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Abstract: Molecularly Imprinted Polymers (MIPs) have specific recognition capabilities and have been
widely used for electrochemical sensors with high selectivity. In this study, an electrochemical sensor
was developed for the determination of p-aminophenol (p-AP) by modifying the screen-printed carbon
electrode (SPCE) with chitosan-based MIP. The MIP was made from p-AP as a template, chitosan (CH)
as a base polymer, and glutaraldehyde and sodium tripolyphosphate as the crosslinkers. MIP characteri-
zation was conducted based on membrane surface morphology, FT-IR spectrum, and electrochemical
properties of the modified SPCE. The results showed that the MIP was able to selectively accumulate
analytes on the electrode surface, in which MIP with glutaraldehyde as a crosslinker was able to increase
the signal. Under optimum conditions, the anodic peak current from the sensor increased linearly in the
range of 0.5–35 µM p-AP concentration, with sensitivity of (3.6 ± 0.1) µA/µM, detection limit (S/N = 3)
of (2.1 ± 0.1) µM, and quantification limit of (7.5 ± 0.1) µM. In addition, the developed sensor exhibited
high selectivity with an accuracy of (94.11 ± 0.01)%.

Keywords: molecularly imprinted polymer; screen-printed carbon electrode; cyclic voltammetry;
square wave voltammetry; p-aminophenol; chitosan; glutaraldehyde; sodium tripolyphosphate

1. Introduction

Molecular Imprinting Technology (MIT) is currently a synthetic approach to designing
molecular recognition materials with the capability of mimicking natural recognition as bi-
ological receptors. MIT applications include separation and purification, chemical sensors,
catalysis, and receptor systems [1–7]. MIT is based on the formation of complexes between
analytes (templates) and functional monomers. In the presence of an excess crosslinking
agent, a three-dimensional polymer network is formed. After the polymerization process,
the template is removed from the polymer, leaving specific recognition sites that comple-
ment each other in shape, size, and chemical function to the template molecule [8–11]. The
polymerization process is not easy to carry out; thus, several MIPs have been developed
from functional polymers by adding controlled crosslinkers. Functional polymers that
have been developed as MIP membranes and applied to electrochemical sensors are chi-
tosan, which was used for MSG (monosodium glutamate) sensors [12], poly vinyl alcohol
(PVA) for paracetamol sensors [13], and arrowroot starch-PVA for acid sensors [14]. In
this study, chitosan–PVA was used as a functional polymer, glutaraldehyde and sodium
tripolyphosphate (STPP) as the crosslinkers, and acetic acid as a catalyst.

Para-Aminophenol (p-AP) is the main degradation product of paracetamol and the
main impurity of its synthesis process, which, by law, should not exceed the threshold
of 0.005% and 0.1% by weight [15]. Acetaminophen or paracetamol (PA) is an analgesic,
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commonly available as a single drug or in combination preparations, which are formulated
in various dosage forms, including tablets, syrups, and soluble powders. Paracetamol has
substantial antipyretic activity and is often included in over-the-counter and prescription
drug therapies for common ailments, such as headaches and fever [16]. These drugs are
widely available not only in pharmacies but also in patent drugstores and supermarkets,
in which their handling and storage conditions can be far from ideal. Improper storage of
the drug can result in p-AP [17] at levels that exceed the threshold. Moreover, the presence
of p-AP in paracetamol samples may not only be a cause of therapeutic failure, but also
may pose a safety issue, since p-AP has been shown to be significantly more potent than
paracetamol as a nephrotoxicant in animal models [18]. The general method for deter-
mining p-AP levels is by spectrophotometry [19,20], and a Flow Injection Analysis (FIA)
technique with a developed UV detector [21]. Since p-AP is an electroactive compound,
its determination will be more selective by electrochemical methods. Both p-AP and PA
can be oxidized at a potential of 0–0.6 volts [22]; therefore, to increase the selectivity and
sensitivity of p-AP detection, MIP membranes are used as modifiers on carbon electrodes.
In this respect, electrochemical methods offer the benefits of elevated sensitivity, accuracy,
convenient operation, cheap instrumentation, facile integration, and portability [23,24].

