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Abstract: This review focuses on the current disparities and gaps in research on the characteristics of
the oral ecosystem of denture wearers, making a unique contribution to the literature on this topic.
We aimed to synthesize the literature on the state of current knowledge concerning the biological
behavior of the different polymers used in prosthetics. Whichever polymer is used in the composition
of the prosthetic base (poly methyl methacrylate acrylic (PMMA), polyamide (PA), or polyether
ether ketone (PEEK)), the simple presence of a removable prosthesis in the oral cavity can disturb
the balance of the oral microbiota. This phenomenon is aggravated by poor oral hygiene, resulting
in an increased microbial load coupled with the reduced salivation that is associated with older
patients. In 15–70% of patients, this imbalance leads to the appearance of inflammation under the
prosthesis (denture stomatitis, DS). DS is dependent on the equilibrium—as well as on the reciprocal,
fragile, and constantly dynamic conditions—between the host and the microbiome in the oral cavity.
Several local and general parameters contribute to this balance. Locally, the formation of microbial
plaque on dentures (DMP) depends on the phenomena of adhesion, aggregation, and accumulation of
microorganisms. To limit DMP, apart from oral and lifestyle hygiene, the prosthesis must be polished
and regularly immersed in a disinfectant bath. It can also be covered with an insulating coating.
In the long term, relining and maintenance of the prosthesis must also be established to control
microbial proliferation. On the other hand, several general conditions specific to the host (aging;
heredity; allergies; diseases such as diabetes mellitus or cardiovascular, respiratory, or digestive
diseases; and immunodeficiencies) can make the management of DS difficult. Thus, the second part
of this review addresses the complexity of the management of DMP depending on the polymer
used. The methodology followed in this review comprised the formulation of a search strategy,
definition of the inclusion and exclusion criteria, and selection of studies for analysis. The PubMed
database was searched independently for pertinent studies. A total of 213 titles were retrieved from
the electronic databases, and after applying the exclusion criteria, we selected 84 articles on the
possible microbial interactions between the prosthesis and the oral environment, with a particular
emphasis on Candida albicans.

Keywords: Candida spp.; dental plaque biofilm; denture management; denture hygiene; denture
stomatitis; microbiome; systemic

1. Introduction

The dynamic and fragile balance of the oral cavity ecosystem depends on pH, thermal
fluctuations, humidity, enzymes, and microflora [1]. Against the backdrop of these condi-
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tions, there is an interaction between the oral environment and the physical and chemical
characteristics of the basic materials of prostheses [2]. The traditional polymerization
reaction of polymer chains proceeds with increasing heat until the monomers transform
into a polymer. However, the use of this technique produces residual monomers that
can negatively affect the physical, mechanical, and biological properties of the base of
the prosthesis [3,4]. To remedy this, new hardening procedures have recently emerged.
Therefore, the use of processing techniques such as injection molding, microwave energy,
autoclaving, high-pressure thermal polymerization, CAD/CAM milling, and 3D printing
have been proposed [5,6].

A thorough long-term in vivo evaluation to verify that the different basic thermoplastic
resins for removable prostheses are biocompatible and exhibit insignificant cytotoxicity
remains to be carried out. In fact, these base resins for prostheses that are in permanent
contact with the mucous membranes can release cytotoxic components locally, causing
irritation and inflammation [7].

Immediately after brushing or prophylaxis, the denture in the mouth is covered with
a salivary pellicle, which precedes colonization by the first pioneer bacteria. Subsequently,
the succession of early (Streptococcus species) and late colonizers in the biofilm, under
optimal conditions, will favor the survival of new species. Microorganisms from the biofilm
on the denture surface can penetrate the different polymer biomaterials.

A recent in vitro study tested the polymethyl methacrylate (PMMA) denture base
material Vertex RS (Vertex-Dental, Soesterberg, The Netherlands) immersed for 30, 60,
and 90 days in a suspension of Candida albicans. The authors highlighted blastospores
and pseudohyphae on the surface of this material, which were detected in the crystallized
structures as well as in traces after grinding. These authors put forward the hypothesis that
the penetration of C. albicans stems from the deterioration of the material surface, leading
to the formation of microporosities, which makes disinfection difficult and thus facilitates
recolonization [8].

