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Abstract: The development of composite materials with thermo-optical properties based on smart
polymeric systems and nanostructures have been extensively studied. Due to the fact of its ability
to self-assemble into a structure that generates a significant change in the refractive index, one of
most attractive thermo-responsive polymers is poly(N-isopropylacrylamide) (PNIPAM), as well
as its derivatives such as multiblock copolymers. In this work, symmetric triblock copolymers
of polyacrylamide (PAM) and PNIPAM (PAMx-b-PNIPAMy-b-PAMx) with different block lengths
were prepared by reversible addition−fragmentation chain-transfer polymerization (RAFT). The
ABA sequence of these triblock copolymers was obtained in only two steps using a symmetrical
trithiocarbonate as a transfer agent. The copolymers were combined with gold nanoparticles (AuNPs)
to prepare nanocomposite materials with tunable optical properties. The results show that copolymers
behave differently in solution due to the fact of variations in their composition. Therefore, they have
a different impact on the nanoparticle formation process. Likewise, as expected, an increase in the
length of the PNIPAM block promotes a better thermo-optical response.

Keywords: poly(N-isopropylacrylamide); polyacrylamide; gold nanoparticles; RAFT polymerization;
triblock copolymers

1. Introduction

Smart polymers are one of the most interesting materials due to the fact of their ability
to modify some of their physical or chemical properties when they are subjected to certain
external stimuli, such as mechanical forces and variations in pH or temperature [1–6]. Par-
ticularly, polymers whose hydrophilic–hydrophobic behavior is susceptible to temperature
variations (i.e., thermo-responsive polymers) are rapidly increasing in their applicability
for the development of novel materials. Their particular response, attributed to confor-
mational changes that are energetically favored according to the hydrophobic effect and
the Gibbs equation [7–9], makes them versatile materials, especially for biomedical and
temperature monitoring applications [10–13]. Currently, Poly(N-isopropylacrylamide)
(PNIPAM) and its copolymers are one of the most studied thermo-responsive polymers for
this purpose [14–17].

PNIPAM displays a temperature-dependent water solubility. At room temperature,
PNIPAM’s chemical structure favors hydrogen bonds between water and the polymer,
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making the polymer highly soluble in aqueous solution. However, as the temperature
increases and passes a specific point, known as the lower critical solution temperature
(LCST), hydrogen bonds break and the structure self-assembles into an insoluble globular
conformation, producing a reversible change in the refractive index [18]. Similarly, diblock
copolymers of PNIPAM can display a temperature-dependent amphiphilic behavior and
self-assemble at a temperature above the LCST. Thus, these copolymers can adopt interest-
ing morphologies in solution, such as vesicles, micelles, and even worms, depending on
the chemical structure and length of each polymer block [19–22].

Multiblock PNIPAM copolymers, especially triblock copolymers, have even more com-
plex behavior in solution, since the block order is an important factor in the self-assembly
process [23]. It has been shown that the sequence of blocks, (e.g., ABA, BAB, and ABC)
impacts on the size–morphology of the polymer array in solution [24,25] and can even favor
the formation of a physically crosslinked network at a temperature above the LCST [26,27].
This versatility has boosted the ability of multiblock copolymers to be combined with other
materials, particularly plasmonic nanoparticles, to design novel composites that can be used
to design biosensors and drug delivery systems, among others [28–30]. Prompted by this,
triblock copolymers of polyacrylamide-b-poly(N-isopropylacrylamide)-b-polyacrylamide
(PAMx-b-PNIPAMy-b-PAMx), with different block lengths, were prepared in a two-step
reversible addition−fragmentation chain-transfer polymerization process (RAFT). The
use of a symmetrical trithiocarbonate compound as a transfer agent allowed to obtain a
controlled ABA block order [31]; to date, there are few reports that have described the
synthesis of PAM-b-PNIPAM copolymers by RAFT polymerization. The size of the blocks
was varied by modifying the feeding of the PAM block, which acted as a macro-RAFT
agent, and the NIPAM monomer. These copolymers were used as templates for the forma-
tion of gold nanoparticles, by a modified Turkevich reaction, to prepare nanocomposites
with a reversible thermo-responsive behavior. Gold nanoparticles (AuNPs) are important
nanostructures within the materials field because of their multiple properties, including
the ability to couple their electron density with electromagnetic radiation [32,33]. This
phenomenon causes the nanostructures to display different colors that strongly depend
on their size, morphology, and, especially, the chemical environment that surrounds them.
Therefore, the conformational variation of the PNIPAM block, at a certain temperature,
impacts on the nanoparticles’ chemical milieu, generating a significant color change. The
PAM blocks, on the other hand, allow AuNPs to strongly attach to the polymer due to the
excellent affinity between these nanostructures and the AM primary amide [34].

