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Abstract: In this study, pull-out tests were conducted to investigate the bond behavior of a rebar
embedded in cementitious composites with polyvinyl alcohol (PVA) fibers and carbon nanotubes
(CNTs). In the cementitious composites, the binder consisted of ordinary Portland cement, blast
furnace slag, and fly ash, with a weight ratio of 39.5, 21.0 and 39.5%, respectively, while the non-
binder consisted of quartzite sand, lightweight aggregate, superplasticizer, and shrinkage-reducing
admixture. The water/binder ratio and volume fractions of the PVA fibers were 32.9% and 2.07%,
respectively. In the test program, the rebar diameter (D13, D16, and D19) and CNTs mix ratio (0.0,
0.1, 0.2, and 0.3 wt.%) were considered as the test variables. The test results showed that the bond
strength of a rebar increased as the rebar diameter decreased or as the CNTs mix ratio increased.
Based on the test results, a new, simple model has been proposed with consideration of the rebar
diameter, as well as the CNTs mix ratio. Comparing the test results, it was investigated that the
proposed model generally represented the bond behavior well, including the bond strength and the
corresponding slip of a rebar embedded in PVA cementitious composites, with or without CNTs.

Keywords: bond behavior; cementitious composites; carbon nanotubes (CNTs); bond stress-slip
model; polyvinyl alcohol (PVA)

1. Introduction

Due to the demand for securing the safety of large structures, many studies are being
conducted to improve the structural performance of reinforced concrete. In line with these
demands, research on fiber-reinforced concrete has been actively conducted to overcome the
shortcomings of concrete exhibiting brittle behavior after cracking. Owing to fibers bridging
a crack, fiber-reinforced concrete can exhibit ductile behavior, even after cracking, with
either tension softening behavior or strain hardening behavior [1]. In addition to improving
the concrete performance after cracking, research on improving the concrete matrix itself
has recently been conducted by adding carbon nanotubes (CNTs) to the concrete mixture.
Recently, several types of research have been conducted to utilize the advantages of fibers
and CNTs together. However, most of the research has focused on the material properties
of fiber-reinforced concrete with CNTs.

To use fiber-reinforced concrete with CNTs as a structural member, it is necessary to
investigate the interaction between the reinforcing bars and fiber-reinforced concrete with
CNTs. In this study, as a part of the research for the structural behavior of CNTs-mixed fiber-
reinforced concrete with reinforcing bars, the bond behavior of the steel rebar embedded in
the PVA cementitious composites with CNTs is investigated through an extensive pull-out
test program. Based on the test results, a conventional model for the bond stress-slip
behavior of a rebar is modified to reflect the effect of PVA cementitious composites with
CNTs. The test results and the proposed model will help the investigations of the effect

Polymers 2023, 15, 884. https://doi.org/10.3390/polym15040884 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15040884
https://doi.org/10.3390/polym15040884
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-1570-3799
https://doi.org/10.3390/polym15040884
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15040884?type=check_update&version=2


Polymers 2023, 15, 884 2 of 19

of CNTs on structural behaviors, such as rebar development length, tension-stiffening
behavior, etc.

2. Literature Review
2.1. Literature Review on Fiber-Reinforced Concrete

To apply fiber-reinforced concrete as a structural member, several models have been
developed to describe the material behaviors. Some research groups have developed a
tensile stress-crack width relationship to represent the tensile behavior of fiber-reinforced
concrete. Martie et al. [2] proposed the tensile model for fiber reinforced concrete, based on
the uniform bond stress along a fiber. Voo and Foster [3] proposed the Variable Engagement
Model (VEM) by introducing the engagement length of a fiber so that the tensile behavior
of concrete reinforced with straight steel fibers was reasonably predicted. Leutbecher and
Fehling [4] presented a model considering the effect of fibers on crack widths in steel
fiber-reinforced concrete containing rebars. Stroeven [5] developed a formulation that
could consider fiber type on the tensile behavior. Lee et al. [6,7] proposed the Diverse
Embedment Model (DEM), considering the mechanical anchorage effect of end-hooked
steel fibers, as well as the frictional bond behavior of fibers. Later, the DEM was simplified
by eliminating the double numerical integration in the DEM [8]. Meanwhile, others have
proposed compressive stress-strain relationships to represent the compressive behavior
of fiber-reinforced concrete. Ezeldin and Balaguru [9] presented a compression model for
fiber reinforced concrete based on the test results. Hsu and Hsu [10] also proposed an
empirical equation to describe the compressive behavior of fiber-reinforced concrete. Someh
and Saeki [11] proposed a model for steel fiber-reinforced concrete under compression.
Mansur et al. [12] conducted the compression test for high-strength fiber-reinforced concrete.
Nataraja et al. [13] derived a simple analytical model to describe the compressive stress-
strain response. Experimental programs [14–16] have also been actively conducted to
investigate the tensile behavior of fiber-reinforced concrete with reinforcing bars. Based on
the test results, Lee et al. [17] proposed the tension stiffening model, which was beneficial
for analyzing the tensile behavior of fiber-reinforced concrete members with reinforcing
bars. Recently, with the development of a rigorous analysis procedure, it has become
possible to predict the nonlinear structural behavior of fiber-reinforced concrete members
or structures [18–20].

