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Abstract: A composite material based on electrospinning printed polyhydroxybutyrate fibers impreg-
nated with brushite cement containing Zn substitution was developed for bone implant applications.
Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy and Scanning Electron
Microscopy were applied for materials characterization. Soaking the composite in Ringer’s solution
led to the transformation of brushite into apatite phase, accompanied by the morphology changes
of the material. The bending strength of the composite material was measured to be 3.1 ± 0.5 MPa.
NCTC mouse fibroblast cells were used to demonstrate by means of the MTT test that the developed
material was not cytotoxic. The behavior of the human dental pulp stem cells on the surface of the
composite material investigated by the direct contact method was similar to the control. It was found
that the developed Zn containing composite material possessed antibacterial properties, as testified
by microbiology investigations against bacteria strains of Escherichia coli and Staphylococcus aureus.
Thus, the developed composite material is promising for the treatment of damaged tissues with
bacterial infection complications.

Keywords: antibacterial; composite material; polyhydroxybutyrate; Zn-doped brushite cement;
Zn-substituted brushite cement

1. Introduction

Currently, new materials are being requested for bone implants manufacturing due to
the exponential increase in the population and, consequently, the number of defects in the
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bone system due to trauma or aging [1]. There are many osteo-substituting materials, and
the most promising of them are biodegradable ones that can be resorbed and replaced by the
native bone tissue [2,3]. Osteo-substituting materials must meet a number of requirements,
such as an absence of cytotoxicity and satisfactory mechanical compressive strength [4].
Tricalcium phosphate (TCP), due to the similarity of its chemical composition and properties
to natural bone tissue, is widely used as a biomaterial for the treatment of bone defects,
implant coatings, dental materials, biomedical cements, and other applications [5]. The
main advantage of TCP compared to hydroxyapatite (HAP) is a much higher rate of
resorption in the body [6]. When using β-TCP as a component of cement powder [7–9], a
chemical interaction occurs between the components of cement powder and hardening
liquid with the formation of dicalcium phosphate dihydrate (DCPD, brushite). Such
cements are referred to as brushite cements, according to the main crystalline phase formed
as a result of the interaction of cement components.

Previously, we obtained cation-substituted tricalcium phosphates (where the cation
was zinc (Zn), manganese, copper, iron or silver) and showed that they exhibit antimicrobial
activity [10–13]. Among them, Zn ions have pronounced antimicrobial activity [14]. More-
over, Zn is an important biological element, playing a role in the growth and development
of the body skeleton. It should be also noted that bone tissue contains about 30% of all
Zn present in the body, whereas a lack of Zn retards the development of the bone mass.
It was also shown that dietary supplements containing Zn have a positive effect on bone
metabolism [15].

In addition to its antimicrobial characteristics, an ideal bone replacement material
should stimulate the growth of natural bone tissue. For this purpose, it is possible to use
growth factors. However, they have a high cost [16] and undesirable side effects [17,18].
Ion supplements are often considered as an alternative to their use; they are not only
much cheaper, but also reduce adverse side effects on the body. Moreover, an additional
potentially positive effect which can be obtained with the introduction of Zn ions is an
increase in the solubility and rate of resorption of TCP, thereby stimulating the formation
of the native bone.

One of the disadvantages of brushite calcium phosphate cements (BCPCs), which
hampers their use in medicine, is their low strength and crack resistance [19]. Composite
materials, including BCPCs and biocompatible polymers, combine the advantages of
both components, while the disadvantages of BCPCs are offset by polymer components.
Polyhydroxybutyrate (PHB) is a biodegradable polyester which is naturally produced by
some microorganisms and is used for energy storage, along with glucose and starch [20,21].

The purpose of this work was to develop a composite material based on PHB and
Zn-substituted BCPC (ZnBC), to study its physico-chemical properties, as well as its
biocompatibility, cytotoxicity and antibacterial activity. Powder X-ray Diffraction (PXRD),
Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM)
and bending strength investigations were carried out. The NCTC fibroblast cell line
from mouse subcutaneous connective tissue was used for the MTT test to investigate the
cytotoxicity, while to assess the cell adhesion and spreading, human dental pulp stem
cells (DPSC)—easily accessible adult mesenchymal stem cells—were applied. Wide-spread
Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus)
bacteria strains were used for the microbiology study. S. aureus is known to be the most
dangerous among the Staphylococci family of bacteria. This pathogen causes a wide variety
of infections, common both in community-acquired and hospital-acquired settings.

