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Abstract: In order to investigate the formation mechanism of the residual stress and residual strain in
a nitrate ester plasticized polyether (NEPE) propellant grain during the curing and cooling process,
the temperature, curing degree and stress/strain of the NEPE propellant grain during the curing
and cooling process were analyzed via ABAQUS finite element software. The results indicate that
there is a temperature gradient in the NEPE propellant grain during curing at 50 ◦C. The maximum
temperature difference is about 5 ◦C and the maximum temperature is located on the center of
propellant grain. At the end of curing, the temperature in the interior of the grain tends to be uniform.
The curing degree in the NEPE propellant grain during the curing process has the same trend as
temperature. The residual stress/strain of the NEPE propellant grain during the curing and cooling
down processes are mainly composed of curing shrinkage stress/strain in the curing process and
thermal stress/strain in the cooling down process. The curing shrinkage stress and strain in the
curing process account for 19% and 31% of the whole process, respectively. The thermal stress and
thermal strain in cooling down process account for 75% and 69% of the whole process, respectively.
The thermal stress and thermal strain in the curing process can nearly be ignored. The residual stress
and residual strain calculated by the traditional method is larger than that obtained in this paper. The
maximum deviation of the residual stress and residual strain are about 8% and 17%, respectively.

Keywords: curing; residual stress; residual strain; NEPE propellant; chemical shrinkage

1. Introduction

NEPE propellant represents a significant breakthrough in high-energy solid propel-
lants. It combines the advantages of both composite propellants and double-base propel-
lants. This means that it has both high energy and good mechanical properties [1]. NEPE
propellant has the highest specific impulse among any solid propellants that have been
used in solid rocket motors (SRMs). In the preparation of the NEPE propellant grain, the
propellant slurry needs to be cast and cured separately at an elevated temperature for the
required number of days and then cooled to the room temperature before storage [2]. Dur-
ing the curing process, several phenomena, such as thermal expansion, chemical shrinkage,
and differences in the thermal expansion coefficient of materials, can lead to the generation
and development of residual stress in the propellant grain, and then a reduction in the
mechanical properties of the propellant materials, which is even large enough to crack the
propellant grain without mechanical loading [3]. Therefore, it is important to evaluate the
residual stresses and strains of the propellant grain in the manufacturing process.

In general, residual stresses and strains in a propellant grain of case-bonded SRM are
primarily generated by four effects [4]:

• Thermal expansion and contraction during the curing process;
• Different thermal expansion coefficients between propellant and case;
• Difference between curing temperature and operating temperature of SRMs;
• Chemical shrinkage of the propellant during the curing process.
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For composite materials such as composite solid propellant, the overall residual stress
introduced from curing in previous studies was mainly determined by considering two
contributions: the thermal expansion and contraction of propellant cooling from the curing
temperature to room temperature and the chemical shrinkage of matrix resin from the
crosslink polymerization during curing [5]. It was found that thermal expansion and
contraction during the curing and cooling down processes was the most significant factor
in the generation of residual stresses [6]. This involves the first three aforementioned factors,
which have been extensively investigated using the finite element method (FEM) due to its
significant economy, efficiency and accuracy [7–9]. However, chemical shrinkage cannot
be neglected; the research shows that the residual stresses due to chemical shrinkage may
contribute up to 30% of the total residual stresses in composites [10]. The effect of chemical
shrinkage on residual stresses in propellant grain is usually converted into a temperature
effect. For composite solid propellant, the conversion temperature is usually 8 ◦C; that is,
when the curing temperature is 50 ◦C, the stress-free temperature of propellant grain is
58 ◦C [11–13]. The essence of this method is to use thermal expansion to compensate for
some of the chemical shrinkage that occurs during the curing process. Unfortunately, the
chemical shrinkage process of propellant during the curing process is rarely considered,
and the formation mechanism of residual stress in the propellant grain is still unclear.

In the curing process, the crosslinking reaction of the adhesive system is induced
between a prepolymer and curing agent. The final crosslinking structures present some
new bonds and the molecular growth continues over time until a perceptible gel-like lump
can be formed; this also resulted in volume shrinkage of the adhesive system [14]. The point
at which the adhesive system is converted from the liquid phase to the solid phase is called
the gel point [15]. Typically, most propellants begin to shrink before the gel point, but little
or no stress is developed in the resin before the gel point, because modulus development is
minimal at cure states below the gel point [16,17]. The modulus of the propellant increases
rapidly after the gel point and there is still some volume shrinkage, since the residual stress
level mainly depends upon the product of the volumetric shrinkage and the stiffness of
the propellant material [18], and a considerable residual stress will be introduced. The
curing shrinkage stress should be paid enough attention in the residual stress analysis of
the propellant grain.

