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Abstract: Additive manufacturing, in particular the fused deposition method, is a quite new interest-
ing technique used to obtain specific 3D objects by depositing layer after layer of material. Generally,
commercial filaments can be used in 3D printing. However, the obtention of functional filaments is
not so easy to reach. In this work, we obtain filaments based on poly(lactic acid), PLA, reinforced with
different amounts of magnesium, Mg, microparticles, using a two-step extrusion process, in order
to study how processing can affect the thermal degradation of the filaments; we additionally study
their in vitro degradation, with a complete release of Mg microparticles after 84 days in phosphate
buffer saline media. Therefore, considering that we want to obtain a functional filament for further
3D printing, the simpler the processing, the better the result in terms of a scalable approach. In our
case, we obtain micro-composites via the double-extrusion process without degrading the materials,
with good dispersion of the microparticles into the PLA matrix without any chemical or physical
modification of the microparticles.

Keywords: PLA; magnesium microparticles; in vitro degradation; 3D filament; 3D printing; additive
manufacturing; fused deposition modeling

1. Introduction

Additive manufacturing is a quite new processing method to create a three-dimensional
object by adding materials layer by layer [1]. Among the additive manufacturing methods,
fused deposition modeling, FDM, is one of the most studied because of its low cost and the
use of traditional thermoplastic polymers such as thermoplastic polyurethane (TPU) [2]
poly(lactic acid) and PLA [3]. For instance, PLA is a biodegradable polymer widely used
in 3D printing applications such as bone tissue repair [4] or biodegradable scaffolds [5].
Additionally, PLA chains are susceptible to being attacked by hydrolytic reactions, turning
into non-toxic molecules with a high enough degradation rate for human body usage [6].
However, PLA shows some technical limitations in terms of poor hardness [7] and low
degradation rate [8], which have to be improved in order for it to be used in biomedical
applications. Moreover, when working with a 3D printer, a homogenous filament is nec-
essary when it comes to the dimension diameter of the 3D printer extruder, which can
be considered the greatest challenge when the use of non-commercial filament is desired.
Therefore, the main strategy to obtain PLA-based filaments is mixing PLA matrix with
other polymers or with nano/micro fillers, which not only allows for the obtention of PLA-
based filaments with enhanced mechanical properties, but also the obtention of additional
functional properties such as antioxidant or antimicrobial activities, etc. [9–11]. Composites
of PLA with other metals have been produced in order to improve PLA properties; for
example, the addition of iron powder leads to an increase in tensile strength [12], and
the introduction of silver nanoparticles enhances the antimicrobial properties of PLA [13].
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However, considering biomedical applications, among the inorganic fillers, magnesium
metal, Mg, is an interesting reinforcement since Mg2+ ions are essential in metabolism at a
biochemical level, such as protein synthesis, muscle function, and the nervous and immune
system [14,15]. Additionally, the released Mg2+ ions present an extraordinary biological
response, promoting the formation of collagen in skin wounds [16]. These advantages offer
a promising opportunity for the applicability of Mg as a biomaterial. Moreover, PLA-Mg
composites have been already fabricated before through FDM, exhibiting an improvement
in the main properties of the polymeric matrix due to the incorporation of Mg particles [17].

However, as the physiological medium is water-based, the reaction of Mg with wa-
ter has to be taken into account. In particular, Mg reacts with H2O molecules, lead-
ing to the formation of hydrogen gas, H2 (g), and hydroxyl groups, OH−, which create
two challenges to be overcome for biomedical applications [14,18]. The accumulation of H2
(g) bubbles in the human body and variation in pH values can compromise the viability of
the material for biomedical applications [14]. As can be found in the literature, some au-
thors have reported the enhancement of PLA mechanical properties by adding Mg in terms
of creep strength [19] and compression modulus [20]. In addition, in vitro degradation of
these compounds has been studied in phosphate buffer saline, PBS [21], in simulated body
fluid, SBF [22], and in keratinocyte basal media, KBM [23], demonstrating that Mg particles
in PLA matrix prevent pH changes and improve the degradation rate of PLA [24]. How-
ever, no works studying the relation between the thermal properties and the later in vitro
degradation properties of PLA-based filaments reinforced with Mg for 3D printing have
been published yet. The main objective of research related to new PLA-based filaments for
FDM is focused mainly on the correlations between the processing of filaments and their
final mechanical properties in terms of elastic modulus, tensile strength, or elongation at
break [25–27].