2. Materials and Methods
2.1. Synthesis Route
2.1.1. Polymer Preparation

PHB was prepared by electrospinning, as described earlier in [22]. A natural biodegrad-
able polymer—poly-3-hydroxybutyrate series 16F—obtained by microbiological synthesis
using BIOMER® (Schwalbach am Taunus, Germany) with a medium-viscosity molecular
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weight of 2.06 × 105 g/mol, density of 1.248 g/cm3, melting temperature peak of 177 ◦C
and a degree of crystallinity of ~60% was used. Ultrathin PHB fibers were obtained by
electroforming using a single-capillary laboratory installation EFV-1 (Saint Petersbourg,
Russia) at a voltage of 12 kV. Solutions of PHB in chloroform (7 wt.% of PHB) were prepared
to obtain fibers.

2.1.2. Cement Preparation

The preparation procedure and characteristics of Zn-substituted brushite cement were
described in [23]. Briefly, cement powder was a mixture of Zn-substituted TCP, obtained by
precipitation from aqueous solution according to the Equation (1), monocalcium phosphate
monohydrate Ca(H2PO4)2·H2O (MCPM) and ammonium citrate. An 8% solution of citric
acid was used as hardening liquid.

2.5Ca(NO3)2 + 0.5Zn(NO3)2 + 2(NH4)2HPO4 + 2NH3·H2O
→ Ca2.5Zn0.5(PO4)2 +6NH4NO3 + 2H2O

(1)

Cement samples were prepared by mixing Zn-substituted β-TCP and MCPM with
hardening liquid in a ratio of 3:1 according to the following Equation (2):

Ca3(PO4)2 + Ca(H2PO4)2·H2O + 7H2O→ 4CaHPO4·2H2O or
Ca2.5Zn0.5(PO4)2 + Ca(H2PO4)2·H2O + 7H2O→ 4(Ca,Zn)HPO4·2H2O

(2)

Ammonium citrate interacts with Ca2+ ions, forming a poorly soluble calcium citrate
on the surface of TCP, which slows down the interaction of the components. Additionally,
the introduction of citrate ions should lead to an increase in the cement strength [24].

2.1.3. Composite Preparation

To obtain the composite material, cement paste was applied with a spatula to PHB poly-
mer matrix. Finally, PHG-ZnBC composite material was obtained. The polymer/cement
ratio was 1/10. The details on the raw ingredients and synthesized materials are given in
Table 1. The schematic illustration of the preparation procedure is shown in Figure 1.
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Table 1. Information about raw materials, synthesized zinc-containing brushite cement, and compos-
ite material.

Cement Components Chemical Formula Properties

ZnTCP Ca2.5Zn0.5(PO4)2 200–400 µm
MCPM Ca(H2PO4)2·H2O 200–400 µm
Ammonia citrate HOC(CO2H)(CH2CO2NH4)2 200–400 µm
Citric acid HOC(CO2H)(CH2CO2H)2 Water solution, 8 wt.%

ZnBC (Ca,Zn)HPO4·2H2O Setting time—4–5 min,
Hardening time—24 h

PHB-ZnBC PHB-(Ca,Zn)HPO4·2H2O Materials ratio PHB:ZnBC = 1:10

2.2. Dissolution Behavior

To simulate the behavior of PHG-ZnBC composite material in the body environment,
the samples were immersed in a model Ringer’s solution with a constant temperature of
37 ◦C for 30 days. Ringer’s solution is a water solution of salts NaCl, KCl, CaCl2 with ion
concentrations of Na+—147 mmol; K+—4 mmol; Ca2+—2.25 mmol; and Cl−—155.6 mmol
per 1 L of distillated water. Ringer’s solution is an isotonic solution corresponding to
human body fluids. It is commonly used in experiments in vitro to simulate the dissolution
processes occurring in native tissues.

