can be ob-
served that no absorption peak of -C=O- appears in the infrared spectrum of CNF. On the 
contrary, in the IR spectrum of CNF-JQ, the absorption peak at 1740 cm−1 appears to rep-
resent -C=O-. The peak at 1520 cm-1 indicates -NH, indicating the reaction of the isocya-
nate group with the carboxyl group. Peaks at 2341 cm−1 and 2361 cm−1 are absorption peaks 
of -N=C=O, indicating the presence of additional isocyanate groups as activators that can 
participate in the reaction of MC nylon [19].  

 
Figure 3. FTIR spectra of CNF, polyisocyanate, and CNF−JQ. 

Figure 4 shows the FTIR spectra of CNF and CNF–CL. The FT-IR spectrum of CNF–
CL showed a new characteristic peak at 1730 cm−1, which is the absorption peak of C=O in 
the grafted PCL ester group with stretching vibration, indicating the successful grafting 
of PCL onto cellulose[20].  

 
Figure 4. FTIR spectra of CNF and CNF−CL. 

3.2. Crystal Structure Analysis 
Figure 5 shows the WAXD spectrum of the composite to analyze the effect of the 

modified CNF on the crystal structure of MC nylon. We can see that the WAXD curve 

2400 1800 1200

Tr
an

sm
itt

an
ce

  (
%

)

wave number（cm-1）

 CNF
 CNF-JQ
 Polyisocyanate

2361cm-1 2341cm-1 1746cm-1

1521cm-1

3500 3000 2500 1500

Tr
an

sm
itt

an
ce

 （
%
）

wave number （cm-1）

 CNF
 CNF-CL

1730

Figure 4. FTIR spectra of CNF and CNF−CL.

3.2. Crystal Structure Analysis

Figure 5 shows the WAXD spectrum of the composite to analyze the effect of the
modified CNF on the crystal structure of MC nylon. We can see that the WAXD curve
include peaks at 20◦ and 24◦, which are typical of MC nylon and correspond to the α-
crystalline phase. Compared with MC nylon, there is no significant change in the range of
diffraction peaks of MC nylon composites, indicating that they have the same crystalline
structure [21].
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3.3. Morphological Study of Crystallization

Figure 6 shows the crystalline morphology by polarized optical microscopy. Pho-
tomicrographs clearly reveal that the MC nylon has a larger, more developed spherulitic
structure. In contrast, the crystal structure of composites is similar to MC nylon but much
smaller than that. Because of heterogeneous nucleation for composites, the crystallites
did not grow as large as MC nylon but increased nucleation density. In Table 1, the nucle-
ation density of CNF, CNF–CL and CNF–JQ/MC nylon composites increased sequentially
when the content of modified CNF was 1.0 wt%, indicating that the nucleation effect of
CNF–JQ was better. The results of POM indicated that CNF–JQ was an effective nucleating
agent for MC nylon. This is consistent with the conclusion from isothermal crystallization
kinetics [22].

Table 1. Nucleation density and grain size of MC nylon and MC nylon composites.

MC Nylon (a)
CNF (wt%) CNF–CL (wt%) CNF–JQ (wt%)

0.5 (b) 1.0 (c) 0.5 (d) 1.0 (e) 0.5 (f) 1.0 (g)

Number of Crystals 452 554 511 463 594 620 626
Diameter size (nm) 3.78 2.22 2.35 2.95 2.50 2.33 2.19

The quantities and sizes in the polarized micrographs calculated by Image-Pro Plus
are shown in Table 1.



Polymers 2023, 15, 719 7 of 18
Polymers 2023, 15, x FOR PEER REVIEW 7 of 19 

Figure 6. Polarized optical micrographs of MC nylon composites. 

Table 1. Nucleation density and grain size of MC nylon and MC nylon composites. 

MC Nylon 
(a) 

CNF (wt%) CNF–CL (wt%) CNF–JQ (wt%) 
0.5 (b) 1.0 (c) 0.5 (d) 1.0 (e) 0.5 (f) 1.0 (g) 

Number of Crystals 452 554 511 463 594 620 626
Diameter size (nm) 3.78 2.22 2.35 2.95 2.50 2.33 2.19

The quantities and sizes in the polarized micrographs calculated by Image-Pro Plus 
are shown in Table 1. 

