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Abstract: Vinasse, a waste from the bioethanol industry, presents a crucial environmental challenge
due to its high organic matter content, which is difficult to biodegrade. Currently, no sustainable
alternatives are available for treating the amount of vinasse generated. Conversely, biopolymers
such as cellulose, carboxymethylcellulose, and chitosan are emerging as an interesting alternative
for vinasse control due to their flocculating capacity against several organic compounds. This study
seeks to determine the thermodynamic behavior of in silico interactions among three biopolymers
(cellulose, carboxymethylcellulose, and chitosan) regarding 15 organic compounds found in vinasse.
For this, the Particle Mesh Ewald (PME) method was used in association with the Verlet cutoff
scheme, wherein the Gibbs free energy (∆G) was calculated over a 50 ns simulation period. The
findings revealed that cellulose showed a strong affinity for flavonoids like cyanidin, with a maximum
free energy of −84 kJ/mol and a minimum of −55 kJ/mol observed with phenolic acids and other
flavonoids. In contrast, chitosan displayed the highest interactions with phenolic acids, such as gallic
acid, reaching −590 kJ/mol. However, with 3-methoxy-4-hydroxyphenyl glycol (MHPG), it reached
an energy of −70 kJ/mol. The interaction energy for flavonoid ranged from −105 to −96 kJ/mol.
Finally, carboxymethylcellulose (CMC) demonstrated an interaction energy with isoquercetin of
−238 kJ/mol, while interactions with other flavonoids were almost negligible. Alternatively, CMC
exhibited an interaction energy of −124 kJ/mol with MHPG, while it was less favorable with other
phenolic acids with minimal interactions. These results suggest that there are favorable interactions
for the interfacial sorption of vinasse contaminants onto biopolymers, indicating their potential for
use in the removal of contaminants from the effluents of the bioethanol industry.

Keywords: vinasse; biopolymers; pollutant flocculation; molecular dynamics

1. Introduction

The increasing demand for biofuels like ethanol has presented a significant global
environmental challenge. Reports indicate that approximately 13 L of waste, known as
“vinasse”, are generated for every liter of bioethanol produced [1]. Vinasse is composed
of a high content of organic matter, where phenolic acids and polyphenolic flavonoids
are its main components [2]. These compounds have usually been described as having
antioxidant and antimicrobial biological activity. However, when these compounds are in
large quantities, they become phytotoxic, limiting their own biodegradation process [3].
Managing such organic waste has become a complex challenge due to its inherent difficulty
in biodegrading.
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Furthermore, studies show that when vinasse is discharged near or directly into
water sources, it causes adverse environmental consequences due to its high chemical
and biological oxygen demand, which affects the physicochemical and microbiological
characteristics of water bodies [4].

Although several alternatives have been proposed for vinasse bioremediation, their
implementation has proven ineffective due to the substantial volumes of waste generated,
leading to cost-intensive and inefficient processes [5]. Therefore, we must continue search-
ing for novel and enhanced solutions for handling this bioindustrial waste, prioritizing
characteristics such as low environmental impact, high sustainability, and a balanced cost-
effectiveness ratio as the cornerstones of ongoing research. Within this context, biopolymers
emerge as a promising alternative. They primarily comprise nontoxic, biodegradable com-
pounds with sustainable and renewable characteristics, offering cost-effective materials
with remarkable potential for capturing organic contaminants [6,7]. It is important to high-
light that although there are currently several cost-effective alternatives in the treatment
of vinasse, such as clays or aluminum sulfate, the projection of the use of biopolymers as
potential decontamination systems is based mainly on their origin source. In this way, poly-
meric materials such as cellulose and chitin can be obtained from agroindustrial biowaste,
which can subsequently be transformed into other types of biopolymers such as modified
cellulose and chitosan. In the specific case of Colombia, which is a country widely known as
a producer of coffee and, to a lesser extent, sugar, rice, cotton, corn, and shrimp, the waste
generated in these agroindustries could be used to obtain this type of polymeric material.
For example, in the case of coffee, this industry only uses the grain, which is equivalent to
5% of the fruit, leaving 95% waste, where approximately 60% of this is cellulose [8,9].