Therefore, the residual stress and strain of an NEPE propellant grain during the entire
curing and cooling processes was investigated in this paper. The organization of the paper
is as follows. The theoretical framework for analyzing the residual stress and strain of the
NEPE propellant is constructed in Section 2. The finite element modeling of the numerical
simulation is established in Section 3. The residual stress and strain in the NEPE propellant
grain is analyzed in Section 4. Finally, the conclusions are summarized in Section 5.

2. Theoretical Models
2.1. Thermo-Chemical Model

The thermo-chemical model is composed of heat conduction and cure kinetics. The
temperature field of the propellant grain depends on the external curing temperature
profile and the heat released by the curing reaction of the propellant, which is considered
as a non-linear temperature transfer problem with a heat source. The three-dimensional
heat transfer equation of the isotropic composites during a curing process can be expressed
as [19]:

ρCp
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∂t

=
∂
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(
k
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)
+

∂
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where ρ is the propellant density; Cp is the specific heat capacity of propellant; t is the
absolute time; T is the transient temperature of the propellant at time t; k is the ther-
mal conductivity; and Q is the internal heat source, which can be expressed by the
following equation:

∂Q
∂t

= ρHr
dα

dt
(2)
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where α and dα/dt are the cure degree and the curing rate of the propellant, respectively,
and Hr is the total release heat during curing.

For the cure reaction of an NEPE adhesive system, its cure kinetic is typically described
using a cure kinetic equation with an Arrhenius-type temperature dependency. An example
is the well-known Kamal–Sourour autocatalytic cure kinetic model expressed as in [20]:

dα

dt
= A0 exp(−Ea/RT)αm(1− α)n (3)

where A0 is the pre-exponential factor, Ea is the activation energy, and m and n are reac-
tion orders.

The boundary condition used in this study is the third-type boundary condition
(convection), which indicates the convection heat transfer between the boundaries of the
solution range and the ambient temperature, which can be expressed as the following [21]:

k
(

∂T
∂x

nx +
∂T
∂y

ny +
∂T
∂z

nz

)
= h(Ta − T) (4)

where h is the convective heat transfer coefficient. The natural convection heat transfer
coefficient is usually estimated to be 10 W/m2 ·K and Ta is the ambient temperature.

2.2. The Macro Residual Stresses and Strains Model

The residual strain comprises the sum of the thermal strain and chemical shrinkage
strain throughout the curing and cooling process. Thus, the strain relation can be defined
as [22]:

εtot = εth + εsh (5)

where εtot, εth, and εsh are the total residual strain, thermal strain, and chemical shrinkage
strain, respectively.

As the propellant cures, it also undergoes a volumetric shrinkage that is associated
with the reaction process. This volumetric shrinkage manifests itself into a chemically
induced contraction strain in the propellant. For a given incremental change in the curing
degree ∆α during the reaction, the associated incremental change in specific volume ∆Vsh
of the resin can be expressed according to [23]:

∆Vsh = ∆α ·Vsh (6)

where Vsh is the total volume change in the adhesive system at full cure. The strain
contraction in all directions is assumed to be equal. The incremental isotropic shrinkage
strain of ∆εsh and ∆Vsh can be related by [23]:

∆εsh = 3
√

1 + ∆Vsh − 1 (7)

The cure shrinkage strain in the resin during the curing process is the cumulative sum
of all the incremental contributions, as determined through Equations (6) and (7). The
solid particles themselves are assumed not to undergo any chemical contraction during the
curing process.

The thermal expansion behavior of the propellant is assumed to be independent
of the degree of curing and follows the usual linear relationship with the temperature.
The incremental change in the thermal strain ∆εth in the propellant grain caused by an
incremental change in the temperature ∆T can be expressed as:

∆εth = γ · ∆T (8)

where γ is the thermal expansion coefficient of the propellant.
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During the NEPE propellant production, the propellant is fully cured at 50 ◦C for
7 days, then is gradually cooled to room temperature [24]. Thus, the constitutive behavior
of the NEPE propellant can be decomposed into two parts. The first step is the curing
stage; the propellant modulus is a linear elastic model that increases with the change in
the curing degree. The second step is the cooling stage where propellants are regarded as
viscoelastic materials. With the help of user subroutine UMAT in ABAQUS software plat-
form (ABAQUS ver. 2020, Simulia; Dassault Systemes, France), the two-stage constitutive
combination is realized and the numerical analysis is completed [25].