2.2. Literature Review on Cementitious Composites with CNTs

Types of CNTs are generally divided into two groups: single-walled CNTs (SWCNTs)
and multi-walled CNTs (MWCNTs). Kang et al. [21] showed the differences between
SWCNTs and MWCNTs in their characteristics, including diameter, length, modulus of
elasticity, tensile strength, electrical conductivity, and heat conductivity, as shown in Table 1.
The table shows that MWCNTs were relatively better in terms of their tensile strength
than SWCNTs, while SWCNTs were better in thermal and electrical conductivity than
MWCNTs. Many studies [22–26] also investigated the effect of CNTs on cement composite
or concrete performance when CNTs were additionally mixed. Silvestro and Gleize [22]
reviewed the existing studies regarding the effect of CNTs on the compressive strength
and flexural strength of cement-based material. They investigated, through the literature,
whether incorporating CNTs increased the strength of cement-based materials if the CNTs
were adequately dispersed. Through an experimental program, Cerro-Prada et al. [23]
showed that the flexural and compressive strength increased as the MWCNTs mix ratio
increased. Amin et al. [24] investigated, through an experimental program, that the addition
of 0.1 wt.% of CNTs showed an improvement in the thermal and mechanical properties of
the hardened Homra/OPC blended cement composites. Zhang et al. [25] investigated the
effect of CNTs on the thermal and electrical conductivity of cementitious composites. They
showed that the thermal resistivity increased up to a specific temperature as the CNTs were
additionally mixed. Nam et al. [26] showed that the EM-wave-shielding performance was
enhanced when MWCNTs were mixed into the cement matrix.
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Table 1. Differences between SWCNTs and MWCNTs.

Type Diameter
(nm)

Length
(nm–cm)

Tensile
Strength

(GPa)

Electrical
Conductivity

(S/cm)

Heat
Conductivity

(W/m·k)

SWCNTs 0.5–3.0 100–1 Up to 53 10,000 Max. 6000

MWCNTs 5–100 100–1 Up to 63 6000 Max. 3000

Lee et al. [27] stated that the mechanical properties of concrete with steel fibers and
CNTs were superior to those with only steel fibers or CNTs. Azhari and Banthia [28]
noted that the electrical conductivity of carbon fiber-reinforced cementitious compos-
ites with MWCNTs considerably increased, and similar results have been reported by
Park et al. [29]. Jang et al. [30] investigated the strain-detecting of cementitious composite
with synthetic polyethylene (PE) and steel fibers. They found that adding MWCNTs im-
proved the self-sensing performance for the strain measurements. Lee et al. [31] showed
that the compressive behavior of polyvinyl alcohol (PVA) fiber-reinforced concrete was
enhanced by adding CNTs to the mixture. Nuaklong et al. [32] demonstrated signifi-
cant improvements in the residual compressive and flexural strengths around the heating
temperature of 400 °C for cementitious composites with both PP fibers and MWCNTs.

2.3. Literature Review on the Bond Behavior of a Rebar

Many studies [33–37] have proposed simple models to represent the bond stress-slip
behavior of deformed steel rebars embedded in ordinary concrete. This section reviews
and discusses the conventional bond stress-slip models, followed by their applicability to
PVA cementitious composites with CNTs. It is noted that bond behavior with the pull-out
failure is discussed here because no splitting crack was observed in the test program of
this study.