Cellulose has been widely studied, and it has been reported that, in its natural state, it
can retain various organic substances [10,11], i.e., aromatic compounds such as polyphenols
that are present in vinasse [12]. On the other hand, cellulose can be easily structurally mod-
ified to enhance several physicochemical and functional properties. One of these modified
cellulose biopolymers is carboxymethylcellulose (CMC), which is a water-soluble anionic
polyelectrolyte widely recognized for its excellent flocculating capacity on various indus-
trial contaminants, primarily of cationic nature [13]. In contrast, chitosan also belongs to the
polysaccharide-type biopolymer family and is primarily extracted from the exoskeleton of
crustaceans through the alkaline deacetylation of chitin [14]. It is the second-most abundant
natural organic source on Earth after cellulose biopolymers [15]. In Colombia, aquaculture
produces an average of 5000 tons of shrimp per year between 2012 and 2020, of which
between 48% and 60% are discarded, which generates public health and environmental
problems due to their decomposition and the attraction of vectors transmitting infectious
diseases [16]. However, among this waste, the exoskeletons represent between 30% and
48% of the weight [17], which are raw materials used to produce chitin and chitosan. This
modified biopolymer is a cationic polyelectrolyte with diverse applications, notably its
effectiveness as a flocculating agent in wastewater treatment and sludge dewatering [18].

Thus, the use of biopolymers obtained from industrial waste can be projected as an
alternative system for the treatment itself or of other agroindustrial waste such as vinasse.
Therefore, waste from coffee that has a high cellulose content could be extracted to be
used directly or could be transformed into cellulose derivatives such as carboxymethyl
cellulose-CMC. While waste from shrimp exoskeletons can be transformed into chitin and
chitosan polymers.

In this way, it is possible to think of a circular waste treatment model where agroin-
dustrial waste could be used to treat other agroindustrial waste. Thus, cellulose and its
derivatives can be obtained from coffee waste, while chitosan can be obtained from shrimp
exoskeleton waste. In this way, these polymers could be used under two approaches for
the treatment of vinasse. For example, they could be used as compacted materials inside
a column where the vinasse is passed as a fluid, or they could be used as flocculating-
coagulant agents, which are directly added to the vinasse (Figure 1). In both cases, the
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purification principle would be based on the polymer retention capacity of the different
organic molecules of the vinasse.
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Figure 1. Schematization of possible ways for the treatment of vinasse waste through polymeric
interfacial adsorption phenomena. (A) Purification through solid-phase extraction. (B) Purification
by flocculation sedimentation.

In relation to the solid phase extraction process, this depends on several factors, such
as the characteristics of the fluid (concentration, viscosity, flow rate, i.a.) [19], as well as
the characteristics of the polymeric material (size, degree of cross-linking, surface and
granulometric properties, i.a.) [20]. For example, polymeric materials with a high molec-
ular weight as well as with a high degree of cross-linking tend to remain in a solid state,
leading to difficult disintegration and dispersion in liquid media [21]. Likewise, polymeric
materials with ease of compaction, high porosity, and various functional groups can act
with adsorption, extraction, and preconcentration systems [22]. In contrast, polymeric
materials consisting of individual chains with medium and low molecular weights, as well
as with polar functional groups (OH, COOH, NH2, i.a.), can interact favorably with the
aqueous medium, going through a process of swelling and separation of their individual
chains to end in a heterogeneous (colloidal suspension) or homogeneous (polymeric solu-
bilization) dispersion (Figure 2). Regarding flocculating capacity, it relates to a colloidal
physicochemical property involving an interfacial interaction phenomenon in an aqueous
medium between a porous or high-surface-area material (sorbent) and a target compound
intended to be retained or extracted (sorbate) from the aqueous phase [23]. This flocculation
phenomenon can occur in different ways depending on the described characteristics and
both the sorbent and the sorbate [23,24]. For instance, the most common and effective form
of flocculation happens when the material serving as the sorbent, typically an ionic polymer
(polyelectrolyte), interacts with a sorbate that is also ionic but carries an opposite charge
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(electrostatic interactions). In this specific scenario, the initial step involves the complete
dissolution of the polymeric material in the aqueous medium. This dissolution process
comprises several substages, including polymer swelling, the disintegration or separation
of polymer chains, the dissociation of ionizable groups, and the elongation of the main poly-
mer chains due to ionization. Subsequently, each separated and elongated polymer chain
creates a substantial interfacial area between the polymer and aqueous medium, where the
sorption phenomenon then occurs. Similarly, the sorbate must also be previously dissolved
and ionized, carrying an opposite charge to that of the sorbing polyelectrolyte, to establish
a potent long-range electrostatic interaction effect. As a result, when the polymeric sorbent
and the ionized sorbate reach attractive interaction distances, the electrostatic complexation
process occurs with high intensity. This interaction displaces the water molecules that were
previously solvating the sorbing polyelectrolyte and the sorbate, leading to a dramatic
decrease in the solubility of the polyelectrolyte-sorbate complex. This results in desolvation
and precipitation, which can subsequently be separated through decantation and filtration
processes (Figure 2A).