3.4. Isothermal Crystallization Kinetics 
Figure 7a shows the isothermal crystallization curves of the composites with different 

modified CNF at the same temperature (188 °C); it can be seen that crystallization exo-
thermic peaks and crystallization time of CNF–JQ/MC nylon become shorter. Still, the 
crystallization peaks of CNF–CL/MC nylon composites do not change much, indicating 
that the nucleation effects of CNF–JQ are better than CNF–CL. Therefore, the effects of 
different filler contents and crystallization temperatures on the crystallization kinetics are 

Figure 6. Polarized optical micrographs of MC nylon composites.

3.4. Isothermal Crystallization Kinetics

Figure 7a shows the isothermal crystallization curves of the composites with differ-
ent modified CNF at the same temperature (188 ◦C); it can be seen that crystallization
exothermic peaks and crystallization time of CNF–JQ/MC nylon become shorter. Still, the
crystallization peaks of CNF–CL/MC nylon composites do not change much, indicating
that the nucleation effects of CNF–JQ are better than CNF–CL. Therefore, the effects of
different filler contents and crystallization temperatures on the crystallization kinetics
are discussed using CNF–JQ/MC nylon composites as the matrix. Figure 7b shows the
isothermal crystallization curves of the composites with different CNF–JQ contents at the
same temperature (188 ◦C); it can be seen that the difference among the crystallization
exothermic peaks of the composites with lower CNF–JQ content is not more significant than
MC nylon. The peak shape and location of the exothermic peak were obviously different
from those of MC nylon when the CNF–JQ content was higher. This indicates that the
crystallization time of MC nylon was shortened more significantly with the increase of
CNF–JQ content. Figure 7c shows the exothermic traces for the melt crystallization of
semi-crystalline MC nylon at various isothermal crystallization temperatures. It is obvious
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from Figure 7c that as the crystallization temperature (Tc) increases, the crystallization
exothermic peak becomes flat and shifts towards a longer time, which indicates that the
sample takes longer to complete crystallization at higher crystallization temperatures. The
increased nucleation-free energy at higher crystallization temperatures does not easily form
nuclei and decreases the crystallization rate, and the isothermal crystallization behavior of
MC nylon in situ composites strongly depends on the crystallization temperature [23,24].
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Figure 7. Heat flows as a function of time for MC nylon and MC nylon composites ((a) is the curve of
different modified CNF with a filling of 1.0 wt% at a cooling rate of 188°C; (b) is the curve of different
CNF–JQ additions at a cooling rate of 188 ◦C; (c) is the curve of different cooling rates for CNF−JQ of
1.0 wt%).

The relative crystallinity of the polymers as a function of time enables a better under-
standing of the kinetics of isothermal crystallization of a series of MC nylon composites,
which can be calculated from the enthalpy of heat generated during crystallization. In
agreement with Equation (1) [25–28].

X(t) =

∫ t
0

dH(t)
dt dt∫ ∞

0
dH(t)

dt dt
=

∆Ht

∆H∞
(1)

where dH(t)/dt is the exothermic rate; ∆Ht is the heat generated at moment t; and ∆H∞ is
the total heat at the end of crystallization.

The crystallization kinetics of polymeric materials at isothermal conditions is usually
analyzed by the Avrami equation, as follows [29,30].

Xt = 1 − exp(−ktn) (2)

Taking the logarithm of both sides of Equation (2) yields Equation (3).

lg[− ln(1 − X(t))] = nlgt + lgk (3)

where n is the Avrami index, which is related to the nucleation mechanism and characterizes
the crystalline nucleation mode of the polymer, k and t are the isothermal crystallization
rate constant and crystallization time, respectively.The isothermal crystallization kinetics
of MC nylon composites were calculated from Equation (3). The parameters n and k are
summarized in Table 2.
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Table 2. Kinetic parameters of isothermal crystallization of MC nylon and modified CNF/MC
nylon composites.

n K (×10−3) t1/2/min G

Modified CNF

MC nylon 4.255 0.252 1.268 0.788
CNF 2.962 8.312 0.432 2.313

CNF–CL 3.023 2.572 0.648 1.543
CNF–JQ 2.992 19.50 0.328 3.050

Content of
CNF–JQ/wt%

(cooling rate 188 ◦C)

0 4.255 0.252 1.268 0.788
0.5 3.597 1.294 0.841 1.189
1.0 2.996 19.50 0.328 3.046
1.5 3.613 15.12 0.426 2.347
2.0 3.104 15.53 0.367 2.723

Cooling rate/◦C
(CNF–JQ 1.0 wt%)

188 2.994 19.50 0.328 3.048
190 3.192 11.75 0.412 2.427
192 3.657 0.955 0.916 1.092
194 4.625 0.039 1.863 0.537
196 6.314 0.003 2.368 0.422

The half-crystallization time (t1/2) is the time required to reach 50% relative crystallinity
and is one of the important variables in crystallization kinetics. The t1/2 can be calculated
by Equation (4).

t1/2 = (ln 2/K)1/n (4)

Denote the crystallization rate by G, which is the reciprocal of the semi-crystallization time.