Furthermore, to the best of our knowledge, we studied for the first time the in vitro
degradation of PLA-Mg filaments previous to the FDM processing step. In particular, in
our work, we carried out thermal characterization via DSC and TGA, obtaining the thermal
properties of PLA-Mg filaments, thus considering how the two-step extrusion process can
affect the thermal degradation of the filaments. Moreover, considering that we want to
obtain a functional filament for further 3D printing, the simpler the processing, the better
the result in terms of a scalable approach. In our case, we obtained micro-composites
using a double-extrusion process without degrading the materials, with good dispersion
of the microparticles into the PLA matrix without any chemical or physical modification
of the microparticles. Finally, an 84-day study in phosphate buffer saline, PBS, media
was also performed in terms of H2 release and pH changes to check for potential uses in
biomedical applications.

2. Materials and Methods

Polylactic acid (PLA3051D), 3% D-lactic acid monomer, molecular weight
14.2 × 104 g·mol−1, density 1.24 g·cm−3), was supplied by NatureWorks®. Magnesium
microparticles were supplied by Nitroparis (average size < 100 µm, purity > 99.90%).

Each PLA-Mg formulation was prepared according to the following process. Firstly,
the PLA pellets were powdered in an A10 Basic IKA miller using liquid nitrogen to prevent
thermal degradation at 25,000 rpm. Then, the corresponding amount of Mg microparticles
was mixed with the PLA powder for 45 min at 240 rpm and, finally, the extrusion process
was carried out in a Rondol co-rotating twin-screw extruder with a screw diameter of
10 mm and length/diameter ratio of 20, working at 40 rpm, with a residence time of 3 min
and temperatures of 180, 190, 190, 165, and 120 ◦C. The PLA-Mg formulations obtained
were pelletized and used as feedstock in the single-screw filament extruder.

Therefore, the filaments were obtained from a 3DEVO filament extruder working at
5.0 rpm, heater 1 at 165 ◦C, heater 2 at 190 ◦C, heater 3 at 185 ◦C, and heater 4 at 170 ◦C; the
fan speed was set at 30%. The PLA-Mg filaments were stored in a dryer to avoid humidity
spoilage of the PLA.
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Once the PLA-Mg filaments were obtained, morphological characterization was car-
ried out via scanning electron microscopy, SEM, (PHILIPS XL30 Scanning Electron Micro-
scope, Phillips, Eindhoven, The Netherlands). All the samples were previously gold-coated
(~5 nm thickness) in a Polaron SC7640 Auto/Manual Sputter (Polaron, Newhaven, East
Sussex, UK).

Thermal transitions were studied using differential scanning calorimetry in a DSC
Q2000 TA instrument under a nitrogen atmosphere (50 mL·min−1). The thermal analysis
was programmed as follows: First, heating was performed at 10 ◦C·min−1 from 0 ◦C up to
180 ◦C, obtaining the glass transition temperature (Tg) that was calculated as the midpoint
of the transition, the cold crystallization enthalpy (∆Hcc), and the melting enthalpy (∆Hm).

Thermogravimetric analysis, TGA analysis, was performed to study the thermal
degradation of the PLA-Mg filaments in a TA-TGA Q500 thermal analyzer. Dynamic TGA
experiments were performed under a nitrogen atmosphere (flow rate of 50 mL·min−1).
Samples were heated from room temperature to 600 ◦C at 10 ◦C·min−1. In this case,
the maximum degradation temperature (Tmax) was calculated as the peak from the first
derivative of the TGA curves, and the onset degradation temperature, T5%, was taken at
5% of mass loss.

The degree of crystallinity (Xc%) was calculated taking the value of crystallization
enthalpy of pure crystalline PLA (∆Hm

◦) as 93.6 J·g−1 and Wf as the weight fraction of
PLA in the sample [28].