In vivo analysis of the interactions between the denture surfaces, saliva, eukaryotic
and prokaryotic microorganisms that can cause infections such as denture stomatitis (DS)
is of great importance for the prevention and treatment of these pathologies. Among the
eukaryotes, Candida species have been reported to have the ability to attach to bacterial
biofilms at almost every stage of formation, referred to as a “mycofilm”.

The behavior of this mycofilm is modified and fluctuates depending on the properties
of the surface of the polymers, the interactions between the microorganisms, the architecture
of the biofilm, and the saliva and environmental conditions, with the last two being
dependent on the general state of the prosthesis wearer [5].

This review aims to shed light on the indications for the different polymers used in the
composition of prosthetic bases from a biological point of view considering the oral cavity.
The behavior of these materials with respect to microorganisms depends on the adhesion,
aggregation, and accumulation of prosthetic microbial plaque. These phenomena depend
on the state of the surface of the materials (roughness, wettability, and free energy) but also
on the patient’s hygiene with respect to the prosthesis, on the clinical need for relining, and
on the general state of the patient. The objective of this review is to provide an update on
the specificities of polymers (PMMA, polyamide (PA), and polyether ketone (PEEK)) used
as a prosthetic base to facilitate the maintenance of a healthy oral environment.

2. Materials and Methods

The methodology used for this review comprised the formulation of a search strategy,
with inclusion and exclusion criteria defined and applied to retrieve studies. After selecting
relevant studies, data were extracted to summarize the results. The PubMed database was
searched to gather the relevant literature published on the topic. The search terms used
were “dental plaque biofilm”, “Candida spp.”, “denture management”, “denture hygiene”,
and “denture stomatitis.” The inclusion criteria were (a) articles written in English that
(b) dealt with the microbial flora interactions between the polymer in the denture base and
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the oral environment, with the occurrence of DS, and (c) articles that reported on the control
of the microbial plaque of dentures (DMP). Articles that did not meet the predetermined
inclusion criteria were excluded and the articles selected for the final analysis were obtained
as full text.

3. Results

The current analysis focused on prosthetic microbial plaque and considered different
parameters that can influence this type of colonization. Given the abundance of data
obtained, we grouped the results by theme into five tables and two supplemental tables.
Table 1 describes the chemical composition, roughness (Ra), and surface free energy (SFE)
of the polymers (PMMA, PA, and PEEK). These parameters have the potential to affect
bacterial adherence [9]. Indeed, a low value of SFE is sought to resist plaque in in vitro
studies. Concerning the critical surface energy of acrylic materials, the zone of good
adhesion is located at values greater than 40 mJ/m2 [10]. Table 2 lists the different protocols
for polishing the PMMA, PA, and PEEK polymers of the prosthetic base (mechanical
polishing and/or chemical polishing). CAD/CAM-milled acrylic resins have lower Ra
values than heat-cured PMMA. Mechanical polishing of PMMA is superior to chemical
polishing. Polishing the PAs makes it possible to obtain a roughness close to 0.2 µm.
Chairside polishing of PEEK also makes it possible to obtain clinically acceptable values.
Table 3 describes the frequency and protocol for cleaning dentures. A protocol of daily
cleaning for dentures is recommended for the three polymers. The cleanser tablets tested
were more effective for PMMA and PEEK than for thermoplastic polyamide. On the
other hand, self-polymerized and injection-molded polyamide showed higher solubility
than PMMA. Concerning PEEK, the cleaning tablets were effective wit, low solubility.
Generally speaking, denture cleansers increased the roughness of all PMMA. Concerning
liquid cleansers, the best result was obtained with 2% CHG and 0.5%–1% NaOCL for
PMMA. Thermo-injected polyamide base resins for prostheses colonized by C. albicans and
disinfected with 0.12% chlorhexidine and Neem demonstrated the highest antimicrobial
level. Table 4 presents the data on denture relining. Good relining was obtained with
conventional thermoset PMMA and the CAD/CAM-milling block. PAs had low adhesion
strength, PEEK required specific preparation and exhibited a mixed type of failure involving
adhesion and cohesion. Table 5 shows a synthesis of the results concerning polymers
(PMMA, PA, PEEK) for denture microbial plaque formation, polishing, relining, and
hygiene. Overall, PMMA presented advantages over PA and PEEK in most of the sections
mentioned. In vitro coating or the addition of antimicrobial components was desirable
with PMMA. The effects of the incorporation of different nanoparticles (AgNP, silver-zinc
zeolite, TiO2 and Fe2O3) or natural compounds such as oleic acid (OA), in PMMA produces
antifungal and antibacterial effects, limiting the development of biofilm on the surface of
the prosthesis. However, if the dosage of these components was not respected, harmful
mechanical effects were observed, as well as undesirable cytotoxic effects (Table S1). The
in vitro comparison between PMMA and polyamide regarding cytotoxicity did not reveal
obvious differences. Studies remain disparate with regard to the materials studied and the
protocols used. The results fluctuated depending on the duration of the experiments and
different parameters such as temperature and surface condition (Table S2).
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Table 1. Chemical composition, surface roughness (Ra), and surface-free energy (SFE) of polymers (PMMA, PA, and PEEK) have the potential to affect bacterial adherence.