2. Materials and Methods
2.1. Materials

Acrylamide monomer (AM; ≥99%), N-isopropylacrylamide (NIPAM; ≥97%), 4,4′-
Azobis(4-cyanovaleric acid) (ACVA; ≥98%), 2,2′-Azobis(2-methylpropionitrile) (AIBN;
≥99%), gold(III) chloride solution (HAuCl4; ≥99.9%), and sodium citrate (≥99%) were
purchased from Sigma-Aldrich, Toluca, Mexico. The RAFT agent 2,2′-(thiocarbonylbis
(sulfanediyl))bis(2-methylpropanoic acid) was synthesized [35]. Soy lecithin and toluene
(99.5%) were from Química Mercurio, Puebla, Mexico. All materials were used without
further purification.

2.2. Polyacrylamide Block (PAM) Synthesis

The polyacrylamide block was synthesized using the inverse emulsion polymerization
method. Briefly, the continuous phase was prepared by dissolving soy lecithin (120 mg)
and the previously synthesized trithiocarbonate compound (264 mg) in toluene (15 mL).
The dispersed phase was prepared separately by dissolving AM (10 g) in water (13 mL)
and then mixed with the continuous phase. After the homogenization of both phases under
continuous stirring, the system was purged with a nitrogen flow, sealed, and heated. When
the temperature reached 80 ◦C, ACVA (20 mg dissolved in 2 mL of toluene) was added to
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the system without disturbing the inert atmosphere. The reaction was carried out for 5 h.
Finally, the PAM block was purified by precipitating it in methanol and then dried at 60 ◦C.

2.3. Triblock Copolymers’ Synthesis (PAM-b-PNIPAM-b-PAM)

The PAM block was used as a macro-RAFT agent to incorporate the PNIPAM block
into the structure by solution polymerization. In this process, different proportions of the
PAM block and NIPAM monomers were mixed in acetone (28 mL). The feeding percentages
(percentages by weight) tested were 80–20, 50–50, and 20–80 of PAM-NIPAM (Table 1),
respectively. Once both the PAM block and NIPAM monomer were added, the system
was purged with a continuous nitrogen flow. Subsequently, it was heated, and when the
temperature was kept constant at 85 ◦C, AIBN (16 mg dissolved in 2 mL of acetone) was
added without disturbing the inert atmosphere. The reaction lasted 5 h. The triblock
copolymers obtained were washed with chloroform and dried at 60 ◦C.

Table 1. Labels of the triblock copolymers and nanocomposites prepared.

Macro-RAFT Agent and Monomer Feed (%) Triblock Copolymer
(Labels)

Nanocomposite
LabelsPAM NIPAM

80 20 PAM-b-PNIPAM-b-
PAM1

PAM-b-PNIPAM-b-
PAM-Au1

50 50 PAM-b-PNIPAM-b-
PAM2

PAM-b-PNIPAM-b-
PAM-Au2

20 80 PAM-b-PNIPAM-b-
PAM3

PAM-b-PNIPAM-b-
PAM-Au3

2.4. AuNPs Nanocomposites Synthesis (PAM-b-PNIPAM-b-PAM-Au)

The nanocomposites were prepared by the Turkevich method slightly modified. In
a typical Turkevich synthesis, the Au3+ ions, obtained from the dissociation of a gold salt
(HAuCl4), are reduced to Au0 and stabilized by the addition of reducing agents such as
sodium citrate [36]. In this work, a triblock copolymer was added to the reaction medium
after incorporating the reducing agent (sodium citrate) following the synthesis procedure
described below. Briefly, an aqueous solution of HAuCl4 (7 mL, 0.5 mM) was brought to
a boil. Then, a solution of sodium citrate (18 mg dissolved in 1 mL) was added. After
a minute and a half, the solution turned colorful, indicating the AuNPs’ formation. At
this point, the copolymer selected in solution (0.5 g in 6 mL acetone) was added dropwise.
After this addition, the reaction was stopped and cooled to room temperature. The same
procedure was carried out with each of the previously synthesized block copolymers.