Xc% = 100×
(

∆Hm − ∆Hcc

∆H0
m
◦

)
× 1

Wf
(1)

XRD measurements were performed using a Bruker D8 Advance instrument with a
CuK as source (0.154 nm) and a Detector Vantec1. The scanning range was 5◦ to 60◦, and
the step size and count time per step were 0.023851◦ and 0.5 s, respectively.

Fourier transform infrared spectroscopy, FTIR, measurements were conducted using a
Spectrum One FTIR spectrometer (Perkin Elmer instruments). Spectra were obtained in
the 4000–400 cm−1 region at room temperature in transmission mode with a resolution
of 4 cm−1.

The in vitro degradation process was studied by immersing samples of 2 mm length of
each PLA-Mg filament in the corresponding volume of phosphate-buffered saline solution,
PBS, maintaining the ratio 20 mL PBS: 1 cm2 surface area. The degradation was studied at
different times, taking samples after 7, 14, 21, and 28 days to characterize the first month
and after 84 days, corresponding to 3 months. The extraction days are named Tx, where
x indicates the number of the corresponding day. The as-obtained PLA-Mg filaments are
considered as time 0, T0, and are used as references. Each week, the PBS solution was
renovated. The in vitro degradation process was run in an oven at a constant temperature
of 37 ± 1 ◦C and the amount of H2 released was recorded daily for up to 28 days.

The pH evolution was measured every 7 days for 130 days with a pH METER-02
(Homtiky) with an error of±0.01. The mass of the PLA-Mg filament samples was measured
before beginning the immersion in PBS and after each extraction day. Samples were
removed from the solution, and their surfaces were dried with a paper towel, after which
they were weighed, obtaining the “wet samples weight”. Then, the samples were dried
for 2 weeks under vacuum; afterward, their weights were measured, obtaining the “dry
samples weight”. Water accumulation was obtained from the difference between the mass
of the wet and dried samples. The mass loss was calculated from the difference between
the mass of the dried samples and the mass of the initial samples. A precision balance was
used to weigh all samples within an error of 0.05 mg. The results are given in mass % with
respect to the initial mass for each sample.

Water uptake % = 100×
(

Weight wet−Weight dry
Weight dry

)
(2)
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Mass variation % = 100×
(

Weight dry−Weight initial
Weight initial

)
(3)

3. Results and Discussion

Previously, to obtain PLA-Mg filaments, a cryogenic mill was used to perform the
grinding of Mg powder to Mg microparticles. In Figure 1, SEM images at different magnifi-
cations of Mg microparticles are shown to study their average size and morphology. As
can be seen, round morphology is observed in Mg microparticles with an average particle
size of 12.5 ± 7.4 µm.
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Figure 1. SEM images of Mg microparticles at (a) ×500, (b) ×1000 and (c) ×4000 magnifications.

Once the Mg microparticles were characterized, five different Mg-PLA filaments
were obtained in a two-extrusion-step process. After the extrusion process, the extruded
materials were cut and used as feedstock for a single-screw filament extruder to obtain
filament with a diameter of 1.75 mm. In particular, Mg microparticles were added at 1.2, 5,
10, and 15 wt% with respect to PLA. Neat PLA was also extruded and then a filament of
PLA was obtained. In Figure 2, a digital photograph of examples of filaments and their
corresponding 3D printing pieces is shown.
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To analyze the dispersion of Mg microparticles through the PLA filaments, SEM
images were taken both on the filament surface and the fracture surface and are reported in
Figure 3. Moreover, the average diameter values of the PLA-Mg filaments are also reported
in Figure 3. As can be observed, the neat PLA filament shows smooth morphology with
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an average diameter of 1.79 ± 0.01 mm, which is in good agreement for its further use in
3D printers. Moreover, as the amount of Mg increases, more irregularities can be observed
on the surface of the PLA-Mg filaments. In addition, the average diameters measured for
1.2, 5, 10, and 15 wt% Mg were 1.74 ± 0.01, 1.74 ± 0.07, 1.64 ± 0.03, and 1.71 ± 0.02 mm,
respectively. The presence of Mg powder tends to slightly decrease the average diameter
of PLA-Mg filaments; however, all values are in the range of diameter values possessed
by other commercial filaments. On the other hand, the fracture surface was also studied
using SEM analysis. In Figure 3, a fracture pattern characteristic of polymers such as PLA
can be observed for the neat PLA filament. According to SEM analysis, in the fracture area,
homogeneous distribution of Mg microparticles can be observed through the PLA matrix
with good adhesion between the fillers and the matrix.
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Figure 3. SEM images of (a) neat PLA, (b) 1.2 wt% Mg, (c) 5 wt% Mg, (d) 10 wt% Mg, and (e) 15 wt%
Mg filaments and their fracture surfaces.