The incremental stress and strain in the first step are calculated as:

σ =
N

∑
i=1
{∆σ}i =

N

∑
i=1
{C}i{∆ε}i (9)

where N is a specified incremental time step, {∆σ}i and {∆ε}i are the stress and strain at
each time step i, and C is the stiffness matrix of the propellant.

In the second step, the general form of the integral constitutive equation for the
three-dimensional linear viscoelastic materials is as follows:

σi(t) =
∫ t

0
Cij(t− t′)

∂ε j

∂t′
dτ (10)

where σi and εi denote the stress tensor and strain vectors, respectively. Cij is the relaxed
stiffness matrix. t and t′, respectively, represent the current time and dummy time integra-
tion variable. Equation (10) is applicable to isothermal conditions. For a linear orthotropic
viscoelastic constitutive law under the curing process or changeable temperature where the
material stiffness varies with the temperature and degree of cure, it can be expressed in the
following form with the time-temperature equivalence principle:

σi(t) =
∫ t

−∞
Gij(ξ − ξ ′)

∂ε j

∂ξ ′
dξ ′ (11)

where ξ and ξ ′ are the current and past reduced time, respectively. They are the function of
the degree of cure α and temperature T, and are given by:{

ξ = ξ(t) =
∫ t

0
dt′

αT [T(t′)]

ξ ′ = ξ ′(t) =
∫ t

0
dt′

αT [T(t′)]
(12)

where, αT is the displacement conversion factor, which can be described by the following
WLF equation:

lgαT =
−C1(T − Tr)

C2 + (T − Tr)
(13)

where C1 and C2 are material constants, which can be determined by experiment, T is the
current moment temperature, and Tr is the reference temperature.

3. Finite Element Modeling
3.1. Simulation Flow

The curing and cooling behavior of the propellant was simulated using a sequentially
coupled formulation based on the ABAQUS software platform. Firstly, the thermal chemical
model was used to simulate the heat generation and heat transfer process of the propellant
grain during curing and cooling, and the temperature and curing degree of each node were
obtained. Then, the thermal mechanical model was introduced to investigate the residual
stress and strain of the propellant grain. Within the time range of the curing process,
the constitutive with a variable linear elastic model was adopted, and the viscoelastic
constitutive was activated for calculation during the cooling down process. The procedure
of the simulation model for residual stress and strain is presented in Figure 1.
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Figure 1. Calculation diagram of numerical simulation.

Based on the kinetic equation of the curing reaction, the constitutive mechanical model
and the heat transfer equation, the 3D SRM grain model can be introduced into the user-
defined heat release (HETVAL) to simulate the chemical evolution process of the curing,
and the curing degree can be obtained. Combined with the user-defined material expansion
(UEXPAN), user-defined material mechanical behavior (UMAT), and user-defined field
(USDFLD) subroutines, the model can be put into material modulus changes and cure
shrinkage, which is capable of calculating the curing degree, deformation, and residual
stress of propellant grain [26].

3.2. Finite Element Modeling

A 3D SRM model (including the core mold) was chosen for this structure in order to
predict the stress and strain response in detail. Due to the symmetry of the geometry and
loading, a model of an 18◦ segment with axis-symmetric boundary conditions on the cut
faces was utilized for simplicity without loss of accuracy. The NEPE propellant, insulation
and case were modeled with 17,808 eight-node solid elements (C3D8R) and 22,933 nodes,
as shown in Figure 2.
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The model was created with the assumptions and boundary conditions as follows:
(i) The thickness of the case was constant. (ii) The insulation liner was elastic. (iii) The outer
surface of the case was fixed and subjected to natural convection boundary conditions and
the symmetry plane was set with symmetry constraints. (iv) The interfaces between the
case/insulation/propellant were set as “Tie” in the ABAQUS software. (v) The interface
between the propellant and core mold was given from the assumptions of friction-free
contact and subjected to a boundary condition of the first kind.