3. Characterization

Proton nuclear magnetic resonance (1H NMR) was performed using a Bruker Avance
III 500 MHz NMR. The measurement was carried out in solution using 15 mg of each
triblock copolymer dissolved in deuterated water (D2O).

The nanoparticle size was monitored by dynamic light scattering (DLS) using a
ZEN3690 zetasizer, NanoZS90. The analyses were performed taking an aliquot of each
nanocomposite solution.

The UV–Vis spectroscopy measurements were carried out on a Varian Cary 50 spec-
trophotometer (Agilent Technologies, Santa Clara, CA, USA) with a xenon lamp. The
measurements were conducted with nanocomposite aqueous solutions using a quartz
cuvette with a 1 cm path length.

The determination of the viscous molecular weight (Mv) of the PAM block was carried
out using an Ubbelohde viscometer and a water bath at a constant temperature of 24.7 ◦C.
One hundred milligrams of the sample were used and diluted in 12.5 mL. The intrinsic
viscosity was obtained by the Solomon–Ciuta equation. The Mark–Houwink parameters
used were k (×103) (mg/mL) = 68 and a = 0.66, as reported in the literature, considering a
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molecular weight range between 1 and 20 (×104), since RAFT polymerizations frequently
produce polymers with low molecular weights [37].

Scanning transmission electron microscopy (STEM) micrographs were acquired with
30 kV using a JSM-7800F scanning electron microscope. A drop of the nanocomposite
solution to be analyzed was deposited on a copper grid and dried at 36 ◦C to “freeze” the
self-assembly arrangements of the triblock copolymers at this temperature.

The turbidimetry measurements were performed using a Hach® 2100AN Laboratory
Turbidity Meter (Loveland, CO, USA), which was EPA compliant. The analyses were
conducted considering all of the solutions resulting from the nanocomposites. To observe
the changes in the refractive index of the nanocomposites with respect to the LCST, the
solutions were measured at room temperature and after heating with stirring at 36 ◦C.

4. Results and Discussion

As described above, these triblock copolymers were prepared by a two-step RAFT
polymerization process, as shown in Figure 1. For the first part (i.e., the formation of the
first block), the inverse emulsion polymerization method was used [34]. This technique
takes place in a heterogeneous milieu constituted by two immiscible phases, namely, an
organic solvent that constitutes the continuous phase and a < n aqueous dispersed phase.
The continuous phase contains the initiator, as well as the transfer agent, while the aqueous
phase dissolves the monomer. During synthesis, the interaction between both phases was
facilitated by a surfactant, creating micelles with the dispersed phase in the interior. Thus,
throughout the reaction, all different stages of this polymerization process, including chain
growth, occurred within those micelles. The ABA block sequence was achieved using
a symmetrical trithiocarbonate compound such as a RAFT agent during the PAM block
synthesis [31]. The symmetry of this agent suggests that trithiocarbonate substituents,
represented in pink in Figure 1, provide two good homolytic leaving groups [38]. Thus,
the fragmentation of these groups promoted the simultaneous PAM block growth on both
sides of the trithiocarbonate, placing this functional group in the middle of the chain [39],
providing the resulting species with the capacity to generate a highly symmetrical ABA-
type block copolymer, as shown in Figure 1a. The RAFT agent was characterized by
proton and carbon nuclear magnetic resonance (1H and 13C NMR), and the PAM block was
characterized by 1H NMR, as seen in the Supplementary Materials (Figures S1–S3). The
incorporation of the transfer agent into the PAM block was verified by UV-Vis, as shown in
Figure S4. Since RAFT agents present a characteristic yellow coloration due to the presence
of sulfur atoms from the trithiocarbonate, the resulting polymer is colored, indicative of the
incorporation of the transfer agent and its presence throughout the reaction [40].

The chemical functionality of the PAM block allows this structure to act as a macro-
RAFT agent to grow the PNIPAM block with high symmetry. Therefore, the PAM block
fragments in the same way as the RAFT agent, so the NIPAM monomer adds to the side
segments of the trithiocarbonate group, as shown in Figure 1b. Moreover, the triblock
copolymers still maintain the yellow coloration due to the presence of the transfer agent,
i.e., PAM block.