The thermal properties of extruded PLA-Mg filaments were properly obtained from
DSC thermograms and are summarized in Figure 4 and Table 1. In particular, the DSC
curves show that the glass transition temperature (Tg) appears at around 60 ◦C, and
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is always accompanied by a small endothermic peak due to physical aging, commonly
observed in PLA matrices. In addition, the degree of crystallinity remained essentially
unchanged, revealing the amorphous structure of PLA-Mg filaments. In particular, Xc
values of 1.0, 1.0, 0.8, 0.9, and 1.1% were calculated for neat PLA, 1.2, 5, 10, and 15 wt% Mg,
respectively. No significant changes in the melting temperatures, Tm, were observed for
any PLA-Mg filaments, with all values being around 150 ◦C.
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Table 1. Thermal properties for each PLA-Mg filament obtained from DSC curves.

Sample Tg (◦C) ∆Hcc (J/g) Tcc (◦C) ∆Hm (J/g) Tm (◦C) Xc (%) T5% (◦C) Tmax (◦C) R. Mg wt%*

PLA 60 7.43 118 9.43 153 2.0 320 353 0.0

1.2 wt% Mg 59 22.29 114 25.16 150 3.1 320 339 1.1

5 wt% Mg 59 23.69 116 23.80 148 0.8 283 306 4.8

10 wt% Mg 59 23.34 118 23.48 149 0.9 269 295 9.9

15 wt% Mg 59 20.72 121 21.72 150 1.1 263 291 14.6

R. Mg wt%*: Residual Mg wt% measured at 600 ◦C via TGA.

To evaluate the effect of Mg microparticle addition on the thermal stability and degra-
dation temperatures of the PLA matrix, TGA analysis was carried out on neat PLA and
PLA-Mg filaments. As shown in Figure 5 and Table 1, the weight loss curves of Mg-PLA
filaments shift towards lower temperatures with respect to neat PLA filament. In particular,
the thermal degradation starts at 320 ◦C for neat PLA and 1.2 Mg wt% filaments, which
are the highest temperatures measured, and falls to 263 ◦C for the highest amount of
Mg, 15 wt%. These results show that Mg induces the degradation of PLA. This behavior
has been reported in the literature, associated with MgO (present on the surface of Mg
particles), which acts as a catalyst for the PLA depolymerization reaction when the polymer
is subjected to elevated temperatures [29]. In addition, a second degradation at 425 ◦C can
be observed related to the dehydration of Mg(OH)2 on the surface of the Mg microparti-
cles [30]. As can be seen, the residual inorganic amount of each PLA-Mg filament reported
in Table 1 corresponds to the Mg wt% calculated, indicating the success of the extrusion
protocol. Moreover, considering that the temperature usually used in the FDM process for
PLA filaments is around 200 ◦C [31], our PLA-Mg filaments show suitable thermal stability
across the range of Mg concentrations studied for FDM processing.
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Figure 5. Thermograms and TGA derivate for each PLA-Mg filament.

Once the thermal characterization of PLA-Mg filaments was carried out, the in vitro
degradation test in PBS was performed over the course of 84 days, T84, and compared with
the original materials, named T0. To study how the degradation process could affect the
morphology, average diameter, and surface of PLA-Mg filaments, fracture surface images
at T0 and T84 are shown in Figure 6.
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As can be appreciated, the PLA-Mg filaments after 84 days of immersion in PBS
showed an irregular surface with a high number of holes and no presence of Mg microparti-
cles. Remarkably, this phenomenon is observed in the 1.2 wt% Mg filament, which showed
the highest eroded surface of all samples. Moreover, the immersion in PBS provoked
the precipitation of salts deposited on the surface of the PLA-Mg filaments after 84 days.
Parallel to the SEM study, a visual appearance study was carried out to visualize the color
changes of the PLA-Mg filaments every seven days, as shown in Figure 7.
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Figure 7. Visual appearance evolution of each PLA-Mg filament at different times.