The p-AP electrochemical sensor has been widely developed by differential pulse
voltammetry (DPV) with various carbon-modified working electrodes with nanomateri-
als [22,25–27], but generally, it is used for simultaneous determination of PA. Individually,
the determination of p-AP has been developed electrochemically based on the modification
of carbon electrodes by nanoparticles [28–30]. The individual determination of p-AP was
carried out using glassy carbon modified by Fe3O4-Au/MOF nanocomposite. The elec-
trode exhibits optimal catalysis at a temperature of 50 ◦C and scanning rate of 0.1 V s−1

in pH buffer 5. The equation for the calibration plot was |Ipa| = 2.7372C + 2.1068, and
R2 was 0.9952, with the detection limit of 0.38 mol L−1 (S/N = 3) in p-Ap concentration
range of 0.1–10 mmol L−1 [31]. The detection system has a very good recovery rate and
anti-interference, but in this system, it is necessary to regulate the operating temperature
and an oxidase enzyme must be added. It becomes less practical to develop into a p-AP
sensor for field analysis. In this research, a p-AP sensor was developed from a modified
screen-printed carbon electrode (SPCE) with a chitosan-based MIP.

Several studies used chitosan for MIP preparation [32–34]. Chitosan is a natural
biopolymer that has non-toxic properties and is available sustainably. Chitosan has two ac-
tive groups in its structure, namely an amine (-NH2) group and a hydroxyl (-OH) group [35].
The amine group in chitosan can be modified into a secondary amine group (-NHR) by
binding it to other compounds or groups [35,36]. Chitosan can undergo cross-linking
reaction with sodium tripolyphosphate (STPP) [37,38] and glutaraldehyde. Both glutaralde-
hyde and STPP can function as chitosan crosslinkers in acidic conditions in acetic acid [35].
Furthermore, chitosan has the ability to form stable films on solid substrates [39]. In this
research, a chitosan-based MIP was developed, in which p-AP was used as the template,
with STPP and glutaraldehyde as the crosslinkers. Identification of MIP molecules was
conducted by FTIR, whereas surface morphology of MIP was examined by SEM.

SPCE is an electrochemical measurement device which is produced by printing various
types of inks on a plastic or ceramic substrate. The three-electrode SPCE system consists of
a carbon working electrode (WE), a silver pseudo-reference electrode (RE), and a carbon
counter-electrode (CE). SPCE offers several advantages, such as extensive work surface
modification capacity, and possible connection to portable instrumentation for in situ
determination of specific analytes. In addition, compared to the traditional three-electrode
system, the volume of analyte for SPCE is much less than that of the traditional systems for
electrochemical analysis. Several SPCE applications have been developed, including in the
fields of biosensors, environmental protection, and drug and food safety [40]. In this study,
the SPCE was used because it can be developed as a disposable sensor.

In other words, this research aimed to apply the natural polymer-based MIP technol-
ogy for the development of electrochemical sensors. In this study, the chitosan was the
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basic polymer, p-AP was the template, and glutaraldehyde and STPP were the crosslinkers.
The electrochemical sensor developed here was SPCE modified with MIP, which was then
used for the determination of p-AP in paracetamol samples. This sensor is expected to be
developed for a disposable sensor.

2. Method and Materials
2.1. Chemical Reagents and Apparatus

The reagents used were of high purity and used as received. Double-distilled water was
used for all tests. Chemicals used include: p-AP (CAS 123-30-8, Darmstadt, Germany), chitosan
(65% deacetylation, Bandung, Indonesia), polyvinyl alcohol (CAS 9002-89-5, Darmstadt, Ger-
many), 50% glutaraldehyde (CAS 111-308, Darmstadt, Germany), sodium tripolyphosphate
(CAS 6132-04-3, Darmstadt, Germany), citric acid (CAS 5949-29-1, Darmstadt, Germany),
phosphoric acid (CAS 7664-38-2, Darmstadt, Germany), disodium hydrogen phosphate (CAS
7762-85-6, Darmstadt, Germany), trisodium phosphate (CAS 10101-89-0, Darmstadt, Ger-
many), acetic acid (CAS 64-19-7, Darmstadt, Germany), HCl (CAS 7647-01-0, Darmstadt,
Germany), NaOH (CAS 1310-73-2, Darmstadt, Germany). The equipment used in this study
was general laboratory glassware, µStat200 drops (Metrohm, Oviedo, Spain), SPCE DRP110,
4 mm diameter of WE (DropSens, Oviedo, Spain), IRSpirit-T (Shimadzu, Kyoto, Japan), and
Scanning Electron Microscope Inspect-S50 (FEI, Hillsboro, OR, USA).