Polymers

Mean Surface Roughness (Ra) ± SD in µm
Ra Threshold of 0.2 µm
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PMMA CAD/CAM PMMA:

Al-Dwairi ZN et al. 2019 [11]: 0.16 ± 0.03 µm (AvaDent PMMA
billets; Global Dental Science, Scottsdale, AZ); Al-Dwairi ZN et al.
2019 [11]: 0.12 ± 0.02 µm (Tizian Blank PMMA; Schütz Dental,
Rosbachvor der Höhe, Germany)
Benli M et al. 2020 [12]: 0.19 ± 0.01 µm (Amann Girrbach AG,
Koblach, Austria)
Radford DR et al. 1998 [13]: 0.66 ± 0.34 µm (Trevalon Clear;
Dentsply Ltd., De Trey Division, Weybridge, UK)
Steinmassl et al. 2018 [14]: All CAD/CAM dentures had lower
mean surface roughness values than conventional dentures.
Steinmassl et al. 2018 [14]: −0.28 ± 0.16 µm AvaDent Digital
Dentures (AD; Global Dental Science Europe BV, Tilburg, the
Netherlands); Steinmassl et al. 2018 [14]: −0.44 ± 0.13 µm Baltic
Denture System (BDS; Merz Dental GmbH, Lütjenburg,
Germany); Steinmassl et al. 2018 [14]: −0.28 ± 0.01 µm Vita
VIONIC (VV; Vita Zahnfabrik, Bad Säckingen, Germany);
Steinmassl et al. 2018 [14]: −0.04 ± 0.01 µm Whole You Nexteeth
(WN; Whole You Inc., San Jose, CA, USA)
Steinmassl et al. 2018 [14]: −0.30 ± 0.10 µm Wieland Digital
Dentures (WDD; Wieland Dental + Technik GmbH & Co. KG,
Pforzheim, Germany/Ivoclar Vivadent AG, Schaan,
Liechtenstein); Schubert et al. 2020 [15]: 0.07 ± 0.01 µm (Med 610
Stratasys, Eden Prairie, MN, USA); Schubert et al. 2020 [15]: 0.07
± 0.01 µm (V-Print splint Voco, Cuxhaven, Germany); Schubert
et al. 2020 [15]: 0.09 ± 0.01 µm FREEPRINT ortho 385 Detax,
Ettlingen, G); Schubert et al. 2020 [15]: 0.06 ± 0.01 µm Dental LT
Clear Formlabs, Somerville, MA, USA)
Schubert et al. 2020 [15]: 0.06 ± 0.01 µm (M-PM crystal Merz
Dental, Luetjenburg, Germany. 0.04 ± 0.01 Therapon Transpa
Zirkonzahn, Gais, Italy)