According to the curing process of the NEPE propellant grain, the calculation condi-
tions were as follows: For Step 1, the curing temperature TC = 50 ◦C was defined as the
initial temperature field and followed by temperature preservation at 50 ◦C for 7 days. For
Step 2, the model cooled slowly from the cure temperature to room temperature (20 ◦C).
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3.3. Model Parameters

(i) Cooling down process

The stress relaxation tests of the propellant with the same formulation presented in
Ref. [27] were performed based on the traditional uniaxial tension method. The viscoelastic
test data were obtained and the viscoelastic behavior in this process can be expressed in the
Prony series form as:

E(t) = 0.868 + 0.561et/0.0002 + 0.474et/0.002

+0.406et/0.02 + 0.348et/0.2 + 0.298et/2

+0.255et/20 + 0.22et/200 + 0.185et/2000
(14)

where E(t) is the relaxation modulus, MPa.
Meanwhile, the parameters in Equation (13) were obtained as: C1 = −7.053,

C2 = 171.513, Tr = 20 ◦C.

(ii) Curing process

The curing kinetic parameters of the NEPE propellant adopted in this paper are
provided in Ref. [27], which are presented in Table 1.

Table 1. Curing kinetic parameters of NEPE propellant.

A0/s−1 E/(kJ·mol−1) m n ∆H* (kJ·mol−1)

1.241×1015 120.6 0.83 1.53 212.34
∆H*: The value was obtained from Eyring model based on the data in Ref. [27].

The relaxation modulus and the dynamic storage modulus can be fitted with the Prony
series, and the core of the Prony series is the exponential function. The storage modulus
at the end of curing in Ref. [27] (831.1 × 103~868.3 × 103 Pa) is approximately equal to
the equilibrium modulus (0.868 MPa). In view of the long-term stress relaxation time in
the curing process, an empirical dynamic–static modulus conversion equation [15] was
adopted to estimate the Young’s modulus of the propellant during the curing process.

E0(t) ≈ G′(ω)
∣∣
ω=2/(πt) (15)

where E0(t) is the Young’s modulus, G′(ω) is the storage modulus, ω is the frequency.
The storage modulus of the NEPE propellant cured at 50 ◦C with a curing degree

provided in the literature [27] is shown in Figure 3.
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By fitting the data in Figure 3, the linear elastic modulus of the NEPE propellant
during the curing process can be obtained as follows:

Ec = 61.7 × 105α (16)

where Ec is the elastic modulus and α is the curing degree.
The other parameters provided by the manufacturer for numerical analysis are given

in Table 2, in which the parameters of the propellant were chosen at the end of curing and
their changes during the curing process were ignored.

Table 2. Material properties parameters.

Material Parameters Grain Insulation Case

Density/(kg·m−3) 1803 1226 7800
Poisson’s ratio 0.496 0.496 0.3

Expansion coefficient/K−1 0.86 × 10−4 1.78 × 10−4 1.1 × 10−5

Heat conductivity/(W·(m·K)−1) 0.55 0.274 38.95
Specific heat/(J·(kg·K)−1) 1180 2116 512.91
Elasticity modulus/MPa - 6.973 210 × 103

3.4. Modal Verification

To check the accuracy of the simulation method in this paper, the FEM simulation result
of curing process was compared with the result performed by Rad, H.M. et al. [21], which
is based on the numerical method of finite volume. The numerical solution specifications
were exactly the same as the conditions in Ref. [21]. Figure 4 compares the cure degree in
the center of three-dimensional modeling adopted in the Ref. [21]. It is clear that the results
of the cure degree obtained by the two methods are in good agreement and support that
the numerical method in this paper reasonably well captures the curing characteristics of
the propellant.
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4. Results and Discussion
4.1. Temperature and Curing Degree during Curing Process

Figure 5 presents the temperature of the NEPE propellant grain cured at 50 ◦C for
24 h, 72 h, and 168 h. It can be seen that the temperature in the center of the propellant
grain is higher than that in the periphery during the curing process. The temperature in
the grain also tends to be uniform at the end of curing (168 h).
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Figure 6 depicts the curing degree of the NEPE propellant grain cured at 50 °C for 24 
h , 72 h , and 168 h . It can be seen that the curing degree show the same distribution 
trends as temperature. The curing degree in the center of the propellant grain is higher 
than that in the periphery. At the end of curing, the curing degree in the interior of the 
grain tends to be uniform, reaching above 0.997. 

Figure 5. Contours of the temperature. (a) 24 h. (b) 72 h. (c) 168 h.