2.2. Preparation of MIP

A total of 1 g of chitosan was added to 50 mL of 5% (v/v) acetic acid. The mixture
was then stirred for 2 h at 50 ◦C, until a clear and homogeneous solution was obtained.
Next, 1 mL of 0.1% (w/v) p-AP solution was added into 7 mL of chitosan solution, and
the mixture was stirred and then 1 mL of 2% (v/v) glutaraldehyde or STPP 2% (w/v) was
added. The mixture was stirred at room temperature for 1 h, followed by the addition of
1 mL polyvinyl alcohol 1% (w/v). After the mixture was stirred for a few minutes, it was
ready to be used as an SPCE modifier.

2.3. MIP Characterization

The characterization was carried out on a MIP with a p-AP concentration of 1.0% (M_4),
with crosslinkers, both glutaraldehyde (M-4G) and STTP (M-4S). MIP properties was char-
acterized based on the FTIR spectra and MIP surface morphology by scanning electron
microscopy (SEM). The MIP preparation procedure was identical to (2.2), but instead, after
the mixture was heated at room temperature for 1 h, it was then poured into a Petri dish
and heated at 50 ◦C to form a thin layer. Next, the thin layer was removed from the Petri
dish and washed with 0.1 M NaOH followed by distilled water until the washing water
was neutral, for the extraction of the template. The MIP was then dried until it was free
of water. The FTIR analyses were carried out at the Chemistry Department of Brawijaya
University, while the SEM analyses were carried out at the State University of Malang.

2.4. Modification of SPCE

A total of 20 µL of MIP (from Section 2.2) was dripped on the WE surface in SPCE, and
then smoothed with a small brush. The coating was carried out twice, in which the first
coating was heated at 50 ◦C for 2 min, whereas the second coating was heated at 50 ◦C for
5 min. A thin layer was formed on the WE surface, and then the surface was dripped with
50 µL of 0.1 M NaOH several times, followed by 50 µL of distilled water, until the water
was not alkaline (which was checked by Litmus paper). This was carried out carefully so
that the thin film was not damaged or loose.

2.5. p-AP Sensor Testing

Sensor evaluation was performed using a 50 µM p-AP solution which was dissolved in
phosphate buffer pH 6.2. Evaluation of the effect of p-AP concentration on MIP was carried
out by square wave voltammetry (SWV) at an amplitude potential of 50 mV, a frequency
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of 10 Hz, and a potential step of 10 mV, while the influence of the type of crosslinker was
evaluated by cyclic voltammetry (CV) at −1.0 to 0.8 volts with a scan rate of 50 mV/s and
potential step 10 mV. In both methods, 200 µL of the p-AP solution was dripped on the
SPCE-modified surface.

2.6. p-AP Performance

Standard p-AP solutions in several concentrations from 0.5 to 50.0 µM were prepared
in 0.1 M phosphate buffer pH 6, then determined by SWV using SPCE-M-4G, SPCE-M-
4S, and SPCE. In addition, a sample solution from commercial paracetamol tablets was
prepared. The tablets were weighed and then crushed. A total of (500.0 + 0.1) mg of the
sample was dissolved in phosphate buffer pH 6, filtered off, and dissolved again in a 10 mL
volumetric flask. The SWV was recorded at −0.15 to 0.20 Volts.

3. Result and Discussion
3.1. Preparation of MIP

In the synthesis of MIP, optimization of concentration of p-AP, as a template, and
selection of cross-linking reagents, glutaraldehyde, and STPP, were studied. Glutaraldehyde
as a cross-linker was used in the optimization of p-AP concentration. The concentrations of
p-AP were 0; 0.1; 0.5; 1.0; 1.5; and 2.0% (w/v) in MIP. To simplify, the six MIPs were coded
as M-1 to M-6. Evaluation results of the six MIPs, using square wave voltammetry (SWV),
are presented in Figure 1 and Table 1.
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Figure 1. Voltammogram of p-AP 50 µM in buffer solution pH 6.2. Data were obtained from sensors
for various p-AP concentrations in the MIP. SWV parameters at potential step 10 mV; frequency 10 Hz;
and scan rate 50 mV/s.

Table 1. Peak potential and peak current for 50 µM of p-AP solution resulted by several sensors in
variation of template (p-AP) concentration.