Conventional heat-polymerized PMMA:
Al-Dwairi ZN et al. 2019 [11]: 0.22 ± 0.07 µm (Meliodent
conventional PMMA, Heraeus Kulzer, Hanau Germany)
Sultana N et al. 2023 [16]: 0.11 ± 0.04 µm (DPI Heat Cure; Dental
Products of India, Mumbai, Maharashtra, India)
Schubert et al. 2020 [15]: 0.04 ± 0.01 µm (Erkodur Erkodent,
Pfalzgrafenweiler, Germany); Schubert et al. 2020 [15]: 0.05 ± 0.01
µm (PalaXpress ultra Kulzer, Hanau, Germany)
Schubert et al. 2021 [15]: 0.04 ± 0.01 µm (Erkodur, Erkodent
Pfalzgrafenweiler, Germany), Schubert et al. 2021 [15]: 0.05 ± 0.01
µm (PalaXpress ultra; Kulzer, Hanau, Germany)
Steinmass et al. 2018 [14]: 0.55 ± 0.14 µm Candulor Aesthetic
Red: Candulor AG, Glattpark, Germany)

Injection-molded technique:
Sultana N et al. 2023 [16]: 0.06 ± 0.02 µm (SR Ivocap High
Impact; Ivoclar Vivadent AG, Schaan, Liechtenstein)
Abuzar MA et al. 2010 [17]: 0.99 ± 0.12 µm before polishing
(Vertex RS, Vertex-Dental BV, ZeiIthe Netherlands) which was
reduced more than 20 times to 0.04 ± 0.007 µm after polishing.

CAD/CAM PMMA:
Steinmassl et al. 2018 [14]: SFE mean values between 31.82 and
33.68 mJ/m2 for all the CAD/CAM dentures: AvaDent Digital
Dentures (AD; Global Dental Science Europe BV, Tilburg, the
Netherlands); Baltic Denture System (BDS; Merz Dental GmbH,
Lütjenburg, Germany); Vita VIONIC (VV; Vita Zahnfabrik, Bad
Säckingen, Germany); Whole You Nexteeth (WN; Whole You Inc.,
San Jose, USA); Wieland Digital Dentures (WDD; Wieland Dental
+ Technik GmbH & Co. KG, Pforzheim, Germany/Ivoclar
Vivadent AG, Schaan, Liechtenstein)
Steinmass et al. 2018 [14]: 66.62 ± 3.02 mJ/m2 WN with coating.
Schubert et al. 2020 [15]: 68.44 ± 1.98 mN/m (V-Print splint Voco,
Cuxhaven, Germany); Schubert et al. 2020 [15]: 69.81 ± 2.16
mN/m FREEPRINT ortho 385 Detax, Ettlingen, G); Schubert et al.
2020 [15]: 70.86 ± 0.31 mN/m Dental LT Clear Formlabs,
Somerville, MA, USA); Schubert et al. 2020 [15]: 65.31 ± 0.88
mN/m (M-PM crystal Merz Dental, Luetjenburg, Germany. 63.66
± 3.09 mN/m Therapon Transpa Zirkonzahn, Gais, Italy)

Conventional heat-polymerized PMMA:
Cabanillas B et al. 2021 [18]: −40.3 ± 0.3 N/m (PMMA; Vitacryl;
A. Tarrillo Barba, Lima, Peru)
Cabanillas B et al. 2021 [18]: −39.5 ± 0.3 N/m (PMMA; Triplex;
Ivoclar Vivadent, Ellwangen, Germany)