In fact, apart from electrostatic interactions, there can also be other types of less potent
intermolecular interactions between the sorbent polymer and the sorbate. These include
ion-dipole interactions, hydrogen bonding interactions, and London dispersion interactions,
here called hydrophobic interactions.

Ion-dipole interactions occur between an ion from a functional group of a potential
electrolyte (weak acids and bases) and a permanent dipole from a neutral functional group.
In addition, the dipole from the neutral group must have an opposite character to the
charge described by the ionized group to establish an attractive interaction between the
sorbent and the sorbate. Moreover, the efficiency of flocculation is greatly influenced by
which component serves as the ion and which as the dipole. For example, when the sorbent
is a nonionic or neutral polymer, it tends to adopt compact or coiled conformations in the
aqueous medium, resulting in a smaller interfacial area for sorbent and sorbate interaction
and, consequently, reduced flocculation efficiency. In contrast, when the sorbent is a
polyelectrolyte, it can achieve a larger interfacial area due to the stretching of its polymer
chains based on its degree of ionization and the pH of the medium. Consequently, it can
interact more efficiently with a neutral sorbate containing dipoles of an opposite character
to the charge described by the sorbent (Figure 2B).

Another form of interaction, much weaker than electrostatic and ion-dipole interac-
tions, involves the formation of hydrogen bonds. In this scenario, both the sorbent and the
sorbate must be dissolved in the aqueous medium and have a neutral character defined
by their functional groups. Furthermore, these groups must have the capacity to establish
multiple hydrogen bonds, which should in turn generate a greater level of interaction
intensity than that provided by the aqueous medium, thus facilitating the formation of the
sorbent–sorbate complex, leading to desolvation and precipitation (Figure 2C).

Finally, the interactions with the lowest intensity are those occurring between aliphatic
and aromatic functional groups, giving rise to London dispersion forces or hydrophobic
forces. This can occur when the sorbent polymer, as well as the sorbate, adopt conforma-
tions or configurations in which some of their aliphatic or aromatic groups are oriented
toward the aqueous medium, leading to extremely weak interaction processes between
the sorbate and the sorbent. Hydrophobic interaction forces, as well as those mediated by
hydrogen bonding, typically exhibit very low flocculation efficiencies since the interaction
intensity does not consistently lead to desolvation and subsequent precipitation, as previ-
ously described for electrostatic and ion-dipole interactions between the sorbent and the
sorbate (Figure 2D).
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Figure 2. Schematization of the different types of interactions that can take place between polymers
derived from cellulose (cellulose and carboxymethyl cellulose) and chitosan with various components
of the vinasse. (A) Phenomenon of separation of polymer chains and formation of electrostatic inter-
actions between polyelectrolytes and ionic sorbent ligands. (B) Formation of ion-dipole interactions
between neutral polymers and ionic sorbent ligands. (C) Formation of neutral hydrogen bonding
interactions between polar neutral polymers and polar neural sorbent ligands. (D) Formation of
hydrophobic interactions between nonpolar polymer region and nonpolar sorbent ligands.

As mentioned above, a practical way to assess the potential of various biopolymeric
materials that can act as flocculating systems for vinasse is through the thermodynamic
study of intermolecular interactions that can occur at the interfaces between the polymer
and the aqueous medium, related to the sorption phenomenon of the ligand of interest. In
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this regard, the sorption phenomenon can be thermodynamically described by the Gibbs
free energy (∆G) generated during the interaction process between a sorbent (biopolymer)
and a sorbate (ligand) [25]. As a result, molecular dynamics has become a dependable
computational tool capable of providing detailed insights into the potential interactions
between two systems acting as ligands over time. In this sense, interactions between
polymers and contaminants have been assessed by molecular dynamics studies [26,27].
However, until now, there have been no in silico studies concerning potential interactions
between vinasse contaminants and sorbent biopolymers intended as prospective contami-
nant retention agents. For this reason, this research study assessed the interaction effect
of two sorbent materials derived from cellulose and chitosan with respect to 15 compo-
nents present in vinasse. In this study, cellulose oligomers, the anionic polyelectrolyte
carboxymethylcellulose, and the cationic polyelectrolyte chitosan were used as sorbents,
while different types of phenols and phenolic acids were used as sorbates.