Sensor p-AP Concentration (%) Peak Potential (Volt) Peak Current (µA)

SPCE - 0.101825 7.7
- 0.262958 8.6

M-1 0.0 0.096790 9.4
M-2 0.1 0.091754 8.3
M-3 0.5 0.096790 7.9
M-4 1.0 0.091754 15.0
M-5 1.5 0.091754 1.7
M-6 2.0 0.091754 1.0
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From the voltammogram data (Table 1), it can be seen that there are two peaks for
p-AP at SPCE without modification: 0.10 and 0.26 volts vs. Ag/AgCl. The peak potential
(Ep) of p-Ap, resulting from modified SPCE, is consistent at 0.09 volts. There are two
stages of p-AP oxidation (Figure 2): the first was from p-AP to quinonimine and continued
to quinone [41,42]. In the second stage of oxidation, a broad peak was not detected in
the modified SPCE. Thus, the MIP membrane on the SPCE surface can cause the second
oxidation undetected. This is due to the presence of a thin-film layer on the SPCE surface,
which may inhibit the electron transfer from WE to CE at the oxidation of quinonimine to
quinone; consequently, the peak current did not appear.
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Figure 2. Oxidation of p-AP to quinonimine and quinone [42].

The peak current (Ip) on the voltammogram is inversely related to the p-Ap con-
centration in the MIP, except at 1.0% (M-4). At 1.5 and 2.0% p-AP (M-5 and M-6), the
voltammogram peaks were not clearly observed. SPCE-M_4 resulted in the highest peak
current and the most symmetrical voltammogram shape. Based on the data in Table 1,
the peak current from M-1 is higher than that of M-2 and M_3. In M-1, there is no p-AP,
but there is still cross-linking of chitosan by glutaraldehyde, which forms a cavity; hence,
p-AP can pass through to diffuse to the WE surface. In M-2 and M-3, it is possible that
there is still p-AP remaining, which was not released during the washing, thus blocking the
diffusion of p-AP from the bulk solution to WE during measurement. The p-AP in M-4 is
2 times higher than in M-3; thus, more templates are presumably formed, which then cause
the peak current to be higher. However, if there is too much p-AP in the MIP, as in M-5 and
M-6, the diffusion is more likely to be blocked.

Glutaraldehyde and STPP were compared as chitosan crosslinkers in MIP synthesis at
1% p-AP concentration. The two MIPs were used as SPCE modifiers and tested by cyclic
voltammetry for 50 µM p-AP in pH 6.2 buffer solution. M-4G and M-4S are glutaraldehyde
and STPP as crosslinkers, respectively, and the p-AP concentration in MIP is 1%. As shown
in Figure 3, the oxidation–reduction reaction of p-AP is reversible in the SPCE-unmodified
instance, with Ipa/Ipc = 1 and ∆Ep = 60 mV. The Ipa/Ipc for SPCE modified by M-4G
and M-4S, are 1.6 and 1.2, respectively, whereas ∆Ep are 100 and 110 mV, respectively.
Modification of SPCE by M-4G and M-4S causes p-AP to be oxidized more slowly; Ep
shifted to the positive direction, and so ∆Ep increased and the oxidation–reduction reaction
of p-AP showed a quasi-reversible property.

The identification of functional groups based on FTIR spectra, compared between
chitosan, M-4G, and M-4S, is presented in Figure 4. There is no difference in functional
groups between chitosan and M-4S. Meanwhile, in the FTIR spectrum for M-4G, there is
a difference in the peaks at wave numbers of 1563 and 1402 cm−1, which indicates the
presence of an -NH secondary amine group and tertiary alcohol [43]. Both M-4G and M-4S
lost the peak at 575 cm−1 from chitosan, indicating an -OH out-of-plane bend [43], and
that cross-linking possibly occurred in the -OH group of chitosan. Peak wavenumbers and
determination of chitosan functional groups, M-4G, and M-4S are presented in Table 2.
The cross-linking between chitosan and STPP, which occurs at pH 3, is an electrostatic
interaction between the protonated amine group of chitosan (-NH3

+) and the phosphate
ion in STPP. The washing process by NaOH solution during the SPCE modification was
predicted to cause the breakdown of the cross-links. This is indicated by the FTIR spectrum
of M-4S which is identical to that of chitosan.
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Table 2. Wavenumbers and functional groups of chitosan and MIPs.