Figure 6 depicts the curing degree of the NEPE propellant grain cured at 50 ◦C for
24 h, 72 h, and 168 h. It can be seen that the curing degree show the same distribution
trends as temperature. The curing degree in the center of the propellant grain is higher
than that in the periphery. At the end of curing, the curing degree in the interior of the
grain tends to be uniform, reaching above 0.997.
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Figure 6. Contours of the curing degree. (a) 24 h. (b) 72 h. (c) 168 h.
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For further analysis of the variation in the characteristics of temperature and curing
degree in the NEPE propellant grain during the curing process, 10 nodes along the axial
and longitudinal direction, whose gradient changes in temperature and curing degree are
obvious, were selected for analysis, as shown in Figure 7.
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Figure 7. Node selection.

Figure 8 plots the temperature and curing degree of each node with curing time.
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Figure 8. (a) Temperature vs. curing time. (b) Curing degree vs. curing time.

It can be seen from Figure 8a that the temperature of the NEPE propellant grain first
increases and later decreases on the whole. The arrival time of the highest temperature
increased from 38 h to about 43 h with the node position moved from the periphery to the
center of propellant grain. The maximum temperature of grain interior (the nodes of C, E)
is 56 ◦C at the curing time of 43 h. The periphery of the propellant grain, such as the nodes
of J, is basically maintained at the curing temperature of 50 ◦C. After curing for 150 h, the
internal temperature of the propellant tends to be uniform, at about 50 ◦C.
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According to Figure 8b, the curing degree of the NEPE propellant increases slowly
within 10 h, and then increases quickly and reaches a maximum curing rate at about 32 h.
About 50 h later, the curing rate decreases gradually and tends to be stable. The curing
degree of the grain interior (the nodes of B, C, D, E, F) is significantly higher than that in the
periphery between 35 h and 125 h, but with no significant difference in the other periods.

4.2. Residual Stress and Strain of Grain during Curing Process

The equivalent stress and equivalent strain were adopted to characterize the residual
stress and strain of grain. Figure 9 presents the residual stress σtot

c and residual strain εtot
c of

the propellant grain during the curing process. It is obvious that the maximum residual
stress σtot

c and residual strain εtot
c are located at the inner bore-free surface of the propellant

grain, and are 0.018 MPa and 0.026, respectively.
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Figure 9. (a) Contours of σtot
c . (b) Contours of εtot

c .

To further study the distribution of σtot
c and εtot

c in the propellant grain at the end of
curing, three paths as shown in Figure 10 were selected for analysis.
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Figure 10. Schematic map of path selection.

Figure 11 presents the σtot
c and εtot

c of the propellant grain along path 1~3. It can be seen
that except for the inner bore-free surface of the propellant grain, the stress concentrations
still existed in several distinct areas, such as the root of stress release boot (the area marked
by the oval in Figure 10) and the junction points between the head of the wing groove and
inner bore (the area marked by the circle and square in Figure 10), as marked in Figure 10.

Since the chemical shrinkage of adhesive system and the thermal cooling contrac-
tion of the propellant contributes to the cure residual stress, the σtot

c can be expressed as
the sum of chemical shrinkage stresses σsh

c and thermal stresses σth
c . In order to further

identify the change in three different stresses/strains during the curing process, the three
stresses/strains in the maximum residual stress point of path 1 are shown in Figure 12.
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c varies along path 1~3. (b) The εtot

c varies along path 1~3.

According to Figure 12, in the initial 10 h, the 3D cross-linking network of the adhesive
system did not obviously form and the propellant slurry was in a viscous flow state, so
there was no obvious residual stress generated in the grain. Then, the quick increase in
the curing degree was attributed to the chain extension and cross-linking of the molecular
chain, and the volume shrinkage and modulus of the propellant also increased quickly,
which ultimately resulted in the rapidly increasing σsh

c and εsh
c . About 80 h later, the σsh

c
and εsh

c increased slowly and finally tended to a certain value. Due to the little change in
temperature in the propellant during the curing process, the σth

c and εth
c are smaller on the

whole. Since the biggest temperature difference in the propellant grain was about 5 ◦C at
43 h, the εth

c reached the maximum value at the same time, accordingly.
Generally, mechanical stretching is considered positive and compression negative [28].

The material in the heated area would result in a conversion of the thermal expansion
into compressive strains; thus, the εth

c is negative during curing process. About 43 h later,
the σth

c changed from negative to positive. The curing rate of the propellant decreases
and the temperature also decreased, the reverse thermal shrinkage of the propellant grain
generated reverse thermal stress, together with the modulus being higher during this stage.
All of these ultimately resulted in the σth

c change from negative to positive.
In addition, according to Figure 12, the sum of σsh

c (0.0141 MPa) and σth
c (0.0042 MPa)

was basically equal to the σtot
c (0.0182 MPa) when the curing reaction was completed, and

the same as εtot
c , which further verifies that the residual stress and strain in the NEPE pro-

pellant grain are superposed by curing shrinkage stress/strain and thermal stress/strain.
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Figure 12. (a) Stress vs. curing time. (b) Strain vs. curing time.