2.3. PXDR

ZnBC cement and PHB-ZnBC composite material were investigated using the PXRD
method. The PXRD patterns were obtained on a Thermo ARL X’TRA powder diffractometer
with Bragg–Brentano geometry, Scintillator detector, CuKα radiation, λ = 1.5418 Å (Thermo
Fisher Scientific, Waltham, MA, USA). The PXRD data were collected at the 10◦–60◦ 2theta
range, with a 0.02◦ step. The PXRD experiments were performed at room temperature. The
phase analysis was carried out by means of the Crystallographica Search-March program
(version 2.0.3.1) and the JCPDS PDF#4 database. The PXRD patterns were fitted using
Match! Crystal Impact (version 3.14). The crystal structure figures were created using
Diamond Software (version 3.2). The Rietveld method was applied for quantitative phase
analysis using the JANA2006 software. Crystallographic data including space groups,
unit cell parameters and atomic coordinates of β-Ca3(PO4)2 (PDF#4 No 00-009-0169),
CaHPO4·2H2O (PDF#4 No 00-009-0077), Ca10(PO4)6(OH)2) (PDF#4 No 00-009-0432) were
used as initial parameters. The six-order polynomial was applied for fitting the background
and a pseudo-Voigt function for peaks profiles was used. The unit cell parameters were
refined, and the atomic coordinates were taken without refinement.

2.4. FT-IR Spectroscopy

The IR absorption spectra of the prepared samples were recorded on the Nikolet Avatar-
330 infrared Fourier spectrometer (Thermo Fisher Scientific, Waltham, MA, USA), in the range
of 4000–400 cm−1 with a resolution of 0.9 cm−1. The samples were examined in mixtures
with potassium bromide (KBr). The IR absorption spectra of PHB and PHB-ZnBC composite
material were collected on a Fourier spectrometer FT-803 (Simeks Research and Production
Company 2022, Novosibirsk, Russia) in the wavenumber region 4000–400 cm−1 with 1 cm−1

spectral resolution. The standard KBr disc technique was applied to obtain the spectra.

2.5. Bending Strength

The bending strength of cylindrical composite samples was measured, applying the
three-point bending method by means of a universal testing machine R-05 (Ivanovo, Russia)
equipped with a multi-channel Spider measuring system (Kannapolis, CA, USA). The polymer
sample was intimately mixed with brushite cement. This mixture was placed in a cylindrical
mold. After cement hardening, the obtained cylinder was cut into pieces: 3 cylindrical
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composite samples of 5 mm in diameter and of 40 mm in height were prepared, according to
the standard. The composite samples were investigated 5 days after their preparation.

2.6. Antibacterial Test

The antibacterial activity of the materials was studied against E. coli and S. aureus
bacteria strains. The bacteria were grown in a nutrient medium: Mueller Hinton Agar
(HiMedia, Mumbai, India). Three cylindrical composite samples of 5 mm in diameter and
10 mm in height were prepared and used for antibacterial tests. The developed composite
samples were first sterilized by the UV radiation (wavelength of 254 nm) for 30 min and
then immersed in 0.99 mL of physiological solution (NaCl = 9 g/L aqueous solution)
in a 24-well plate. An overnight culture of a strain (10 µL) with a cell concentration of
107 CFU/mL was added to each well. Controls were prepared and tested similarly, but
without the PHB-ZnBC composite material.

After 0, 6 and 24 h after the incubation at 37 ◦C in a thermostat, 0.04 mL of solution
was taken from each well and diluted according to decimal method dilution in 0.3 mL of
physiological solution. Then, 0.01 mL of suspension was sown from each dilution in a
Petri dish containing the nutrient medium and dried for 10 min. After that, bacteria were
cultivated in Petri dishes for 24 h at a temperature of 37 ◦C. Antibacterial activity was
determined by estimating the decrease in the CFU level compared to the control sample.

2.7. Biocompatibility Tests

The cytotoxicity study of extracts from the powders of the investigated materials was
carried out using cells of the NCTC clone L-929 fibroblast cell line of mouse subcutaneous
connective tissue by means of the MTT test. The 3-day extracts were prepared in accordance
with the requirements of GOST R ISO 10993.12-15 [25].

The adhesion and proliferation of the human Dental Pulp Stem Cells (DPSC) [26] on
the surface of the prepared composite material were investigated. Cylinder samples of
8 mm in diameter and 2 mm thickness were placed into the wells of a 24-well plate, after
which the DPSC cells were seeded on their surface with a density of 35,000/cm2. After
24 and 48 h, the cells were stained with SYTO 9, propidium iodide (both Invitrogen, Thermo
Fisher Scientific, Waltham, MA, USA) and Hoechst 33,342 (PanEco, Moscow, Russia). The
microphotography of cells was performed using an Axiovert 200 inverted luminescent
microscope (Carl Zeiss, Oberkochen, Germany). The cells were counted from images using
the ImageJ program.