2.3.1. CEB-FIP Model Code 2010 [37]

The CEB-FIP Model Code 2010 (MC10) [37] adopted the bond stress-slip model for
the deformed steel rebar proposed by Eligehausen et al. [35]. The MC10 bond stress-slip
model consists of three phases: an ascending branch, plateau, and descending branch. For
the case with a good bond condition under a pullout failure, each phase is expressed as the
following equations:

τ = τmax

(
s
s1

)α

for 0 ≤ s ≤ s1 (1a)

τ = τmax for s1 ≤ s ≤ s2 (1b)

τ = τmax −
(

τmax − τf

) (s− s2)

(s3 − s2)
for s2 ≤ s ≤ s3 (1c)

τ = τf for s3 ≤ s (1d)

where τmax = 2.5
√

fcm MPa, τf = 0.4τmax, s1 = 1.0 mm, s2 = 2.0 mm, s3 is the clear
distance between ribs, α = 0.4, and fcm is the mean of the concrete compressive strength.

2.3.2. Soroushian et al. [34]

Soroushian and Choi [33] conducted the pullout tests for a rebar embedded in confined
concrete. The test program considered 16 mm, 22 mm, and 25 mm diameter deformed steel
rebars embedded in concrete with a compressive strength of 30 MPa. Through the tests,
they investigated whether the bond strength decreased as the rebar diameter increased.
With the additional pullout test to consider high-strength concrete, Soroushian et al. [34]
proposed the bond stress-slip model for the ascending part with the following equation:

τ = τmax(s/s1)·e
[1−( s

s1
)α ]/α for 0 ≤ s ≤ s1 (2)
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where τmax = 20− db
4

√
f ′c
30 MPa, τf = 5 MPa s1 = 1.0 mm, s2 = 3.0 mm, s3 = 10.5 mm, and

α = 0.4.
In contrast to the MC10 model, this model considered the rebar diameter in the

bond strength.

2.3.3. Harajili et al. [36]

Harajili et al. [36] proposed the bond stress-slip model for a rebar embedded in plain
or fiber-reinforced concrete. In contrast to the models above, they proposed the model
considering the effect of the rebar diameter on the slip. They adopted the same format
as the MC10 model, but they considered different values, with τmax = 2.57

√
fcm MPa,

τf = 0.9
√

fcm MPa, s1 = 0.15cO mm, s2 = 0.35cO mm, s3 = co mm, α = 0.3, and co is the
clear distance between the ribs.

2.3.4. Comparison of Existing Models

Figure 1 compares the existing models for the bond strength and its corresponding
slip for a rebar embedded in concrete. To investigate the effect of the concrete compressive
strength, 24 and 40 MPa of concrete compressive strengths were considered in the com-
parison. As the figure shows, Soroushian et al. presented higher bond strength than the
other two models when the rebar diameter was smaller than 20 mm. They reported that
the bond strength decreased as the rebar diameter increased. On the other hand, MC10
and Harajili et al. did not reflect the effect of the rebar diameter on the bond strength.
For the slip corresponding to the bond strength (s1), the effect of the concrete compres-
sive strength was ignored in the tree models. Regarding the effect of the rebar diameter,
Harajili et al. considered that the s1 increased as the rebar diameter increased, while
the other two models presented that the s1 was constant to 1.0 mm regardless of the
rebar diameter.
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Figure 1. Comparison of the previous models on the bond strength and the slip corresponding to the
bond strength [34,36,37].

The comparison of the bond stress-slip responses until the bond strength is reached is
depicted in Figure 2. To standardize the results, the bond stress and slip are normalized
by the bond strength and its corresponding slip, respectively. The results show that the
MC10 model and the model proposed by Harajili et al. exhibit similar trends in their curve
shapes. However, the results of Harajili et al. reveal higher bond stress, with α = 0.3, which
is a lower value than the α value of 0.4 in the MC10 model. On the other hand, the model
proposed by Soroushian et al. displays a less steep initial slope compared to the other
models, but exhibits higher bond stress values beyond the range of s/s1 = 0.1~0.2.
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3. Research Significance

Recently, several types of research have been conducted to investigate the material
behavior of cementitious composites with fibers and CNTs together in order to take all
of the advantages before and after cracking. However, there are few studies on the bond
behavior of a rebar in cementitious composites containing both fibers and CNTs. In this
study, an experimental program was conducted to investigate the bond behavior of a rebar
embedded in PVA cementitious composites with CNTs. From the pull-out test, the bond
stress-slip behavior was measured so that the effect of the rebar diameter and CNTs mix
ratio could be evaluated. Based on the test results, a new simple bond stress-slip model has
been proposed. As the interaction between the cementitious composites and the rebar is
significant in the structural behavior, the test results and the proposed model will help to
predict the structural behavior of PVA cementitious composites with CNTs.