4.3. Residual Stress and Strain of Grain during Cooling down Process

After curing, the propellant was taken out and cooled down to room temperature
in a dryer. Figure 13 presents the total residual stress σtot and total residual strain εtot of
propellant grain after cooling down. It is obvious that the σtot and εtot were located at the
inner bore-free surface of the propellant grain, and were 0.074 MPa and 0.082, respectively.
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Figure 14 presents the σtot and εtot of the grain along paths 1~3 after cooling. It is clear
that the σtot and εtot have the same distribution as σtot

c and εtot
c , respectively.
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Figure 14. (a) The σtot varies along path 1~3 during the cooling down process. (b) The εtot varies
along path 1~3 during the cooling down process.

After curing and cooling, the components of residual stress/strain on path 1 are shown
in Figure 15. It is clear that the sum of σtot

c and σth
d is basically equal to the σtot, and the same

as εtot. That is, during the whole curing and cooling process, the residual stress/strain in
NEPE propellant grain is superimposed by the residual stress/strain in the curing stage and
the thermal stress/strain in the cooling stage, but the proportion of thermal stress/strain in
the cooling stage is higher.

Table 3 shows the proportion of different stresses/strains at the center of path 1 during
the curing and cooling down process.

According to Table 3, it can be seen that the total residual stress σtot and total residual
strain εtot at the central inner hole of the NEPE propellant grain during the curing and
cooling down process are mainly caused by the cooling load. The thermal stress and
thermal strain during the cooling stage account for 75% and 69% of the whole process,
respectively. At the same time, the σsh

c and εsh
c caused by the curing volume shrinkage

of the propellant in the curing process cannot be ignored, and both of them account for
19% and 31% of the whole process, respectively. The εth

c in the curing process can nearly
be ignored.
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Table 3. The proportion of residual stress and strain components.

Value Component Value Proportion

Residual
stress

0.074 MPa
Curing stage

σsh
c 0.014 MPa 19%

σth
c 0.004 MPa 6%

Cooling stage σth
d 0.054 MPa 75%

Residual
strain

0.082
Curing stage

εsh
c 0.025 31%

εth
c −0.00043 0

Cooling stage εth
d 0.056 69%

The stress and strain caused by the curing shrinkage of the propellant are usually
converted to the equivalent temperature of 8 ◦C in the traditional way. Figure 16 presents
the comparison between the residual stress/strain in this paper and that calculated by
traditional methods.

According to Figure 16, it is clear that the residual stress and residual strain calculated
by the traditional method are relatively small compared with that obtained in this paper.
The maximum deviation of the residual stress and residual strain are about 8% and 17%,
respectively. The reason may be that the traditional temperature equivalent conversion
method only considers the curing volume shrinkage of the propellant, but does not consider
the structural effect of propellant grain. Moreover, there are certain differences in the curing
volume shrinkage of different propellants.
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Figure 16. Comparison between the results in this paper and the traditional methods. (a) Comparison
of residual stress varies along path 1~3. (b) Comparison of residual strain varies along path 1~3.

5. Conclusions

The residual stress and residual strain of the NEPE propellant grain during the curing
and cooling down process was investigated through numerical simulation. The conclusions
are as follows:

(1) There is a temperature gradient in the NEPE propellant grain during the curing
at 50 ◦C. The maximum temperature difference is about 5 ◦C and the maximum
temperature is located on the center of propellant grain. At the end of curing, the
temperature in the interior of the grain tends to be uniform. The curing degree in the
NEPE propellant grain during the curing process has the same trend as temperature.

(2) The residual stress/strain of the NEPE propellant grain during the curing and cooling
down process are mainly composed of curing shrinkage stress/strain in the curing
process and thermal stress/strain in the cooling process. The curing shrinkage stress
and strain in the curing process account for 19% and 31% of the whole process,
respectively. The thermal stress and thermal strain in the cooling down process
account for 75% and 69% of the whole process, respectively. The thermal stress and
thermal strain in the curing process can nearly be ignored.

(3) The residual stress and residual strain calculated by the traditional method are smaller
than those obtained in this paper. The maximum deviation of the residual stress and
residual strain are about 8% and 17%, respectively.
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