G = 1/t1/2 (5)

Figure 8 shows plots of X(t) versus crystallization time t for MC nylon and composites.
From Figure 8a, the curves have the same sigmoid shape. The time required to complete
of CNF–CL/MC nylon composites did not change much compared with pure MC nylon,
but CNF–JQ and CNF/MC nylon composites were significantly shortened compared to
the MC nylon. From Figure 8b,c, as the isothermal crystallization temperature decreases
and the CNF-JQ content increases, the isothermal curve of the composite shifts to the left.,
indicating that the crystallization rates become faster.
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Figure 8. Relative crystallinity as a function of time for MC nylon and MC nylon composites ((a) is the
curve for different modified CNF at a cooling rate of 188 ◦C and filler of 1.0 wt%; (b) is the curve for
different CNF–JQ additions when cooling down to 188 ◦C; (c) is the curve for different temperatures
when CNF–JQ is 1.0 wt%).
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From Table 2, the n values of MC nylon and composites range from 2.962 to 4.225,
indicating the crystallization mode might be a mixture with two-dimensional flakes and
three-dimensional circular. Since the value of n is not an integer, the composite material
constitutes both homogeneous and heterogeneous nucleation. The n value of the composite
is lower than that of MC nylon because of the nucleation effect of modified CNF. There
is a significant difference in the n value of crystallization temperature, n increases with
increasing crystallization temperature. However, at higher crystallization temperatures,
the exponent of MC nylon composites reaches 6.314. The results imply that MC nylon
and MC nylon composites have the same nucleation and growth mechanism only at lower
temperatures [31,32].

From Figure 9a and Table 2, the semi-crystallization time t1/2 of MC nylon composites
is shorter than MC nylon, the values of G and k are larger than MC nylon. Because the
modified CNF acts as a heterogeneous nucleation, the crystallization rate is increased.
Crystallization rates is CNF–JQ > CNF > CNF–CL in order. To explain these phenomena,
we propose the mechanism of adding CNF–CL and CNF–JQ dispersion in the MC nylon
matrix, as shown in Figure 10, where the nucleation efficiency of the filler depends mainly
on its concentration and distribution. When CNF is added to MC nylon matrix alone,
it is difficult to achieve uniform distribution. The agglomeration of unmodified CNF
in MC nylon will settle to the bottom of the mold, and the remaining small amount is
well dispersed in MC nylon, which plays a better nucleation role than CNF–CL. The
short chain of polycaprolactone in CNF–CL can be entangled with itself or MC nylon
to improve its dispersibility. CNF–JQ can participate in the reaction of MC nylon by
chemical reaction as a small molecule activator. CNF–JQ has the best dispersibility and
the nucleation effect is more obvious. Therefore, the effects of different filler contents and
crystallization temperatures on the crystallization kinetics are discussed using CNF–JQ/MC
nylon composites as the matrix. From Figure 9b and Table 2, the k and G values of the CNF–
JQ/MC nylon composites are higher than pure MC nylon. The value of t1/2 decreases when
the amount of CNF–JQ is increased, when the CNF–JQ content is 1.0 wt%, the composite
has the largest G value and the smallest t1/2. The present results again demonstrate that
the addition of CNF-JQ can significantly improve the isothermal crystallization rate of
MC nylon. CNF–JQ can be suggested as an efficient nucleation agent for the isothermal
crystallization of MC nylon. From Table 2 and Figure 9c, the crystallization rate G and
crystallization rate constant k value for CNF–JQ/MC nylon composites decreased and
the semi-crystallization time t1/2 increased with the Tc. This is because of the difficulty
of crystal nucleation at high temperature. The isothermal crystallization behavior of the
composite is better at lower crystallization temperatures [33].
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Figure 9. Avrami plots of MC nylon and MC nylon composites isothermally melt crystallized ((a) is
the curve of different modified CNF with a filling of 1.0 wt% at a cooling rate of 188 ◦C; (b) is the
curve of different CNF−JQ additions at a cooling rate of 188 ◦C; (c) is the curve of different cooling
rates for CNF−JQ of 1.0 wt%).
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Figure 10. Dispersion mechanism of modified CNF in MC nylon matrix.