4. Test Program
4.1. Materials

The mix proportions of the PVA cementitious composites used in this study are
summarized in Table 2. In the mix proportions, the binder consisted of Ordinary Portland
Cement (OPC), blast furnace slag (BFS), and fly ash (FA) with a weight ratio of 39.5%,
21.0%, and 39.5%, respectively. The nonbinder consisted of quartzite sand (particle size
0.1~1.7 mm), lightweight aggregate (LA), superplasticizer (SP), and shrinkage-reducing
admixture (SRA). The water/binder ratio and volume fractions of the PVA fibers were
32.9%, and 2.07%, respectively, which were constant throughout all of the test specimens.
The geometric configuration and mechanical properties of the PVA fibers are presented in
Table 3. To investigate the effect of the CNTs on the bond behavior of a rebar, four CNTs mix
ratios were considered, from 0.0 wt.% to 0.3 wt.% to the binders, referred to in the previous
studies [38–42]. The mix proportions were named CNT-0.0 through CNT-0.3 according to
the CNTs’ mix ratio.
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Table 2. Mix proportions of PVA cementitious composites with CNTs.

Specimen CNT
(wt.%)

Binder (B)
(kg/m3)

Nonbinder
(kg/m3)

Water
(W)

(kg/m3)

W/B
(%)

Fiber
Volume
Fraction

(%)OPC BFS FA Sand LA SP SRA

CNT-0.0 0.0

412 220 412 275 14 1.92 0.4 343 32.9 2.07
CNT-0.1 0.1

CNT-0.2 0.2

CNT-0.3 0.3

Table 3. Properties of PVA fibers.

Length
(mm)

Diameter
(mm)

Density
(g/cm3)

Tensile Strength
(MPa)

Modulus of Elasticity
(MPa)

12 0.039 1.3 1600 25~40

In this study, MWCNTs were used as they are easier to produce, relatively inexpensive,
and more dispersed than SWCNTs [38,43]. In addition, MWCNTs have better mechanical
properties than SWCNTs [44]. To suppress aggregation by van der Waal‘s force and achieve
the uniform dispersion of the CNTs, a 5% polycarboxylate superplasticizer was added to
the 3% CNTs aqueous solution and sonicated, as presented in the literature [38,45].

Three rebar sizes of D13, D16, and D19 were considered in the test program to in-
vestigate the effect of a rebar size. All of the rebars have a grade of SD400 according
to the Korean standard (KS) [46]. The geometric properties of the rebar, including the
cross-sectional area, perimeter, and the distance and height of the ribs, are presented in
Table 4.

Table 4. Properties of steel rebars.

Type
Nominal
Diameter

(mm)

Nominal
Cross-Sectional

Area (mm2)

Nominal
Perimeter

(mm)

Rib
Distance

(mm)

Rib Height
(mm)

Yield
Strength

(MPa)

Elastic
Modulus

(GPa)Min. Max.

D13 12.7 126.7 40 8.9 0.5 1.0 484 18.8

D16 15.9 198.6 50 11.1 0.7 1.4 447 19.9

D19 19.1 286.5 60 13.4 1 2 444 20.9

4.2. Pullout Test Specimens

To investigate the bond behavior of a deformed steel rebar embedded in the PVA cementi-
tious composites with CNTs, the pullout test was conducted considering the test variables, the
rebar diameter and the CNTs mix ratio. For the pull-out test, 150× 150 × 200 mm prismatic
specimens were fabricated, as shown in Figure 3. As presented in the figure, the embedment
length was two times the rebar diameter placed in the specimen’s center. The PVC pipe was
implemented to make the unbonded part of the rebar, as the previous studies adopted for the
pull-out test [47–49].