Initially at T0, the filaments’ color changed as the amount of Mg increased. In par-
ticular, from a white transparent color for neat PLA to soft gray for 1.2 wt% Mg and dark
gray for 5, 10, and 15 wt% Mg. As the degradation time increased, a loss of gray color was
observed attributed to the release of Mg microparticles, which is in agreement with the
previous fracture surface observed via SEM. After 84 days, all PLA-Mg filaments turned
white, as was the neat PLA sample.

To corroborate the release of Mg and also study the chemical nature of deposited salts,
XRD analysis of PLA-Mg filaments was carried out after 84 days of immersion in PBS and
compared with the XRD patterns at T0, shown in Figure 8.
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Figure 8. XRD patterns of Mg microparticles as well as PLA-Mg filaments (a) at T0 and (b) after
84 days, T84, in PBS media.

According to XRD patterns, the Mg microparticles show crystallographic peaks located
at 2θ = 32.19◦, 34.39◦, 36.62◦, 47.82◦, 57.37◦, 63.05◦, 67.31◦, 68.63◦, 69.99◦, 72.49◦, and 77.82◦

attributed to the [100], [002], [101], [102], [110], [103], [200], [112], [201], [004], and [202]
crystallographic planes, respectively [32]. In particular, the presence of Mg microparticles in
the Mg-PLA filaments is confirmed by the fact that these peaks can be observed in all XRD
patterns shown in Figure 8. However, after 84 days of immersion in PBS, no crystallographic
peaks related to Mg were observed, confirming the release of Mg previously discussed.
Additionally, the presence of NaCl is confirmed by the peaks observed at 2θ = 32.0◦, 45.5◦,
and 56.5◦ attributed to the [200], [220], and [222] crystallographic planes of NaCl [32,33].

On the other hand, before starting the degradation test, neat PLA and PLA-Mg fil-
aments show amorphous structure with no crystallographic peaks attributed to PLA, in
good agreement with previously Xc (%) values measured using DSC. After 84 days of
degradation, the crystallographic peaks located at 16.5◦, 19.1◦, and 22.5◦ related to the
alpha crystalline phase of PLA [33] were observed for PLA-Mg filaments. As reported
in the literature, water molecules showed selective hydrolytic attack towards long PLA
chains in the amorphous phase, which highly affects the degree of crystallinity. In fact, the
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ester groups of aliphatic PLA chains are susceptible to being broken by water molecules,
yielding short PLA chains with carboxylate and hydroxyl end groups [33].

Furthermore, the hydrolysis of ester groups can be monitored using FTIR analysis
following the characteristic peaks related to the stretching of the amorphous carbonyl group
at 1750 cm−1 [33], the stretching of carbonyl in the carboxylate group at 1600 cm−1 [33],
and the stretching peaks related to O-H groups at 3690 cm−1 [33]. With this aim, FTIR
analysis was performed on neat PLA and PLA-Mg filaments at T0 and T84 and reported in
Figure 9.
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It is important to remark that characteristic bands attributed to PLA chemical group
vibrations can be observed in all spectra at T0, in particular between 2800 and 3200 cm−1,
the bands attributed to the symmetrical and asymmetrical stretching vibration of CH
groups, and between 1000 and 1500 cm−1, the bands attributed to the symmetrical and
asymmetrical stretching vibration of C-O-C groups. Moreover, at 830–960 cm−1 and
1430–1520 cm−1, the bands assigned to the stretching vibration and bending vibrations of
CH3, respectively, can be observed [33].