3.5. Non Isothermal Crystallization Kinetics

Figure 11a shows the DSC curves of different modified CNF/MC nylon composites
with a cooling rate of 10 ◦C and filler content of 1.0 wt%. Compared with pure MC nylon,
the crystallization temperatures of CNF, CNF–JQ and CNF–CL/MC nylon composites
shifted toward higher temperatures, indicating that the addition of modified CNF can
promote the crystallization of MC nylon. However, the crystallization temperatures of
CNF and CNF–CL/MC nylon composites were lower than CNF–JQ/MC nylon composites,
so CNF–JQ can better promote crystallization. Figure 11b shows the DSC curve of CNF–
JQ/MC nylon composites with a cooling rate of 10 ◦C. The crystallization exothermic peak
of the composites gradually becomes narrower, and the crystallization temperature shifts
toward higher temperatures with the increase of CNF–JQ content. This indicates that CNF–
JQ makes the heterogeneous nucleation of the composite more obvious with increasing
content. Figure 11c shows the DSC curves of the specimens at different cooling rates; the
crystallization exothermic peak shifts toward lower temperatures with the cooling rate
increases. When MC nylon is crystallized at a lower cooling rate, the chain segments have
enough time to flow as well as grow into microcrystals; however, when the cooling rate is
faster, the chain segments of MC nylon are frozen before forming regular microcrystals,
thus lowering the crystallization temperature [34–37].
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Figure 11. Temperature versus heat flow curves for MC nylon and its composites ((a) for different
modified CNF at a cooling rate of 10 ◦C with 1.0 wt% filler; (b) for different CNF–JQ additions at a
cooling rate of 10 ◦C; (c) for different cooling rate curves at 1.0 wt% CNF–JQ).

The plots of the relative crystallinity versus temperature for MC nylon and modi-
fied CNF/MC nylon nanocomposite can be drawn through the integral of crystallization
peak (Figure 12). It can be seen that all these curves have the same sigmoid shape. In
Figure 12a, the time required to complete the crystallization of CNF/MC nylon composites
did not change much compared with pure MC nylon, but CNF–JQ and CNF–CL/MC nylon
composites were significantly shortened compared to MC nylon. As seen in Figure 12b,
CNF–JQ/MC nylon composites completes the crystallization in less time than pure MC
nylon at a given cooling rate, implying the addition of CNF accelerates the overall crystal-
lization process. As can be seen from Figure 12c, the crystallinity curve becomes narrower
and the crystallization completion time is shortened with the increase in cooling rate, and
the rise of the curve slows down significantly in the late stage of crystallization, because
with the increase of crystal size in the late stage, the crystals contact each other to form
grain boundaries, which hinders and delays the continued growth of the crystals, and
finally gradually tends to level off and stops crystallization.
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Figure 12. Curves of time versus crystallinity for MC nylon and its composites ((a) for different
modified CNF at a cooling rate of 10 ◦C; (b) for different CNF–JQ additions at a cooling rate of 10 ◦C;
(c) for different cooling rates at 1.0 wt% CNF–JQ).

3.5.1. Jeziorny Method

The non-isothermal crystallization kinetics of polymer systems can be studied by the
DSC method. Considering the characteristics of non-isothermal crystallization from the
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Avrami equation dealing with isothermal crystallization, some methods for dealing with
non-isothermal crystallization kinetics can be derived by modifying the AvmIni equation.
Non-isothermal crystallization data of pure MC nylon and composites are dealt according
to the following equations [38]:

1 − X(t) = exp(−Zt × tn) (6)

lg[− ln(1 − X(t))] = lgZt + nlgt (7)

where X(t) is the relative crystallinity at crystallization time t; Zt is the crystallization rate
constant, which is related to the crystallization temperature.