2. Materials and Methods
2.1. 3D Modeling of Sorbents

For the construction of each sorbent, the union of five monomeric units was used
as the base to ensure the solubility of low-molecular-weight oligomers in an aqueous
model. The cellulose sorbent was constructed using five units of D-glucose (PubChem CID:
5793), the chitosan sorbent using five units of D-Glucosamine (PubChem CID: 439213), and
the carboxymethylcellulose (CMC) sorbent using five units of 6-O-carboxymethylglucose
(PubChem CID: 87648953). To achieve the linear structure of the cellulose, chitosan, and
carboxymethylcellulose sorbents, the monomeric units with 1,4-β glucosidic linkages were
generated using the CHARMM-GUI platform in conjunction with the PDB Reader and
Manipulator module [28].

2.2. Construction of the Sorbent–Sorbate Assembly Model

The Multicomponent Assembler module from the CHARMM-GUI web platform [29]
was used to create a rectangular water box system with a volume of 1.25 × 105 Å3 at a
concentration of 0.30 M KCl and approximately 4000 water molecules (TIP3 molecules).
The quantity of water molecules could decrease based on the molecular volume of each
organic species within the system. A single sorbent oligomer and one molecule for each
sorbate were added. With M representing the number of sorbates present in sugarcane
vinasse and N representing the number of sorbents, a total of M × N simulated systems
were obtained.

2.3. Molecular Dynamics Simulation

The molecular dynamics simulations were conducted using GROMACS version
2022.2 [30]. The CHARMM36m force field was used at a temperature of 300 K. For the
calculation of electrostatic potentials, the Particle Mesh Ewald (PME) method was used, and
the Verlet cutoff scheme with the steepest descent algorithm that converges to a minimum
energy value of 1000 kJ/mol was adopted [31,32]. The simulation was subdivided into
three phases: (i) minimization, (ii) equilibration, and (iii) production. The minimization
phase was conducted at a ratio of 5000 steps at 1 fs/step. The equilibration stage was con-
ducted at a ratio of 125,000 steps at 1 fs/step, using an extended Nose–Hoover ensemble for
temperature coupling in a canonical NVT-type ensemble [33,34]. The production stage was
conducted at a ratio of 25,000,000 steps at 2 fs/step, using an extended Parrinello–Rahman
ensemble for pressure coupling in a canonical NPT-type ensemble [35]. In subsequent
analyses, the most frequent intermolecular interactions between the sorbents and sorbates
were determined. These interactions were obtained in Discovery Studio, sampling data
every 2 ns for relative frequency calculations [36]. The binding free energy was estimated
using the Poisson–Boltzmann surface area (MM-PBSA) approach in molecular mechanics.
For this purpose, the g_mmpbsa tool, which utilizes internal subroutines from the GRO-
MACS package and APBS [37,38], was employed. The optimized structures of the cellulose,
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carboxymethylcellulose, and chitosan oligomers, as well as the structures of the organic
substrates from the vinasse, are shown in Figure 3.
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3. Results and Discussions