4.3. Fabrication

When the specimens were fabricated, the cementitious composites were first dry-
mixed. Then, water, 3% CNTs aqueous solution, and PVA fibers were added and mixed
in the order presented in Figure 4. It is noted that the mix order was referred to in the
previous study [31], so that the workability was attained even after the CNTs were added.
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The pullout test specimens were fabricated following the order presented by
Yoo and Shin [50]. First, the molds were made with wood, and holes were drilled in
the middle of both sides in order to place the steel rebar. When the steel rebar was placed
in the mold, the embedment length was set to two times the rebar diameter by cover-
ing the unbonded parts with PVC pipes. The embedded part was placed in the center
of the specimen. Then, the PVA cementitious composites with CNTs were filled in the
mold. Three specimens were fabricated for each test variable to obtain reliable test results.
φ100 × 200 mm cylindrical specimens, to measure the compressive behavior, were also
prepared in the same order. All of the specimens were vibrated on a vibration table, then
dry-cured for 28 days.

Table 5 presents the slump and slump flow measured after mixing the PVA cementi-
tious composites with CNTs. As presented in the table, both the slump and slump flow
decreased as the CNTs mix ratio increased. It can be inferred that the lower workability
was mainly due to the high surface area and surface tension property of the CNTs [51–53].

Table 5. Slump and slump flow.

Specimen Slump (mm) Slump Flow (mm)

CNT-0.0 28.5 57.0
CNT-0.1 28.0 49.0
CNT-0.2 21.5 35.0
CNT-0.3 11.0 29.0

4.4. Pull-Out Test Set-Up and Procedure

Figure 5 shows the setup for the pull-out test. As presented in the figure, two linear
variable differential transducers (LVDTs) were attached to the free end of the rebar and
the top surface of the specimen to measure the free-end slip. In contrast, one LVDT was
attached to the rebar at the loaded end. The pull-out load was applied to the rebar at a rate
of 0.5 mm/min using a 2000 kN capacity universal testing machine (UTM) to ensure static
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loading. The pullout test was conducted until the applied load decreased to 50% of the
peak load due to the limitation of the test equipment configuration.
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5. Test Results
5.1. Material Properties

Table 6 presents the material properties of the PVA cementitious composites with CNTs.
It is noted that the material properties were measured through the compression test, which
followed the procedure presented in ASTM C39 [54]. During the compression tests, the
strains were measured through two LVDTs attached to the side of the cylindrical specimen
so that the modulus of elasticity could be evaluated from the stress-strain responses, as
presented in Figure 6a. As presented in the table, it was observed that the compressive
strength and the modulus of elasticity generally increased as the CNTs ratio increased, with
the exception of CNT-0.1. On the other hand, the strain corresponding to the compressive
strength was not much affected by the CNTs mix ratio. The direct tension test results of the
rebars are presented in Figure 6b. The yield strength and the elastic modulus are evaluated
from the stress-strain responses, as presented in Table 6.

Table 6. Summary of the compression test results.

Specimen

Compressive Strength
(MPa)

Strain
(×10−3)

Modulus of Elasticity
(GPa)

Each Average
(S.D.) Each Average

(S.D.) Each Average
(S.D.)

CNT-0.0
36.8 33.1

(2.8)

3.15 2.87
(0.24)

14.2 13.9
(0.5)32.7 2.90 14.2

29.9 2.56 13.2

CNT-0.1
27.6 27.8

(2.3)

1.94 2.26
(0.54)

9.6 12.4
(3.2)29.2 1.82 16.9

26.7 3.01 10.6

CNT-0.2
37.9 39.2

(2.9)

2.69 2.89
(0.14)

14.7 16.5
(1.5)38.2 2.97 16.4

41.7 3.01 18.4

CNT-0.3
42.8 40.6

(3.0)

3.10 2.99
(0.12)

17.4 17.4
(0.2)41.4 3.03 17.3

37.6 2.82 17.7
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5.2. Pullout Test Results
5.2.1. Failure Mode

Figure 7 shows one of the specimens after the pull-out test. As seen in the figure,
all of the specimens exhibited pull-out failure, with neither a splitting crack nor rebar
yielding. This is mainly due to the short embedment length of the rebar, the sufficiently
thick cementitious composite cover thickness, and the PVA fibers.
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5.2.2. Bond Stress-Slip Responses

From the load-slip responses, measured through the pull-out test, the bond stress-slip
responses were evaluated. The following equation evaluated the bond stress:

τ =
P

πdblb
(3)

where τ is bond stress (MPa), P is applied load (N), db is the rebar diameter (mm), and lb
is the embedment length (mm). It is noted that the slip measured at the loaded end was
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considered in the same manner as conducted by Wardeh et al. [55] because the slip at the
free end exhibited inconsistent results.