Wavenumbers (cm−1) Functional Groups Chitosan M-4G M-4S

3289 O-H + + +
2871 -N-CH3 + – +
1563 -NH secondary amine – + –
1402 -OH tertiary alcohol – + –
1027 C-N primary amine + + +
575 -OH out of plane + – –

Surface morphology assessment of M-4G and M-4S by SEM, Figure 5) confirms that the
p-AP is printed on the surface of M-4G, with no cavity formation observed, which is one of
the characteristics of MIP formation. Meanwhile, on the surface of M-4S, the printed p-AP
is not visible; only cavities are formed on the surface. This shows that the two crosslinkers
have their own weaknesses. Chitosan cross-linking by STPP occurs due to electrostatic
interactions and is highly dependent on pH, in which an increase in pH can cause a
decrease in the number of cross-links. Chitosan cross-linking by glutaraldehyde occurs in
the unprotonated chitosan amine group (-NH2); this reaction occurs more frequently at
non-acidic pH, but at pH > 6.2, chitosan would have precipitated out. Therefore, for the
synthesis of MIP using glutaraldehyde as a crosslinker, the pH of chitosan in acetic acid was
adjusted to 5. Figure 6 shows an illustration of the formation of MIP using glutaraldehyde
and STPP as the cross-linker.
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crosslinkers [44].

In the MIP preparation, chitosan was hydrolyzed in acid (acetic acid) to produce
chitosan with shorter chains, but not monomers. Therefore, in this process, chitosan was
added with acetic acid and heated for about 2 h to produce a clear mixture. p-AP was
added before glutaraldehyde to form a complex, or the interaction between chitosan and
p-AP, the crosslinking reaction of chitosan by glutaraldehyde, was expected to be more
directed so that the formation of MIP could occur properly. PVA was added last, as a film
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reinforcement, and was not involved in the reaction. The condition of chitosan cross-linking
by glutaraldehyde was different from that of chitosan by STPP. Cross-linking of chitosan
by glutaraldehyde occurs at a not too acidic pH, but at a pH ≤ pKa of chitosan (6.2), so
that the fraction of the -NH2 group in chitosan can be ≥50%. It was necessary to adjust the
pH (≈5) before adding glutaraldehyde. The condition of cross-linking reaction of chitosan
by STPP takes place at pH 3; thus, it is unnecessary to adjust the pH. STPP is alkaline;
hence, when the STPP is added, it will change the pH of the mixture. The formation of MIP,
both by glutaraldehyde and STPP, is illustrated in Figure 6. The illustration is modified
from various literature. To release p-AP from MIP, template formation was carried out
by washing MIP with 0.1 M NaOH solution, followed by distilled water to rinse off the
remaining NaOH. This process was performed at MIP on a modified SPCE surface.

3.2. Performance of p-AP Sensor

Based on the results in the section above, SPCE-M-4G was chosen as the best sensor.
The sensor was tested in 50 µM p-AP solution. Sensor performance can be maximized
if the pH of the p-AP solution is suitable for oxidation, as shown in Figure 2, in which
the oxidation of p-AP is affected by pH. The p-AP is a weak acid with pKa1 = 5.48 and
pKa2 = 10.46, and can be oxidized under acidic conditions. In this study, optimization
of pH in the range of 3–8 was carried out by a mixture of citrate and phosphate buffers.
Figure 7 shows the voltammogram of a 50 µM p-AP solution at various pHs. As observed
in Figure 6, peak current increases in direct proportion to pH in the range 3–6. The peak
current decreased at pH 7 and 8. This can be explained by the illustration in Figure 8; at
pH < 5.48, the -NH2 group on p-AP protonates to -NH3

+, to form structure A. At pH > 5.48,
the -NH3

+ in p-AP decreases to form structure B. Oxidation of p-AP occurs in structure B,
as shown in Figure 2, thus the peak current increases from pH 3 to 6. In theory (Figure 8D),
from pH 7 to 9, the B structure of p-AP remains dominant (>95%), but p-AP oxidation
occurred under acidic conditions; hence, the peak current of p-AP decreased at pH 7,
whereas at pH 8, the peak current was not identified. The highest p-AP peak current was
obtained at pH 6.
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As presented in Figure 8D, the mole fraction of B at pH 3 is very small, only 0.3%,
causing the slow diffusion rate of B and thus a higher potential is required for oxidation of
B. At pH 4 to 5, B species increased, respectively, to 3.2 and 24.9%; thus, the rate of diffusion
increases, and the potential required for oxidation decreases. Similarly, this also happened
at pH 6 (76.8%) and 7, where species B was 76.8 and 97.0%, respectively. Therefore, Ep
is inversely related to pH at 3 to 7, in which the linear regression of the relationship is:
Ep = 0.119–0.011 pH with R2 is 0.995.