Results of an in silico study of the interaction of 15 organic substrates from vinasse
with cellulose, carboxymethylcellulose, and chitosan oligomers are shown in Figure 4,
Figure 5, and Figure 6, respectively. Results of the interaction between cellulose oligomers
and organic substrates from vinasse (Figure 4) showed that it could only establish stable
interactions over time with only 10 organic substrates. Furthermore, it was observed that
the predominant type of interaction corresponded to hydrogen bonds (HBs) with relatively
low binding energies. In this way, the polyphenolic flavonoids Cinadiol, Isoquertecin,
Myricetin, Quercetin, and Kaempferol established 16, 12, 10, 8, and 7 HB interactions
with binding energies of −6.46, −5.43, −4.72, −2.75, and −1.05 kJ/mol, respectively. In
contrast, the phenolic acids 3,4-dihydroxyphenylacetic acid, gallic acid, shikimic acid,
protocatechic acid, and quinic acid showed a lower number of interactions and binding
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energies corresponding to 5, 4, 3, 3, and 3 HB with binding energies values of −0.96, −0.69,
−0.43, −0.40, and −0.22 kJ/mol, respectively. These results are very interesting because
they suggest that cellulose oligomers have a greater affinity for polyphenolic flavonoids
than for phenolic acids, which can be explained by considering the chemical composition
and the solubility in the aqueous medium. In this way, both the oligomer and the organic
substrates that are polyhydroxylated systems can form multiple HB interactions between
themselves or with the aqueous medium, establishing a competitive interaction. Therefore,
in the case of polyphenolic flavonoids that are characterized by having a larger size and
low aqueous solubility [39], they tend to achieve higher binding energies with cellulose
oligomers. In contrast, phenolic acids that are smaller in molecular size and have greater
aqueous solubility [40] tend to remain longer in the aqueous medium, interacting slightly
with the cellulose oligomer. Liu et al., [41] studied the adsorption of catechin onto cellulose,
revealing that the adsorption capacities of cellulose for catechin were 2.70 and 2.82 mg/g
at a pH of 2.0 and 7.0, respectively. Din et al. [10] removed organic matter from river
water using natural cellulose from coconut fiber and palm oil fiber via adsorption isotherm
and kinetic studies, reporting the adsorption capacities achieved, which were 15.67 and
30.8 mg/g, respectively, suggesting that it is a suitable substrate for the retention of organic
contaminants in an aqueous medium.

Regarding the results of the interaction provided between the carboxymethylcellulose-
CMC oligomer and the organic substrates from vinasse (Figure 5), a poor capability
to establish interactions with most of the vinasse substrates was found, where only
four organic substrates showed stable interactions over time. In this case, it was ob-
served that the polyphenolic flavonoids Isoquertecin, Myricetin, and Quercetin, as well as
the phenolic acid 3-mnetoxy-4hydroxyphenyl-glycol corresponded to those that described
a moderate interaction, generating 40, 30, 20, and 10 HB interactions with binding energies
of −13.83, −10.38, −6.24, and −275 kJ/mol, respectively. This limited capability for inter-
action between the oligomer and organic substrates can be explained considering that the
CMC oligomer is an anionic polyelectrolyte with a high tendency towards aqueous solva-
tion [42]. This characteristic leads to competition between oligomer-aqueous medium and
oligomer-organic substrate interactions. Likewise, the degree of ionization of the oligomer
also entails the formation of a larger electronic cloud, leading to an electrostatic repulsion
effect that limits the approach of the organic substrates towards the oligomer. Further-
more, it was observed that the organic substrate-oligomer affinity is achieved mainly with
polyphenolic flavonoids rather than with phenolic acids. This result can also be explained
by analyzing the solubility of both compounds, where the phenolic acids have small sizes
and high solubility, tending to remain more in the aqueous medium than in the oligomers.
On the contrary, polyphenolic flavonoids have a large size and low solubility, tending to be
poorly solvated, favoring the interaction with the oligomer. Evidence has been reported
that suggests that CMC has the capacity to adsorb organic matter. For instance, Capanema
et al. [43] prepared cross-linked carboxymethylcellulose hydrogels as adsorbents for the
removal of organic dye pollutants, which exhibited adsorption efficiency above 90% (24 h)
and a maximum removal capacity of methylene blue from 5 to 25 mg g−1 depending on
the dye concentration.
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The results of the interaction between the chitosan oligomer and the organic sub-
strates from vinasse showed that it established stable interactions over time with each of
the substrates (Figure 6). Furthermore, it was observed that two types of intermolecular
oligomer-substrate binding interactions were formed, corresponding to (i) low-energy hy-
drogen bonds (HB) and (ii) high-energy ion-dipole and π-type electrostatic interactions (EI).
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In this case, it was observed that, unlike cellulose and CMC oligomers, the substrate-
ligand affinity is indifferent to the type of substrate. Additionally, it was found that the
highest affinity was for the phenolic compound gallic acid (11 HB with a binding energy
value of −4.66 kJ/mol and 8 EI with a binding energy value of −234.94 kJ/mol), followed
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by 3,4(4-hydroxyphenyl) propionic acid (9 HB with a binding energy value of −2.14 kJ/mol
and 6 EI with a binding energy value of −171.56 kJ /mol), 3,4 dihydroxyphenylacetic acid
(8 HB with a binding energy value of −1.70 kJ/mol and 5 EI with a binding energy value
of −185.08 kJ/mol), quinic acid (7 HB with a binding energy value of −1.95 kJ/mol and
4 EI with a binding energy value of −173.92 kJ/mol), shikimic acid (6 HB with a binding
energy value of −1.19 kJ/mol, and 3 EI with a binding energy value of −162.01 kJ/mol),
protocatetechic acid (6 HB with a binding energy value of −1.02 kJ /mol and 3 EI with a
binding energy value of −139.89 kJ/mol), vanilic acid (5 HB with a binding energy value of
−0.82 kJ/mol and 4 EI with a binding energy value of −149.07 kJ/mol), p-Coumaric acid
(5 HB with a binding energy value of −1.09 kJ/mol and 3 EI with a binding energy value
of −150.24 kJ/mol), syringic acid (5 HB with a binding energy value of −0.97 kJ/mol and 3
EI with a binding energy value of −148.46 kJ/mol), 3-methoxy- 4-hydroxyphenylglycol
(4 HB with a binding energy value of −0.62 kJ/mol and 3π-type EI with a binding energy
value of −3.36 kJ/mol), Myrecetin (3 HB with a binding energy value of −2.02 kJ/mol
and 2π-type EI with a binding energy value of −2.09 kJ/mol), Isoquercetin (3 HB with an
energy value of binding of −3.75 kJ/mol), Quercetin (3 HB with a binding energy value
of −0.99 kJ/mol), Cyanidanol (1 HB with a binding energy value of −1.49 kJ/mol), and
Campeferol (1 HB with a binding energy value of −0.85 kJ/mol). These results suggest
that the chitosan oligomer describes the greatest number of interactions with the organic
substrates in vinasse, establishing several mechanisms of interaction, as well as different
binding energies. Such results can be explained by virtue of the chemical nature of the
oligomer, which has ammonium-type cations in its molecular structure, which allows it
to establish different points of interaction with many of the negative dipoles formed in
the organic compounds of the vinasse. These results are very similar to those found by
Liudvinaviciute et al. [44], where the adsorption of rosmarinic acid (RA) from an aqueous
solution on chitosan powder was explored. There, the adsorption of RA on chitosan powder
occurred in two stages. In the first step of adsorption, the RA molecules are attached to the
ionized amino groups on the surface of chitosan powder due to electrostatic interaction.
In the next step, the adsorbed RA molecules become the sites for the adsorption of other
RA molecules due to hydrophobic interaction. In another study, chitosan-macroalgae
biocomposites as potential adsorbents of water-soluble hydrocarbons were used [45]. The
authors reported that the removal capacities were 58.68, 16.64, and 6.13 mg g−1 for benzene,
toluene, and naphthalene, respectively. Finally, it is important to highlight that none of
the three oligomers established hydrophobic interactions (London dispersion forces) with
organic substrates. This result can be explained considering that this type of interaction
requires an extremely short interaction distance [46,47]. However, both oligomers and
organic substrates consist of a wide variety of polar groups that generate complex electronic
clouds that considerably limit the formation of such interactions.