Figure 8 shows the bond stress-slip responses of a rebar evaluated from the pull-out
test results. When one of the three test results was too scattered from the other two, it was
excluded from the analysis of the test results. As seen in the figure, the bond stress-slip
responses could appear to be divided into three phases: ascending, plateau, and descending.
However, some specimens exhibited a plateau of very short duration.
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5.2.3. Bond Strength

The bond strengths (τmax) evaluated from the bond stress-slip responses are presented
in Table 7 and Figure 9. It is noted that the bond strengths were evaluated to the average of
the test results of two or three specimens. As seen in the table and figure, the bond strength
increased as the CNT mix ratio increased, with the exception of CNT-0.10, which exhibited
relatively low compressive strength. Therefore, it can be seen that the bond strength is
highly affected by the compressive strength of PVA cementitious composites. In addition,
the bond strength decreased as the rebar diameter increased. This tendency was consistent
with the test results presented by many studies [52,56] and the analytical model [33].
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Table 7. Summary of the pullout test results.

Specimen Rebar Type

Bond Strength
τmax (MPa)

Slip Corresponding
to the Bond Strength,

s1 (mm)
α Coefficient

Each Average
(S.D.) Each Average

(S.D.) Each Average
(S.D.)

CNT-0.0

D13
12.1 11.8

(1.4)

0.67 0.82
(0.22)

0.32 0.31
(0.04)9.6 0.67 0.26

13.0 1.13 0.35

D16
10.7 11.6

(1.3)

0.32 0.70
(0.27)

0.84 0.50
(0.24)10.7 0.87 0.34

13.5 0.90 0.33

D19
5.6 7.3

(1.7)
0.34 0.38

(0.04)
0.29 0.88

(0.59)9.0 0.41 1.46

CNT-0.1

D13
12.1 10.9

(2.3)

0.51 0.56
(0.06)

0.33 0.34
(0.01)7.7 0.52 0.35

13.0 0.64 0.33

D16
8.2 8.6

(1.3)

1.13 1.22
(0.49)

0.39 0.31
(0.07)10.3 0.68 0.33

7.2 1.86 0.22

D19
7.5 8.2

(0.7)
0.93 1.14

(0.21)
0.28 0.28

(0.01)9.0 1.36 0.27

CNT-0.2

D13
9.6 8.8

(1.1)

0.51 0.64
(0.14)

0.31 0.29
(0.03)7.3 0.83 0.25

9.6 0.59 0.31

D16
10.7 12.5

(1.5)

0.90 0.87
(0.25)

0.33 0.28
(0.04)12.3 1.16 0.25

14.4 0.55 0.25

D19
11.7 8.8

(2.9)
0.98 1.43

(0.46)
0.36 0.41

(0.05)5.8 1.89 0.46

CNT-0.3

D13
11.6 14.1

(2.0)

0.43 0.54
(0.24)

0.43 0.59
(0.16)16.4 0.52 0.52

14.5 0.81 0.81

D16
18.5 18.3

(0.2)
0.75 0.75

(0.00)
0.35 0.41

(0.05)18.1 0.76 0.46

D19
13.5 13.2

(0.3)
1.44 1.30

(0.14)
0.36 0.49

(0.13)12.9 1.16 0.62
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Figure 9. The effect of CNTs mix ratio and rebar diameter on the rebar bond strength.

5.2.4. Slip Corresponding to the Bond Strength

The slips corresponding to the bond strengths (s1) are presented in Table 7 and Figure 10.
As compared in the table and figure, except for the specimens without CNTs, the slip corre-
sponding to the bond strength generally increased as the rebar diameter increased, which
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was consistent with the test results presented by many other studies [52,56] and the analytical
model [33]. On the other hand, it was observed that the effect of the CNTs mix ratio on the
slip upon the bond strength was not consistent.
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5.2.5. α Coefficient

To represent the ascending part of the bond stress-slip response, several models [35–37]
adopted the type of the following equation:

τ = τmax

(
s
s1

)α

for 0 ≤ s ≤ s1 (4)

where α is a coefficient for the shape of the ascending curve.
Table 7 and Figure 11 present the coefficient α, which was evaluated through regres-

sion with the least square error when comparing the test results and equation (4) for the
ascending part. It is noted that it is chosen between 0 to 1; a smaller value is closer to
higher initial stiffness in the bond stress-slip response. As the table and figure shows, the
effect of the CNTs mix ratio and the rebar diameter could have been more obvious on the
α coefficient. The average value for the entire test results was calculated at 0.42, slightly
larger than the 0.4 generally adopted for the bond behavior of a deformed rebar embedded
in ordinary concrete [37]. If the test result with the D19 rebar and no CNTs is excluded,
the coefficient was averaged to 0.38. Therefore, the coefficient for the PVA cementitious
composite with CNTs can be similar to that for ordinary reinforced concrete.
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6. Proposed Model and Its Verification
6.1. Proposed Model

As the test results showed that the bond strength of a rebar in PVA cementitious com-
posite with CNTs decreased with the increase in the rebar diameter, this study assumes that
the bond strength is inversely proportional to the rebar diameter. With the consideration of
the square root of the concrete compressive strength, similar to the MC10 [37] and Harajili’s
models [36], the following equation has been developed:

τmax =
28
db

√
fcm MPa (5)

It is noted that the coefficient 28 in the above equation was derived through regression
based on the least square error method for the differences in the bond strengths between
the model predictions and the test results.

This study adopted four piecewise equations similar to MC10 and Harajili’s models
to represent the bond stress-slip relationship. The proposed bond stress-slip model is
expressed with the following equations:

τ = τmax

(
s
s1

)α

for 0 ≤ s ≤ s1 (6a)

τ = τmax for s1 ≤ s ≤ s2 (6b)

τ = τmax −
(

τmax − τf

) (s− s2)

(s3 − s2)
for s2 ≤ s ≤ s3 (6c)

τ = τf for s3 ≤ s (6d)

In the above equation, based on the test results in this study, it was suggested that
τf = 0.4τmax MPa, s1 = 0.08cO mm, s2 = 0.12cO mm, s3 = cO mm, and α = 0.4. As a result
of the test in this study, s1 and s2 are smaller than those of Harajili et al. [36], considering
that the slip corresponding to the bond strength and the plateau was smaller for the rebar
embedded in PVA cementitious composites with CNTs than those of the ordinary reinforced
concrete.

6.2. Verifications

The bond strengths predicted by the proposed model have been compared with the test
results, as presented in Table 8 and Figure 12. The previous models have also been compared
in the table and figure. As presented in the table and figure, it was investigated that the
previous models significantly overestimated the bond strength of the rebar embedded
in the PVA cementitious composites with or without CNTs. The ratio of the predicted
values to the test results averaged as 1.42, 1.46, and 1.66 for MC10, Harajili et al., and
Soroushian et al., respectively. It is inferred that the previous models overestimated the
bond strength because there was no coarse aggregate in the PVA cementitious composites.
On the other hand, the proposed model showed good agreement with the test results, with
a mean of 1.02 and a standard deviation of 0.24 for the ratio of the predicted values to
the test results. Although there was some deviation from the test results, the proposed
model showed a much smaller standard deviation than the previous models. In more detail,
the proposed model reflected the effect of the rebar diameter on the rebar bond strength
well. In the proposed model, the effect of the CNTs’ mix ratio on the bond strength was
taken into account with the concrete compressive strength. Therefore, it can be concluded
that the proposed model predicted the actual bond strength of a rebar embedded in PVA
cementitious composites with or without CNTs well.
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Table 8. Comparison on the bond strength between the test results and the models.