The fluorescent dye SYTO 9 in the mode of λex = 450–490 nm, λemiss = 515–565 nm
stained the DNA and RNA of living and dead cells green, which enabled not only the visu-
alization of cells using a fluorescent microscope, but also the investigation of their adhesion
and spreading characteristics on the surface of the material under study. The intercalating
reagent propidium iodide (PI) in the mode of λex = 546 nm, λemiss = 575–640 nm stained
the nuclei of dead cells red, and in this way it was possible to determine the percentage of
non-viable cells.

3. Results and Discussion
3.1. PXRD Study

The interaction between the components of the ZnBC cement occurred in accordance
with Equation (3):

Ca2.5Zn0.5(PO4)2 + Ca(H2PO4)2·H2O + 7H2O→ 4(Ca,Zn)HPO4·2H2O (3)

The schematic transformation of the initial TCP and MCPM into brushite cement can
be represented as shown in Figure 2.
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The PXRD patterns of the ZnBC cement are shown in Figure 3. The sample consisted
of three phases: β-TCP, brushite and HAP, in accordance with the IR spectroscopy data
(see below). A slight shift in the diffraction reflections with respect to the PDF#4 card
(No. 00-009-0169 β-Ca3(PO4)2) was related to the incorporation of Zn2+ ions with smaller
ionic radii, compared to Ca2+ ions in the β-TCP structure. Thus, according to the Bragg
rule, the peaks were shifted towards the higher 2θ◦ angles (Figure 3). The β-TCP phase was
presented in the sample as an initial component, and was the main phase in the investigated
cement sample. The formation of the HAP phase occurred due to the transformation of
DCPC according to the Equation (4):

10CaHPO4·2H2O→ Ca10(PO4)6(OH)2 + 4H3PO4 + 18H2O (4)
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The results of the quantitative phase analysis of the ZnBC sample showed that the main
phase was β-TCP (64 wt.%). The content of the other phases was as follows: CaHPO4·2H2O
(20 wt.%) and Ca10(PO4)6(OH)2 (15 wt.%). We included Ca2P2O7 (1 wt.%) phase in the
calculation according to the FT-IR spectroscopy data (see below).
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The PXRD patterns of PHB-ZnBC composite material are presented in Figure 4. The
sample contained β-TCP, brushite and HAP phases; however, the content of these phases
was different with respect to the initial cement sample. The measurements were performed
on the sample without grinding. The high intensities of the reflections with indexes (0 4 0)
of DCPD (d = 3.800 Å, 2θ = 23.449◦), (1 0 2) of HAP (d =3.170 Å, 2θ = 28.198◦) and (1 1 0) of
TCP (d = 5.210 Å, 2θ = 17.047◦), on the PXRD patterns (Figures 3 and 4) were related to the
sample texture due to hardening. The reason for the appearance of the texture in the sample
is the deviation of the crystallites’ orientation from random [27]. Such a re-distribution of
the peak’s intensity is commonly observed in the bone cement materials [28].
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The content of PHB in PHB-ZnBC sample was not quantified by the PXRD analy-
sis. The component ratio was PHB:ZnBC = 1:10 (see Materials and Methods section).
The results of the quantitative phase analysis for the PHB-ZnBC sample are as follows:
Ca10(PO4)6(OH)2 (46 wt.%), β-TCP (39 wt.%), CaHPO4·2H2O (15 wt.%).

3.2. Behavior of ZnBC in Ringer Solution

The ZnBC cement sample was soaked in the Ringer solution. The PXRD patterns of
the sample before (top) and after (bottom) soaking are shown in Figure 5. The initial sample
contained the impurities of the MCPM (as raw material) and the octacalcium phosphate
(Ca8(HPO4)2(PO4)4·5H2O, OCP), which were formed according to the Equations (5) and (6):

10CaHPO4·2H2O + H2O→ Ca8(HPO4)2(PO4)4·5H2O (5)

3Ca3(PO4)2 + 7H2O→ Ca8(HPO4)2(PO4)4·5H2O + Ca(OH)2 (6)

The Ca(OH)2 phase was not present in the PXRD pattern, since it immediately reacted
with H3PO4 (from the reaction (3)) with the formation of the TCP phase according to the
Equation (7):

3Ca(OH)2 + 2H3PO4 → Ca3(PO4)2 + 6H2O (7)