Plotting lgt against lg[−ln(1 − X(t))], the value of n can be obtained from the slope,
while the value of Zt can be obtained from the intercept. Taking into account the effect
of the cooling rate and in order to make the equation more applicable to the analysis of
non-isothermal crystallization behavior, a correction for Zt, which was given as follows:

lgZc = lgZt/φ (8)

The crystallization parameters of MC nylon and MC nylon composites were calculated
using the Jeziorny method. It can be seen from Figure 13a and Table 3 that the Zc of MC
nylon composites is higher than MC nylon, indicating that the modified CNF plays the
role of heterogeneous nucleating agent, and the addition of modified CNF accelerates
the crystallization rate of MC nylon. Modified CNF in MC nylon matrix can both reduce
the free energy barrier of crystal nucleation and improve the activity of molecular chains,
all of which can improve the orderliness of MC nylon molecular chain arrangement. Zc
values of CNF, CNF–CL and CNF–JQ/MC nylon composites increase in order, this reason
is explained by Figure 10, which indicates that CNF–JQ has the effect of better nucleation
agent. From Figure 13b and Table 3, it can be seen that the Zc of the composites increased
with the increase of CNF–JQ content. When the CNF–JQ content increases, the nucleation
site and nucleation density of the composite increases (which is consistent with the POM
results), and therefore the crystallization rate increases. It can be seen from Table 2 and
Figure 13c, the value of Zc increases with the cooling rate increases, which indicates that
the higher the cooling rate, the faster the crystallization rate of the composite. This is due to
the fact that the free energy required for nucleation decreases as the cooling rate increases,
leading to an increase in the crystallization rate [39,40].
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Figure 13. Curves of lgt versus lg[-ln(1-X(t))] for MC nylon and its composites ((a) for different
modified CNF at 10 ◦C filler at 1.0 wt% cooling rate; (b) for different CNF−JQ additions at 15 ◦C
cooling rate; (c) for different cooling rates at 1.0 wt% CNF−JQ).
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Table 3. Crystallization kinetic parameters from Jeziorny’s model.

n Zt Zc

Modified CNF

MC nylon 3.628 0.344 0.899
CNF 3.847 0.280 0.880

CNF–CL 3.340 0.471 0.927
CNF–JQ 3.587 0.679 0.962

Content of CNF–JQ/wt%
(15 ◦C/min)

0 5.082 0.646 0.971
0.5 5.534 0.692 0.976
1.0 4.945 0.692 0.976
1.5 3.786 0.741 0.980
2.0 4.833 4.571 1.107

Φ
(CNF–JQ 1.0 wt%)

5 6.412 0.481 × 10−3 0.217
10 5.614 0.039 0.724
15 4.945 0.692 0.976
20 3.645 0.295 0.941
25 5.557 0.054 0.890

3.5.2. Mo Method

The new model combines the equations of Avrami and Ozawa found by Mo and
coworkers to describe the non-isothermal crystallization behavior. The following relation
was derived [41,42]:

lgφ = lgF(T)− αlgt (9)

F(T) = [K(T)/Zt]
1/m (10)

where F(T) represents the cooling rate required to achieve a certain degree of crystallinity
per unit of crystallization time; α = n/m is the ratio of Avrami and Ozawa indices.

Figure 14 shows the graph of lgΦ vs. lgt for MC nylon and its composites at a
given crystallinity. It can be seen from the figure that lgΦ has a good linear relationship
with lgt, which shows that the Mo method is reasonable to deal with the non-isothermal
crystallization process in this experiment. The α and F(T) values are derived from the slope
and intercept of the straight line in the figure, respectively, and are listed in Table 4.
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Figure 14. Curves of lgt vs. lgΦ for MC nylon and its composites ((a) for different modified CNF;
(b) for different CNF−JQ additions; (c) for different crystallinity with CNF−JQ of 1.0 wt%).
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Table 4. Parameters of crystallization kinetic based on Mo’s method.

Relative
Crystallinity (%) F(T) (◦C × min−1)

Modified CNF
(1.0 wt%)

MC nylon 40 39.72
CNF 40 33.04

CNF–CL 40 22.86
CNF–JQ 40 21.78

Content of CNF–JQ
(wt%)

0 40 25.70
0.5 40 21.78
1.0 40 17.14
1.5 40 18.20
2.0 40 25.70

Content of CNF–JQ
(wt%)

1.0 20 16.22
1.0 40 17.14
1.0 60 21.38
1.0 80 25.70

From Figure 14a and Table 4 we can see that the F(T) values are CNF > CNF–CL >
CNF–JQ in order. This result is consistent with the result of Jeziorny’s method. Figure 14b
and Table 4 also show that the F(T) of MC nylon composites are smaller than MC nylon at
the same relative crystallinity, which indicates that the addition of CNF–JQ can improve the
crystallization rate of MC nylon and make crystallization relatively easy. When the content
of modified CNF is 1.0 wt%, the crystallization of composites is the easiest. As shown in
Table 4 and Figure 14c, it can be seen that the value of F(T) increase with increasing relative
crystallinity. This is due to the fact that chain segments have a high degree of motility at
low crystallinity, while at high crystallinity the motility of the chain segments is hindered
by the previously formed crystal structure. Usually, a higher F(T) value means that more
time is needed to reach a certain level of crystallinity. In other words, the higher the value
of F(T), the slower the crystallization rate. These results are in agreement with those of the
Jeziorny method. Those results are consistent with the result of Jeziorny’s method [43].