Model CEB-FIP Model
Code 2010 [37] Harajili et al. [36] Soroushian et al. [34] Proposed Model

Rebar Specimen Test Model M/T Model M/T Model M/T Model M/T

D13

CNT-0.0 11.6 14.4 1.24 14.8 1.28 17.7 1.53 12.7 1.10
CNT-0.1 10.9 13.2 1.21 13.6 1.24 16.2 1.48 11.6 1.06
CNT-0.2 8.84 15.7 1.77 16.1 1.82 19.2 2.18 13.8 1.56
CNT-0.3 14.1 15.9 1.13 16.4 1.16 19.6 1.38 14.0 0.99

D16

CNT-0.0 11.6 14.4 1.24 14.8 1.28 16.8 1.45 10.1 0.87
CNT-0.1 8.55 13.2 1.54 13.6 1.59 15.4 1.80 9.29 1.09
CNT-0.2 12.5 15.7 1.26 16.1 1.29 18.3 1.47 11.0 0.89
CNT-0.3 17.0 15.9 0.94 16.4 0.96 18.6 1.10 11.2 0.66

D19

CNT-0.0 6.81 14.4 2.11 14.8 2.17 16.0 2.35 8.43 1.24
CNT-0.1 7.99 13.2 1.65 13.6 1.70 14.7 1.84 7.73 0.97
CNT-0.2 8.75 15.7 1.79 16.1 1.84 17.4 1.99 9.18 1.05
CNT-0.3 13.2 15.9 1.20 16.4 1.24 17.7 1.34 9.34 0.71

Avg. 1.42 1.46 1.66 1.02
S.D. 0.35 0.35 0.37 0.24
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For the detailed investigation, the bond stress-slip responses measured through the
test were compared with the proposed and previous models. As is compared in Figure 13,
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it was investigated that the previous models overestimated the bond stress overall, and
they overestimated more with the increase in the rebar diameter. On the other hand,
the proposed model represented the actual bond stress-slip response, in general, well,
although there was some deviation between the predictions and the test results. Therefore,
the proposed model helps to predict the bond behavior of a rebar embedded in PVA
cementitious composites with CNTs.
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7. Conclusions

In this study, a total of 36 pull-out specimens were tested to investigate the bond
behavior of a rebar embedded in PVA cementitious composites with or without CNTs.
The test program considered the rebar diameter and CNTs mix ratio as the test variables.
From the test results, the effect of the test variables was investigated on the bond stress-slip
behavior, including the bond strength and the corresponding slip. To reasonably represent
the bond behavior of a rebar embedded in PVA cementitious composites, a new simple
proposed model has been proposed in this study. The proposed model has been verified
through the comparison with the test results. The main results obtained through this study
can be summarized as follows:

1. All of the specimens exhibited pull-out failure with neither a splitting crack nor
rebar yielding, so the bond behavior of the rebar embedded in the PVA cementitious
composites could be rigorously measured.

2. Regarding the effect of the rebar, the bond strength of the rebar embedded in PVA
cementitious composites increased as the rebar diameter increased. Meanwhile, it
was demonstrated that the slip corresponding to the bond strength increased as the
rebar diameter increased.

3. The bond strength of the rebar embedded in PVA cementitious composites generally
increased with the increasing CNTs mix ratio because the compressive strength of the
PVA cementitious composites was increased. Therefore, it can be concluded that the
bond strength of a rebar embedded in PVA cementitious composites can be improved
with CNTs.

4. The existing models overestimated the test results for the bond behavior of the rebar
embedded in PVA cementitious composites with no CNTs. The main reason for the
overestimation is inferred to be because the existing models are designated for the
bond behavior of a rebar embedded in ordinary concrete containing coarse aggregate.
In contrast, the PVA cementitious composites contain no coarse aggregate.
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5. By comparing the test results and the existing models, it was shown that the existing
models generally overestimated the bond strength of a rebar embedded in PVA
cementitious composites by 42~66% as they were initially designated for a rebar
embedded in ordinary concrete with coarse aggregated. In addition, the previous
models generally overestimated the bond stress of a rebar embedded in cementitious
composites, and this tendency was more severe as the rebar diameter increased.

6. Through the regression with the test results, a new simple model has been proposed
to represent the bond stress-slip behavior of a rebar embedded in PVA cementitious
composites with or without CNTs. The bond strength and the corresponding slip
were evaluated in the proposed model considering the rebar diameter. The effect
of the CNTs’ mix ratio was considered with the compressive strength of the PVA
cementitious composites. Through the comparison with the test results, the pro-
posed model predicted the actual bond strength of the rebar well, with an average
of 1.02 and a standard deviation of 0.24 for the ratio of the model predictions to the
test results.

7. It is expected that the results of this study can be used in research on the anchorage
length of a rebar and crack control in PVA cementitious composites with or without
CNTs. In addition, this study can be helpful in the relevant research area on the
structural behavior of PVA cementitious composites with or without CNTs.
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