The structural characterization of these triblock copolymers was carried out by FTIR
spectroscopy and proton nuclear magnetic resonance (1H NMR). According to FT-IR,
the three copolymers displayed the characteristic bands of both the PAM and PNIPAM
blocks, as Figure 2 shows. However, the main difference between the spectra was the band
intensity of each block due to the fact that each copolymer was composed of different
proportions. The polyacrylamide blocks exhibited the N–H2 vibrations of the primary
amide at 3400 cm−1 and 3200 cm−1. The band of the CH2 backbone was at 2980 cm−1. In
addition, the C=O stretching vibration bands of the amide group were at 1645 cm−1 and
1603 cm−1. The block of PNIPAM, on the other hand, presented the N-H vibration of the
secondary amide at 3294 cm−1. The vibrations of the isopropyl group were located at 2972
and 2926 cm−1. In addition, the bands of the C=O stretching and N bond to the isopropyl
group of the secondary amide were at 1641 cm−1 and 1536 cm−1.
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The representative chemical shift signals of both blocks, PAM and PNIPAM, are shown
by the uppercase and lowercase letters, as seen in Figure 3. The 1H NMR spectra show that
the intensity of the signals were proportional to the PAM block and NIPAM monomer feed.
This confirms that the triblock copolymers had a different chemical composition due to the
variation of the length of both blocks.
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Figure 3. 1H NMR spectra of triblock copolymers prepared by varying the macro-RAFT agent and
NIPAM monomer feed. The chemical shifts of the PAM and PNIPAM blocks are represented by
uppercase and lowercase letters, respectively. The PAM-b-PNIPAM-b-PAM2 and PAM-b-PNIPAM-
b-PAM3 spectra show a magnification at 2.5–1.2 ppm to observe the variation of the intensity of
the signals.

The integration of these signals, as shown in Figure S5, and their relationship with the
number and type of protons that each monomeric unit had allowed for an estimation of the
composition of each triblock copolymer, as found in the literature [41]. Likewise, through
calculations of the molecular weight (Mv) of the PAM block, by viscometry, and relating
it to the estimated composition, it was possible to estimate the molecular weight of both
blocks. The results, as shown in Table 2, show that the feeding ratios were very close to the
estimated final copolymers’ composition. This guarantees that the RAFT polymerization
process occurred efficiently. Moreover, the PAM-b-PNIPAM-b-PAM3 triblock copolymer
exhibited the highest viscous molecular weight compared with the other copolymers.
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Table 2. Comparison between the macro-RAFT agent (PAM) and the NIPAM monomer feed, the
estimated copolymers composition, and the calculated viscous molecular weight (Mv) of each block.

Macro-RAFT Agent and
Monomer Feed (%)

Estimated Triblock
Copolymers’ Composition

(%)

Viscosity Average Molecular
Weight (g/mol)

(Mv)

PAM NIPAM PAM PNIPAM PAM PNIPAM

PAM-b-PNIPAM-b-PAM1 80 20 84 16 3594 1018

PAM-b-PNIPAM-b-PAM2 50 50 42 58 3594 7808

PAM-b-PNIPAM-b-PAM3 20 80 15 85 3594 32,025

Due to the different chemical compositions of these triblock copolymers, their self-
assembling behavior in solution is different from each other.

Amphiphilic block copolymers, either diblocks or triblocks, in aqueous solution tend to
self-assemble into interesting morphologies that minimize the interaction of the hydropho-
bic block and water molecules and expose the water-affine segments (i.e., hydrophilic block).
These varied morphologies are strongly related to the volume fraction of each block [42,43].
In fact, phase diagrams, which show the impact of the size of the hydrophobic block on
these morphologies, are commonly used to design amphiphilic macromolecules with partic-
ular structural characteristics to obtain arrangements with specific sizes and morphologies
depending on their potential application [44].