Quantitatively, the relationship between p-AP concentration and peak current (Ip) is
shown in Figure 9, in the range of 0 to 50 µM. Figure 9 shows that the linear concentration
range of the SPCE-M-4G sensor is 0–35 µM, while for SPCE-M-4S and SPCE, it ranges from
0 to 50 µM. The sensitivity of SPCE-M-4G is the highest compared to that of SPCE-M-4S
and SPCE (Table 3). SPCE-M-4G has the highest sensitivity compared to the others because
M-4G contains p-AP, as shown in Figure 4a, which can be oxidized during measurement
and then triggers the diffusion of p-AP from the bulk to the WE surface. Meanwhile, in
SPCE-M-4S, the presence of M-4S can block diffusion of p-AP to the WE surface; hence,
the sensitivity of SPCE-M-4S is lower than that of SPCE. Comprehensively, SPCE-M-4G
performance was the best, with sensitivity of (3.7 ± 0.1) µA/µM, limit of detection of
(2.1 ± 0.1) µM, and limit of quantification of (7.5 ± 0.1) µM, at a linear concentration range
of 0 to 35 µM. The short linear concentration range is probably caused by the presence of
p-AP in M-4G, which has not been released.
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which is obtained from unmodified SPCE, SPCE-M-4G, and SPCE-M-4S.

Table 3. Sensor performance parameters from SPCE; SPCE-M-4S, and SPCE-M-4G.

Sensor Linear Regression R2 Sensitivity (µA/µM) LoD (µM) LoQ (µM)

SPCE y = 0.49x + 1.07 0.9907 0.5 ± 0.1 3.1 ± 0.1 15.3 ± 0.1
SPCE-M-4S y = 0.24x + 0.53 0.9779 0.2 ± 0.1 6.0 ± 0.1 25.0 ± 0.1
SPCE-M-4G y = 3.74x + 0.68 0.9957 3.7 ± 0.1 2.1 ± 0.1 7.5 ± 0.1

Accuracy was determined by standard addition to real samples. Out of the three
samples tested, only one sample gave a positive signal, which was an expired drug sample,
sample F. Figure 10 shows that sample F produced a signal, and the signal increased very
sharply for sample F plus p-AP standard (F + 7µM), with recovery of p-AP concentration
being (94.11 ± 0.01)%. It can be concluded that the p-AP sensor based on chitosan MIP can
be applied to detect p-AP in paracetamol samples.

Based on the results of this study, to improve the performance of SPCE-M-4G, it is
necessary to optimize PVA because it is likely that PVA can inhibit the release of p-AP
from M-4G when washing with NaOH. The presence of p-AP on M-4G which has not been
released is advantageous on one hand, but it has an impact on short linear concentration
range. With the PVA optimization in the MIP preparation, it is hoped that the best composi-
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tion will be produced to obtain the best sensor. In addition, in order to guarantee that MIP
is not easily separated from the SPCE, it is necessary to develop a sensor manufacturing
technique by adding MIP directly to the carbon ink for WE.
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4. Conclusions

Electrochemical sensors can be developed from MIPs based on chitosan polymers,
especially for p-aminophenol sensors. As a template of an MIP, the best p-aminophenol
concentration was 4% in an MIP. Glutaraldehyde as cross-linker gave better sensitivity to the
sensor than sodium tripolyphosphate. When identifying MIPs based on the FTIR spectrum,
there was a change in the functional group in MIPs with glutaraldehyde as a crosslinker; in
contrast, there was no change in the functional group when using STPP as a crosslinker.
Based on identification of surface morphology from SEM images, p-aminophenol binds
stronger to MIP with glutaraldehyde as a crosslinker than with STPP. The p-aminophenol
sensor produced in this work has a working concentration range of 0.5–35 µM, a sensitivity
of (3.7 ± 0.1) µM/µA, LoD of (2.1 ± 0.1) µM, LoQ of (7.5 ± 0.1) µM, and an accuracy of
(94.11 ± 0.01)%. The sensors can be applied to paracetamol drug samples after several
pre-treatments. From this research, development of a disposable p-AP sensor for the
determination of p-AP in paracetamol drug samples remains possible.