4. Conclusions

Oligomers derived from biopolymers such as cellulose, carboxymethylcellulose, and
chitosan displayed diverse interaction patterns regarding the chemical characteristics of
the 15 compounds present in vinasse. In the case of the cellulose oligomer, it showed the ca-
pability to interact with a wide number of substrates from vinasses. Likewise, it was found
that the predominant type of interaction between this oligomer and the organic substrates
was hydrogen bonds with relatively low binding energies. Furthermore, it was found
that the cellulose oligomer showed a slightly greater affinity for flavonoid-type organic
substrates than for the phenolic acids of the vinasse. Regarding the carboxymethylcellulose
oligomer, it showed a poor capability to interact stably with most substrates in vinasse.
However, with the four substrates that established stable interactions, it was achieved
through the formation of multiple hydrogen bonds. In the case of the chitosan oligomer,
this showed a capability to interact with each of the substrates from the vinasses. Further-
more, this oligomer showed the capability to establish two types of oligomer-substrate
interactions corresponding to low-energy hydrogen bonds and high-energy electrostatic
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interactions (ion-dipole and pi interactions). In this way, this study allows for the first
approximation of the possible interaction behavior between polymeric materials such as
cellulose, carboxymethylcellulose, and chitosan with various organic molecules that make
up the vinasse waste, and therefore, project future experimental studies focused on evaluat-
ing the ability of such materials as sorption, extraction, and/or preconcentration systems
for vinasse waste.
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