It is worth noting that the hydrolytic degradation of the PLA chains was accelerated
by the Mg microparticles. Neat PLA filament showed the same characteristic bands at T0
and T84. However, for PLA-Mg filaments, the hydrolytic degradation after 84 days in PBS
media was confirmed using FTIR following the intensity of the 1750 cm−1 characteristic
band attributed to the amorphous carbonyl group at T84, which is slightly lower than
at T0. Additionally, the presence of two new bands at 3690 and 1600 cm−1, attributed
to the stretching of O-H groups and the stretching of carbonyl in the carboxylate group,
respectively, can be observed in Figure 9. This acceleration can be explained since Mg
is highly hydrophilic, which increases the presence of water molecules that degrade the
PLA matrix.

As the degradation rate of PLA is deeply affected by the amount of water, the per-
centage of water uptake of PLA-Mg filaments during the in vitro degradation test was
calculated every 7 days up to 84 days and reported in Figure 10.
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The hydrolysis of PLA is controlled by the diffusion of water molecules in the amor-
phous phase [34]. As previously proposed, the presence of Mg highly increases the water
uptake, which implies an increase in the water diffusion through the PLA matrix as seen
in Figure 10. It is important to remark that after 84 days, the amount of water is almost
constant in all PLA-Mg filaments, no matter the amount of Mg. As previously discussed,
after 84 days of immersion in PBS, the Mg released provoked a high number of holes and
erased surfaced sites where water molecules can degrade the PLA matrix.

The main concern in the application of Mg in the biomedical field is its reaction with
water, as shown in Equation (4), in particular the generation of hydrogen, H2 [14].

Mg + 2H2O→ Mg2+ + 2
(
OH−

)
+ H2 (4)

The problem of H2 released in the human body cannot be explained in terms of how
much hydrogen is produced but instead has to be explained in terms of time. In Figure 11a,
the H2 release as a function of immersion time can be observed.

Polymers 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

of Mg will be released at least for the highest amount of 15 wt% Mg, which is in good 

agreement with the XRD analysis previously discussed. 

 

Figure 11. (a) Accumulated amount of hydrogen released as a function of immersion time in PBS 

and (b) Mg loss in terms of percentage of mass loss with respect to the Mg initial weight as a function 

of immersion time in PBS. 

Another concern regarding the Mg reaction with physiological environments is the 

alkalization of the surrounding area due to the OH− produced. To verify if the buffer ca-

pacity of the physiological environment can be surpassed by the alkalization produced in 

the reaction of Mg with water, the variation in pH in the PBS media was measured every 

seven days and is reported in Figure 12. 

 

Figure 12. Evolution of pH values for each PLA-Mg filament during degradation in PBS media. 

As can be observed, the pH values fluctuated around 7.6 for 5 months for all PLA-

Mg filaments. It is important to point out that the pH evolution is quite similar during the 

Figure 11. (a) Accumulated amount of hydrogen released as a function of immersion time in PBS
and (b) Mg loss in terms of percentage of mass loss with respect to the Mg initial weight as a function
of immersion time in PBS.



Polymers 2023, 15, 1907 12 of 15

The accumulated H2 released depends on the Mg content of the PLA-Mg filaments.
As expected, with higher Mg content, the hydrogen release rate increases up to a volume of
50.9 mL of H2 for the highest amount of 15 wt% Mg after 28 days in PBS. It is important
to remark that in any case, the maximum amount of H2 tolerated by the human body,
(2.25 mL/cm2/day) [14], is not achieved, which reveals that our materials are suitable for
biomedical uses. Moreover, the H2 release kinetics start to stabilize after the first two weeks,
where a plateau in the accumulated H2 released is observed in all PLA-Mg filaments and
kept constant during the 28 days. In addition, the amount of Mg that reacted to produce
the measured hydrogen was stoichiometrically calculated and is shown in Figure 11b as
a percentage of Mg mass loss with respect to the initial Mg weight in each filament. It
is important to point out that after 28 days, the 15 wt% Mg filament lost more than 70%
of the Mg, which is in accordance with the large volume of H2 measured for this sample.
Moreover, as the amount of initial Mg increases, the percentage of Mg loss increases by
increasing the time in PBS media. Considering that these percentages are stoichiometrically
calculated by hydrogen measurements, we can approximate that, after 84 days, 100% of Mg
will be released at least for the highest amount of 15 wt% Mg, which is in good agreement
with the XRD analysis previously discussed.