3.6. Activation Energy of Non-Isothermal Crystallization

Kissinger [44] proposed that the crystallization activation energy can be determined by
the variation of the crystallization peak temperature with the cooling rate. The expression
is as follows:

d
[

ln
(

φ

T2
p

)]
d
(

1
Tp

) = −∆Ea/R (11)

where Tp is the peak temperature, R is the gas constant and ∆Ea is the activation energy.
The relationship between ln(Φ/Tp

2) and 1/Tp obtained from the Kissinger model.
The crystallization activation energy (∆Ea) of the non-isothermal crystallization process
can be calculated from the slope.

In the range of degrees of crystallinity, the ln(Φ/Tp
2) versus 1/Tp plot is shown in

Figure 15. ∆Ea can be obtained from the slope of the graph and is given in Table 5. We
know that there are two different mechanisms by which CNF affects the crystallization
process of polymers. One is that CNF can promote the crystallization of MC nylon by
providing nucleation sites; the other is that CNF hinders the mobility of MC nylon chain
segments. We find that the absolute value of ∆Ea for CNF–CL/MC nylon is lower than that
of pure MC nylon; this is because of the CNF–CL in composites acted as a heterogeneous
agent to reduce the nucleation energy barrier. The absolute value of ∆Ea for CNF and
CNF–JQ/MC nylon is higher than that of pure MC nylon, indicating that the CNF and
CNF–JQ in composites impede the movement of molecular chains to increase the nucleation
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energy barrier. In the composites, the heterogeneous nucleation is higher than the chain
entanglement as the filler content increases and therefore the ∆Ea value decreases [45].
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Figure 15. Curves of ln(Φ/Tp
2) versus 1/Tp for MC nylon and its composites ((a) is the activation

curve of CNF; (b) is the activation curve of CNF−CL; (c) is the activation curve of CNF−JQ).

Table 5. Non isothermal activation energy parameters of MC nylon and MC nylon composites.

∆Ea (kJ/mol)

MC nylon 13.58

Content of CNF (wt%)
0.5 15.90
1.0 15.12

Content of CNF–CL (wt%)
0.5 13.40
1.0 12.65

Content of CNF–JQ (wt%) 0.5 15.16
1.0 14.98

4. Conclusions

In this work, the crystal structure, crystal morphology and crystallization kinetics
of MC nylon and composites were investigated. WAXD analysis indicates that the peak
intensity of the composites becomes larger than that of the neat MC nylon, but the structure
of MC nylon does not change with variations in CNF content. The crystallite morphology
of MC nylon, at different modified CNF content, was observed by polarizing optical
microscopy. The nucleation density is improved and crystal size of MC nylon is reduced
with the addition of modified CNF.

The isothermal crystallization results showed that the nucleation effect of CNF–JQ/MC
nylon composite is more obvious compared with CNF and CNF–CL/MC nylon composites,
which is related to CNF–JQ dispersion mechanism in MC nylon, and the rate constant k
and crystallization rate G increase with increasing the content of CNF–JQ. That is, adding
CNF–JQ in the composites can accelerate the crystallization. Non-isothermal crystallization
behavior of MC composites analyzed by the Jeziorny and Mo model. The results showed
that the Zc of composites increases from 0.899 to 0.962 and F(T) decreased with addition of
different modified CNF, and the rate-dependent parameter of composites increased with
the increase of CNF–JQ content. It demonstrates that the nucleation effect of CNF–JQ is
better than CNF and CNF–CL, and nucleation effect becomes obvious with increasing
content. The activation energy of the composites was studied using the kissing method,
and the results showed that CNF–CL reduced the activation energy of MC nylon, and CNF
and CNF–JQ increased the activation energy of MC nylon.
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Overall, by studying the Zc values in Jeziorny model, F(T) values in Mo model,
and crystallization activation energy, it was concluded that CNF–JQ promoted MC nylon
crystallization process and it is suggested as an efficient nucleation agent.
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