The triblock copolymers prepared in this work showed a similar behavior to the am-
phiphilic copolymers. At a temperature below the LCST, these copolymers showed a good
affinity with water. However, when this temperature is exceeded, as in the Turkevich reac-
tion, the PNIPAM block becomes hydrophobic, an entropically effect driven by the increase
in temperature [45], while the PAM block maintains its hydrophilic character. Thus, under
these conditions these triblock copolymers are considered amphiphilic macromolecules.
Hence, the size of the blocks is a fundamental factor for the type of morphology adopted
in the self-assembly process. Therefore, each triblock copolymer has a different impact
on the formation of nanoparticles, since the environment during nanoparticle nucleation
and growth is different with each block copolymer. These changes in the synthesis are
evidenced by the different colors that these nanocomposites exhibit in solution, which is
indicative of different sizes, morphologies, or nanoparticle concentrations. Analyzing these
solutions by UV-Vis, Figure 4, it was shown that the composites displayed a plasmon band
with an analogous shape and maximum value (520 nm). This implies that the gold nanopar-
ticles were homogeneous in size and shape. Therefore, it was suggested that the main
difference between these nanocomposites is related to the nanoparticle concentration. The
triblock copolymer with a higher proportion of PAM, PAM-b-PNIPAM-b-PAM1, does not
favor self-assembling structures with significant sizes, since it has a very small hydrophobic
block. Thus, this macromolecule might tend to adopt a coil-like structural characteristic of
the PAM homopolymer, despite the presence of the PNIPAM block and the thiocarbonate
group. This conformation favors the copolymer to interact with sodium citrate molecules
by hydrogen bonds, limiting the interaction of sodium citrate with the metallic precursor
and even competing with these molecules in the gold reduction process, since the PAM
block acts as a good reducing agent for gold [34]. Hence, the process of the reduction
and formation of nanoparticles is highly affected. This impact on the process is observed
since the solution, which has a yellow color due to the presence of the transfer agent, does
not vary its color significantly, which is to be expected when there is a high concentra-
tion of gold nanoparticles, since they exhibit a characteristic ruby red color. In contrast,
the copolymers PAM-b-PNIPAM-b-PAM2 and PAM-b-PNIPAM-b-PAM3, despite having a
higher viscous molecular weight, do not affect the process of the reduction and formation
of gold nanoparticles, only the stability and the size of the self-assemblies are affected [46].
This is because, as we mentioned above, the PAM block is the one that affects the reduction
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process that promotes the formation of nanoparticles. Thus, as the hydrophobic segment of
PNIPAM increases, the macromolecules tend to shrink and assemble into structures that
limit the interaction of the PAM block with metal precursors and sodium citrate molecules,
so the Turckevich reaction occurs efficiently. Therefore, these nanocomposites have a high
nanoparticle concentration, displaying a deeper reddish color.
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right: PAM-b-PNIPAM-b-PAM-Au1, PAM-b-PNIPAM-b-PAM-Au2, and PAM-b-PNIPAM-b-PAM-Au3
solutions.

Likewise, the triblock copolymers have a strong impact on the nanoparticles’ disper-
sion into the polymeric chains. According to Figure 5, the distributions obtained by DLS
indicate that the size of the nanocomposites’ assembly in solution increased when the
copolymer had a higher PAM block composition. This is due to the fact that PAM has a
strong affinity for gold nanoparticles thanks to the primary amide present in its structure.
Therefore, the AuNPs are attached to the polymer chains, forming an aggregate with the
polymer. In contrast, the copolymers with a considerable composition of the PNIPAM block
have a low affinity for these nanostructures due to the considerable steric hindrance of its
secondary amide. Then, the nanostructures could mostly be found isolated in the solution
and not forming aggregates in combination with the copolymers.

In addition to the impact that the triblock copolymers had on the nanoparticles’
formation and dispersion in solution, the thermo-optical response of the nanocomposites
was also strongly influenced by them. Likewise, the fact that the solutions were colorful,
thanks to the presence of the AuNPs, makes it easy to follow any optical or conformation
changes. The optical analyses by turbidimetry were made at room temperature and at
36 ◦C (T > LCST), as shown in Table 3. Commonly, the LCST of the PNIPAM is close to
33 ◦C. However, it has been shown that the combination of this with hydrophilic blocks,
such as PAM, can increase the temperature of the LCST [47]. T is why 36 ◦C was selected to
carry out this analysis. In addition, this type of nanocomposite is also considered for use as
biosensors, and so this temperature is ideal, because it is close to the body’s temperature.
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Figure 5. DLS number–size distribution of the nanocomposites in solution. By increasing the length
of the size of the PAM block and decreasing the PNIPAM’s block size, a larger size distribution is
observed. This might indicate the formation of aggregates between both components, the copolymer
and the gold nanoparticles, due to the good affinity between PAM and AuNPs.