Another concern regarding the Mg reaction with physiological environments is the
alkalization of the surrounding area due to the OH− produced. To verify if the buffer
capacity of the physiological environment can be surpassed by the alkalization produced
in the reaction of Mg with water, the variation in pH in the PBS media was measured every
seven days and is reported in Figure 12.
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Figure 12. Evolution of pH values for each PLA-Mg filament during degradation in PBS media.

As can be observed, the pH values fluctuated around 7.6 for 5 months for all PLA-Mg
filaments. It is important to point out that the pH evolution is quite similar during the first
50 days in PBS media, after which slightly different pH values were observed, in particular
from 7.9 for neat PLA to 6.9 for 15 wt% Mg. This is a contradictory result, taking into
account that 15 wt% Mg is the material that releases the highest amount of hydrogen, which
implies that it must induce the largest increment in pH (alkaline) as well. This behavior
may be understood considering that the polymeric matrix can degrade and release lactic
acid to the medium, which induces a pH decrement that can compensate for the increment
in pH caused by the reaction of Mg.



Polymers 2023, 15, 1907 13 of 15

Finally, Figure 13 shows the mass variation of PLA-Mg filaments after 7, 14, 21, 28,
and 84 days in PBS media. The PLA-Mg filaments gain mass during the first 28 days,
probably due to NaCl precipitation on the surface of the filaments. However, as discussed
above, the Mg released induces the formation of pores and holes through the surface of the
filaments. Thus, the irregular morphology increases the surface where water molecules
can attack the PLA chains. As can be seen in Figure 13, after 84 days, a high loss of mass
was measured for all PLA-Mg filaments; remarkably, at this time, T84, the water uptake
reported in Figure 10 was the highest. Furthermore, it seems that Mg release occurs after
the 28 first days and then the water uptake increases up to the maximum values where
the highest PLA degradation rate is observed, losing 3, 10, 15, and 10% of mass for 1.2, 5,
10, and 15 wt% Mg, respectively. On the other hand, the neat PLA filament started to lose
mass since the first week in PBS but the PLA degradation was not enough to observe the
FTIR bands related to carboxylate and hydroxyl end groups.
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4. Conclusions

In this work, PLA-Mg filaments for further 3D printing with different Mg microparticle
concentrations were successfully obtained. In particular, Mg microparticles were added
at 1.2, 5, 10, and 15 wt% with respect to the polymeric matrix, obtaining an average
diameter of the filaments in the range of diameters used in 1.75 mm 3D printers. All
the extruded PLA-Mg filaments showed a Tg around 60 ◦C and a Tm around 150 ◦C;
however, the presence of Mg microparticles does not affect the small degree of crystallinity
of pure PLA. Furthermore, PLA-Mg filaments showed high thermal stability, with PLA and
1.2 MgO wt% presenting the highest Tmax values of 353 and 339 ◦C, respectively, this value
further decreasing down to 291 ◦C at 15 wt% of Mg. This phenomenon can be related to
the presence of Mg and in particular the MgO present on the surface of the microparticles
inducing PLA degradation. However, these degradation temperatures are higher than the
temperature used in the extrusion process as well as in 3D printing, which is generally
200 ◦C for PLA-based materials. After the fabrication and characterization of the materials,
in vitro degradation in PBS was studied. From a morphological point of view, PLA-Mg
filaments present an irregular surface and holes after 84 days due to the degradation
process and the release of Mg microparticles. In fact, no presence of Mg microparticles was
observed after 84 days through XRD analysis, confirming the release of Mg. Furthermore,
all the samples with Mg microparticles presented a high water uptake capacity, which
increases water diffusion through the material, improving degradation. The evaluation of
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H2 release at different immersion times revealed that, as expected, 15 wt% of Mg showed
the highest volume of H2 released, without, however, reaching the maximum amount of
H2 tolerated by the human body. Thus, taking into account the obtained results, we can
conclude that our materials are suitable for potential 3D printed biomedical applications.
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