After soaking, the main phase was β-TCP with the impurity of HAP (Figure 5, bottom).
According to the quantitative phase analysis, the content of β-TCP was 76 wt.%, while HAP was
24 wt.%. The formation of the HAP-type phase took place according to the following equations:

(1) The most unstable OCP→ HAP

Ca8(HPO4)2(PO4)4·5H2O→ 4Ca10(PO4)6(OH)2 + 6H3PO4 + 17H2O (8)
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or
Ca8(HPO4)2(PO4)4·5H2O→ 1/2 Ca10(PO4)6(OH)2 + 3CaHPO4 (9)

(2) DCPD→ HAP

10CaHPO4·2H2O→ Ca10(PO4)6(OH)2 + 4H3PO4 + 18H2O (10)

(3) TCP→ HAP

10Ca3(PO4)2 + 6H2O→ 3Ca10(PO4)6(OH)2 + 2H3PO4 (11)

According to the PXRD data, it follows that brushite cement is characterized by a
continuous transformation of the calcium phosphate salts.
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3.3. FT-IR Study

The FT-IR spectra of powders based on β-TCP and Zn-substituted β-TCP (ZnTCP)
(Figure 6) show the regions of the most intense oscillations, corresponding to the PO4

3−

(ν4: 565, 603 cm−1; the region at 900–1200 cm−1 [29]). The intense oscillations attributed
to the P2O7

4− group with valence oscillations of the P–O–P bond were registered. The
appearance of pyrophosphate groups may be associated with the thermal decomposition
of brushite according to the Equation (12):

2CaHPO4·2H2O→Ca2P2O7 + 5H2O↑ (12)

FT-IR spectra of ZnBC cement, and pure BC cement for comparison, are shown in
Figure 7. It can be observed that in brushite cement there was an intense peak at 3570 cm−1,
as well as a peak at 632 cm−1, which corresponds to the deformation vibrations of the
OH− group [30]. In addition, there were reflections attributed to the CO3

2− groups at
1300–1550 cm−1 [31]. Additionally, at 2350 cm−1, peaks attributable to CO2 from the air [32]
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were detected. The peaks attributed to the nitrate residues from the raw materials were
registered at 1380 cm−1.
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The IR spectra of pure PHB polymer and PHG-ZnBC composite material are shown
in Figure 8. Characteristic bands of all groups of atoms included in the structure of the
samples can be observed. The absorption bands in the region of 3500–3220 cm−1 refer to the
stretching vibrations of OH−, and the band at 615 cm−1 refers to the bending vibrations of
OH− [33,34]. The vibrations of the functional groups of the PHB polymer were registered
in both the samples. These vibrations were attributed to the CH– group peaks at 3000–2800
and 1450–1200 cm−1. Additionally, there was a large number of stretching vibrations of C–O,
C–O–C and C–C–O groups in the range of 935–1200 cm−1, while bending vibrations were
detected at 500–700 cm−1 [35]. Carbonyl stretching peaks at 1620–1720 cm−1 were also present.
The phosphate ions present in ZnBC were detected as orthophosphate (572–1137 cm−1) and
pyrophosphate (730 cm−1) [36,37]. All the detected bands are summarized in Table 2.
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Table 2. Vibration modes in the FT-IR spectra of PHB polymer and PHB-ZnBC composite.

Assignment IR Peaks PHB, cm−1 IR Peaks PHB-ZnBC, cm−1

νas[OH−] + νs[OH−] 3441 3219, 3481
νas[CH2] 2928, 2982 2918
νs[CH2] 2882 2861
ν[RCO–O] 1690, 1720 1623, 1637
ν[C–O] - 1548, 1582
δ[CH2] 1458 1419, 1437, 1453
ω[CH2] 1365, 1377 1315, 1344, 1386
τ[CH2] 1227, 1288 1236
νs[P–O–P] in P2O7

4− - 1208
νas[C–O–C] 1103, 1130, 1180 1104, 1137, 1155, 1180
ν3[PO4

3−] - 1137
ν[C–C] + ν[C–O] 1057 1012, 1040, 1056, 1068, 1073, 1084, 1090
ν3[PO4

3−] - 1040, 1056, 1068, 1073, 1084, 1090
νs[C–O–C] + ν[C–C] + ρ[CH2] 910, 940, 953, 980 935, 977
ν1[PO4

3−] - 977
ρ[C–H2] + ν[C–O] 825, 837, 871, 895 800, 836, 883
νs[P–O–P] in P2O7

4− - 730, 753
δ[C–C–O] + δ[C–O–C] 606, 671, 687 600, 670, 697
δ[OH−] 629 615
δ[C–O–C] + δ[C–C–O] 459, 513 572
ν4[PO4

3−] - 572

Note: The intervals of the characteristic bands for the [PO4
3−] groups and the PHB bands [C–O–C], [C–C–O],

[C–C] and [C–O] are overlapped with each other. Therefore, the repeating frequencies are in italics.