Table 3. Turbidimetry values obtained at room temperature (25 ◦C) and at a temperature above the
LCST (36 ◦C).

Turbidity (NTU)

25 ◦C 36 ◦C

PAM-b-PNIPAM-b-PAM-Au1 240 165

PAM-b-PNIPAM-b-PAM-Au2 185 124

PAM-b-PNIPAM-b-PAM-Au3 398 1144

The opacity of PAM-b-PNIPAM-b-PAM-Au1 and PAM-b-PNIPAM-b-PAM-Au2 de-
crease with an increase in temperature to 36 ◦C. This suggests that due to the existence
of a PAM block with a considerable size, the formation of thermally reversible hydrogen
bonding at these conditions is favored. In other words, the hydrophilic character of these
materials improves with increasing temperature, so their transition temperature is no longer
considered as the LSCT but as the upper critical solution temperature (USCT) [48,49].

In contrast, PAM-b-PNIPAM-b-PAM-Au3 exhibits an LCST, since its opacity increases
with an increasing temperature. This implies that its hydrophobicity increases at 36 ◦C
by the self-assembly process. At this temperature, above the LCST, the structure is or-
dered in such a way that the segments (isopropyl groups) with less water affinity are
exposed [45]. Thus, the refractive index of the material is drastically modified, “clouding”
the solution [50].

The self-assembly process above the LCST (36 ◦C) was studied by STEM. The nanocom-
posite PAM-b-PNIPAM-b-PAM-Au1, as shown in Figure 6a, did not show any structural
arrangement of the polymer at this temperature. In fact, this sample showed structural
continuity. In the nanocomposite PAM-b-PNIPAM-b-PAM-Au2, the structural continu-
ity was mostly maintained, as shown in Figure 5b. However, a few areas of the sample
showed slight structural irregularities (inset in Figure 6b), which suggests that the size of
the PNIPAM block does not favor a significant self-assembly.
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Figure 6. STEM micrographs of the nanocomposites prepared by drying at 36 ◦C: (a) PAM-b-PNIPAM-
b-PAM-Au1; (b) PAM-b-PNIPAM-b-PAM-Au2; (c) PAM-b-PNIPAM-b-PAM-Au3. It is observed that
by increasing the length of the PNIPAM block, the self-assembly process is favored, generating
structural arrangements.

PAM-b-PNIPAM-b-PAM-Au3, in contrast with the other nanocomposites, showed
structural arrangements due to the self-assembly process throughout the sample, as
shown in Figure 6c. This is because the triblock copolymer is composed mostly of the
PNIPAM block.

5. Conclusions

Triblock copolymers with an ABA block sequence design were prepared in two steps
using a symmetrical transfer agent during the RAFT polymerization. The variation of the
length of each block was achieved by varying the feed of the macro-RAFT agent (PAM
block) and the NIPAM monomer in the second stage of the process.

All triblock copolymers were used as assistants in the formation of gold nanoparticles,
by the Turkevich method, generating nanocomposites. Likewise, when these nanocom-
posites, in solution, are subjected to an increase in temperature (RT to 36 ◦C), their optical
response varies depending on the triblock copolymers’ chemical composition. In fact, two
of these materials exhibit a UCST, while the composite with the highest composition in the
PNIPAM block maintains an LCST. This structural and optical versatility enhances the use
of these materials in the development of new temperature monitoring devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15081963/s1, Figure S1: 1H NMR spectrum of the symmetric
transfer agent 2,2′-(thiocarbonylbis(sulfanediyl))bis(2-methylpropanoic acid); Figure S2: 13C NMR
spectrum of the symmetric transfer agent 2,2′-(thiocarbonylbis(sulfanediyl))bis(2-methylpropanoic
acid).; Figure S3: 1H NMR spectrum of the polyacrylamide block (PAM).; Figure S4: Comparison of
UV-Vis spectra of symmetric transfer agent 2,2′-(thiocarbonylbis(sulfanediyl))bis(2-methylpropanoic
acid), the macro-RAFT agent (the PAM block) and polyacrylamide (PAM) synthesized by inverse
emulsion polymerization; Figure S5: 1H NMR spectrum, with the signal integration of PAM-b-
PNIPAM-b-PAM1, PAM-b-PNIPAM-b-PAM2 and PAM-b-PNIPAM-b-PAM3.
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