Author Contributions: A.M. designed and set up experiment, and writing; Y.P.P. review and English
editing; Q.F. formal analysis; H.W. experimental work and data analysis; D.D. validation. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this same article.

Acknowledgments: The authors thank to the Faculty of Mathematics and Natural Sciences, Univer-
sitas Brawijaya, for the research funding via the professor’s research grant scheme, contract number:
3084.1/UN10.F09/PN/2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ertürk, G.; Mattiasson, B. Molecular Imprinting Techniques Used for the Preparation of Biosensors. Sensors 2017, 17, 288.

[CrossRef]
2. Keçili, R.; Hussain, C.M. Recent Progress of Imprinted Nanomaterials in Analytical Chemistry. Int. J. Anal. Chem. 2018, 2018,

8503853. [CrossRef]
3. Li, R.; Feng, Y.; Pan, G.; Liu, L. Advances in Molecularly Imprinting Technology for Bioanalytical Application. Sensors 2019,

19, 177. [CrossRef]
4. Abass, A.M.; Rzai, J.M. A Review on: Molecularly Imprinting Polymers by Ion Selective Electrodes for Determination Drugs.

J. Chem. Rev. 2020, 2, 148–156.

http://doi.org/10.3390/s17020288
http://doi.org/10.1155/2018/8503853
http://doi.org/10.3390/s19010177


Polymers 2023, 15, 1818 11 of 12

5. Gao, M.; Gao, Y.; Chen, G.; Huang, X.; Xu, X.; Lv, J.; Wang, J.; Xu, D.; Liu, G. Recent Advances and Future Trends in the Detection
of Contaminants by Molecularly printed Polymers in Food Samples. Front. Chem. 2020, 8, 616326. [CrossRef]

6. Azizi, A.; Bottaro, C.S. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental
water samples. J. Chrom. A 2020, 1614, 460603. [CrossRef]

7. Adumitrăchioaie, A.; Tertis, , M.; Cernat, A.; Săndulescu, R.; Cristea, C. Electrochemical Methods Based on Molecularly Imprinted
Polymers for Drug Detection, A Review. Int. J. Electrochem. Sci. 2018, 13, 2556–2576. [CrossRef]

8. Karlsson, B.C.G.; O’Mahony, J.; Karlsson, J.G.; Bengtsson, H.; Eriksson, L.A.; Nicholls, I.A. Structure and dynamics of monomer-
template complexation: An explanation for molecularly imprinted polymer recognition site heterogeneity. J. Am. Chem. Soc. 2009,
131, 13297–13304. [CrossRef]

9. Elugoke, S.E.; Akpan, E.D.; Adekunle, A.S.; Mamba, B.B.; Fayemi, O.E.; Sherif, E.M.; Eno, E.; Ebenso, E.E. Molecularly imprinted
polymers (MIPs) based electrochemical sensors for the determination of catecholamine neurotransmitters–Review. Electrochem.
Sci. Adv. 2021, 1, e2000026. [CrossRef]

10. Sajini, T.; Mathew, B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and
photo-responsive imprinting. Talanta Open 2021, 4, 00072. [CrossRef]

11. Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors Affecting Preparation of Molecularly Imprinted Polymer and
Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021, 26, 5612.
[CrossRef]

12. Mulyasuryani, A.; Haryanto, E.; Sulistyarti, H.; Rumhayati, B. Molecularly Imprinted Polymers Chitosan-Glutaraldehyde for
Monosodium Glutamate. IOP Conf. Ser. Mater. Sci. Eng. 2018, 299, 012010. [CrossRef]

13. Andawiyah, R.; Mulyasuryani, M.; Sulistyarti, H. Voltammetric Determination of Paracetamol using Polyvinyl Alcohol (PVA)-
Fe3O4 Modified Glassy Carbon. IOP Conf. Ser. Mater. Sci. Eng. 2020, 833, 012059. [CrossRef]

14. Krisnaniningrum, E.E.; Mulyasuryani, A.; Sulistyarti, H. Modification of Electrode using Arrowroot Starch Membrane for Uric
Acid Determination. Molekul 2021, 16, 184–191. [CrossRef]

15. British Pharmacopoeia Commission. British Pharmacopoeia; The Stationery Office: London, UK, 2013.
16. Song, H.; Chen, T.S. p-Aminophenol-induced liver toxicity: Tentative evidence of a role for acetaminophen. J. Biochem. Mol.

Toxicol. 2011, 15, 34–40. [CrossRef]
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