3.4. SEM Observations

An SEM image of the PHB polymer obtained by electrospinning is shown in Figure 9.
It consists of randomly distributed fibers of a regular cylindrical shape with an average
diameter of 2–5 microns.

The microstructure of the PHG-ZnBC composite material (Figure 10a–c) was hetero-
geneous, with the crystalline phase of the ZnBC cement irregularly distributed over the
PHB fibers. After soaking the composite in the Ringer solution at 37 ◦C for 30 days, the
changes in the phase composition occurred, as discussed above in Section 3.2 and shown
in Figure 5. These transformations were accompanied by changes in the microstructure
of the composite (Figure 10d,e). As a result of soaking, the size of the cement crystals
increased and their shape became lamellar, in accordance with the results reported in [23].
The appearance of lamellar crystals on the surface of the sample (Figure 10e) was related to
the formation of the HAP phase, in agreement with the obtained PXRD results (Figure 5).
This type of particle shape is characteristic for the apatite phases [38].
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3.5. Bending Strength Measurements

The strength of the PHB-ZnBC composite material was measured according to the
three-point bending strength method 5 days after the sample preparation, and the obtained
experimental data are demonstrated in Figure 11. The bending strength of the composite
material was determined to be 3.1± 0.5 MPa, which meets the requirements for biomaterials
for bone treatment [39].

According to the literature data, the compressive strength of brushite cements is
10–15 MPa [40]. This fact is related to poor crystal compaction during hardening due to a
fast setting time. In our previous work, the compressive strength of Zn-containing brushite
cement was determined to be 17.5 ± 1.6 MPa [23].

The bending strength of brushite cements was relatively low and did not exceed
4.5 MPa [41]. The presence of β-TCP in the cement can improve this value, acting as filler
particles [42]. The flexural strength of pure PHB according to [43] is about 60 MPa.

In the present manuscript, the bending strength of the PHB-ZnBC composite was mea-
sured to be 3.1± 0.5 MPa. This value was related to a low crystal compaction of the composite
material because of the texturing of the sample. The texture appeared due to the orientation of
the PHB fibers being predominantly in one plane (2D structure), as can be observed from the



Polymers 2023, 15, 2106 12 of 17

SEM images (Figures 9 and 10). The presence of PHB did not significantly affect the bending
strength of the composite due to its low content (PHB:ZnBC = 1:10).
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3.6. Antibacterial Activity

The antibacterial activity of the developed PHB-ZnBC composite material was tested
against E. coli and S. aureus, applying the agar overlay method [44]. The data on the bacteria
growth inhibition are presented in Table 3 and Figure 12. In the present research, bacteria
were cultivated in a nutrient-free physiological solution to assess the contribution of the
antibacterial effect of our composite material without the contribution of culture growth.
The direct contact with the material simulated the physiological conditions: the composite
polymer–cement material is set directly into the human body and comes into direct contact
with antibiotic-resistant hospital bacteria, such as E. coli or S. aureus. A similar experimental
approach was previously described in [45,46].

As can be observed from Table 3 and Figure 12, at the beginning of the test, different
results were obtained for the applied bacteria strains. The concentration of E. coli slightly
increased after 6 h from (1 ± 0.01) × 106 to (5 ± 0.01) × 106 CFU/mL, compared to the
control, in which the E. coli content, in contrast, decreased by an order of magnitude (to
(5 ± 0.01) × 104 CFU/mL). Under the same conditions, in the case of S. aureus, the bacteria
number decreased slightly after 6 h (from (3 ± 0.01) × 106 to (2 ± 0.01) × 106 CFU/mL),
similar to the control. However, no viable E. coli and S. aureus bacteria were detected in
either of the experiments after 24 h (in the control, the numbers of both bacteria species
after 24 h were (6 ± 0.05) × 103 and (1 ± 0.05) × 104 CFU/mL, respectively). Thus, the
developed PHB-ZnBC composite had a significant antibacterial effect, which developed
within 24 h.

However, during the first 6 h, the PHB-ZnBC sample had no antibacterial effect, likely
due to the low solubility of the composite. The investigated sample based on brushite
cement consisted of several phases, according to the PXRD study. Despite the continuous
phase transformations of the cement material, all phases belonged to calcium phosphates
(Figure 5). According to quantitative phase analysis, the main phase was Ca10(PO4)6(OH)2
(46 wt.%), characterized by a relatively slow dissolution rate; β-TCP was the second phase
(39 wt.%), characterized by a higher solubility with respect to HAP. This is likely the reason
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that the bactericidal concentration of Ca2+ and Zn2+ ions was reached only after 18–24 h. A
similar time for the inhibition of bacterial growth was observed in [47]. The PHB polymer
alone did not show any antibacterial effect, according to the literature reference [48]. For
this reason, the complete inhibition of E. coli or S. aureus growth was attributed to the ZnBC
cement material.

Table 3. Strain CFU concentration levels of E. coli and S. aureus during incubation with PHB-ZnBC
composite and in the control after 0, 6 and 24 h.

Bacteria Sample 0 h 6 h 24 h

E. coli
PHB-ZnBC

1 ± 0.01 × 106 5 ± 0.01 × 106 0
Control 5 ± 0.01 × 104 6 ± 0.05 × 103

S aureus
PHB-ZnBC

3 ± 0.01 × 106 2 ± 0.01 × 106 0
Control 2 ± 0.01 × 106 1 ± 0.05 × 104
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3.7. The Viability of Cells on the Composite Material

The results of the MTT test regarding the metabolic activity of the NCTC cells for
24 h of incubation with 3 day extracts are shown in Figure 13. The glass slide was used
as the control sample; it corresponded to 100%. The error bars on the column graphs
corresponded to the mean standard deviation (SD). The results of the cytotoxicity study
demonstrated that the extracts from the developed materials, PHB and PHB-ZnBC, did not
significantly influence the viability of the NCTC mouse fibroblast cells, the cell survival
being 97% and 98%, respectively, with respect to the control, and therefore the tested
materials were not cytotoxic.

The DPSCs viability was assessed by the differentiated fluorescent staining of living
and dead cells using fluorescent dyes. Images of cells stained with SYTO 9 (stains the
nuclei and cytoplasm of all cells green (λex = 450–490 nm, λemiss = 515–565 nm)), propidium
iodide (stains the nuclei of dead cells red (λex = 546 nm, λem = 575–640 nm)) and Hoechst
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33,342 (stains in blue the nuclei of all cells (λex = 343 nm, λem = 483 nm)) are presented in
Figure 14, and the data on the number of cells in Figure 15.
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As can be observed from Figure 14, there was a large number of cells on the surface
of the samples, the cells were homogeneously distributed and spread, and they were
characterized by a normal morphology. The number of dead cells was insignificant (see
Figures 14 and 15).

Moreover, there were no significant differences in the number of cells on all the studied
materials, as shown in Figure 15, in which the DPSC density layer is presented. As can
also be observed from Figure 15, the cell density layer for all the samples was significantly
increased after 48 h of cultivation, with respect to 24 h.

4. Conclusions

In this work, a composite material based on PHB, printed by electrospinning, and
ZnBC cement was developed. According to PXRD and FT-IR investigations, the ZnBC
cement and the composite PHB-ZnBC sample consisted of several calcium phosphate
phases. After soaking the composite in the Ringer solution at 37 ◦C for 30 days, the
transformation of the ZnBC cement material into mixture of β-TCP and HAP phases took
place. This transformation was accompanied by changes in the microstructure; the size of
cement crystals increased and their shape changed to lamellar. The bending strength of the
composite was found to be 3.1 ± 0.5 MPa.

The investigation of the metabolic activity of the NCTC mouse fibroblast cells with the
extract from the developed composite material testified that it did not noticeably affect the
cell viability. The direct contact method, applied to study the adhesion and spreading of the
human DPSC cells on the surface of the composite sample, showed that the morphology
and the number of cells was similar to the control.

The composite PHB-ZnBC material possesses antibacterial characteristics and showed a
complete inhibition of bacterial growth after 24 h of incubation for both E. coli and S. aureus.

The developed composite material is promising for bone replacements that are prone
to infection.
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