Steinmassl et al. 2018 [14): −33.00 ± 0.97 mJ/m2 conventional
heat-polymerized resin (Candulor Aesthetic Red; Candulor AG,
Glattpark, Germany)
Schubert et al. 2021 [15]: −62.67 ± 3.43 mN/m Erkodur.
Erkodent, Pfalzgrafenweiler, Germany)
Schubert et al. 2021 [15]: −65.02 ± 2.41 mN/m PalaXpress ultra;
Kulzer, Hanau, Germany)
A decrease in SFE energy was observed for denture acrylic resins
after storage in substances for the hygiene of dentures; calculated

values of SFE (42.2–46.0 mJ/m2) showed the hydrophobic
character of the surface and may increase bacterial adhesion
(Rutterman 2011 [9]).
Incubation conditions such as saline solution and substances for
the hygiene of dentures had no significance impact on the SFE
value. Liber-Kne’c, 2021 [10].
Gad MM et al. 2022 [19]: low SFE of denture base resin
(hydrophobe)

CAD/CAM PMMA:
Osman RB et al. 2023 [20]
Schubert et al. 2018 [15]: in vitro CAD/CAM, 3D printing and
milling increased the adherence of C. albicans compared to
conventional manufacturing

Conventional heat-polymerized PMMA:
Cabanillas B et al. 2021 [18]: no difference between tow PMMA,
the adhesion per cell/field of C. albicans, Vitacryl (A. Tarrillo
Barba, Lima, Peru) presented 15.7 ± 1.1, N/m Triplex (Ivoclar
Vivadent, Ellwangen, Germany) had 16.7 ± 2.3 N/m.

CAD/CAM PMMA:
Steinmass et al. 2018 [14]: CAD/CAM dentures had smoother
and more hydrophilic surfaces than conventional dentures; there
was no difference in their free-surface energy except after coated
dentures. Below the Ra threshold of 0.2 µm there was a slightl
but insignificant correlation between Ra and microbial adhesion
(C. albicans and S. mutans).

Conventional heat-polymerized PMMA
Moslehifard E et al. 2022 [21]: Injection vertex acrylic resin
(Vertex Castaravia, Vertex Dental Zeist, the Netherlands)
improved the decreased surface roughness of the denture base.
Bacterial adherences decreased compared with the conventional
method. (Vertex dental, Ist, the Netherlands)
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Table 1. Cont.
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PA Abuzar MA et al. 2010 [17]: 1.11 ± 0.17 µm (Flexiplast, Bredent

GmbH & Co KG, Senden, Germany)
Sultana N et al. 2023 [16]: 0.19 ± 0.01 (Macro Flexi Dental Resin;
Macro Dental World Pvt. Ltd., Jalandhar, Punjab, India)

Takabayashi 2010 [22]: hydrophilic nature Lucitone FRS. Freitas-Fernandes 2014 [23]: highest C. albicans adherence on
polyamide (Flexite MP/PMMA (Acron MC).

Sultana et al. 2023 [16]: The highest microbial adhesion was
observed in injection-molded polyamide/PMMA.

PEEK Benli M et al. 2020 [12]: 0.13 ± 0.01 µm (PEEK 100%; Amann
Girrbach AG, Koblach, Austria)
Batak B et al. 2021 [24]: Milled 100% PEEK were above 0.2 µm
before and after polishing (Coprapeek; White Peaks Dental
Systems GmbH & Co KG)
Vulović S et al. 2022 [25]: Comparing PEEK (breCAM.BioHPP;
Bredent group, Senden, Germany) and other CAD/CAM
materials showed that samples of PEEK were slightly rougher
than samples of PMMA. The reason for this could be related to
the ceramic particles added to PEEK.

Hirasawa M et al. 2018 [26]: PEEK with lower SFE was
hydrophobic and facilitated hydrophobic bacterial growth.

da Rocha LGDO et al. 2022 [27]: In vitro, hydrophobic C albicans
facilite sessile yeast formation on the surface of PEEK/titanium
alloy.

D’Ercole S et al. 2020 [28]: PEEK showed antiadhesive and
antibacterial properties between 24 and 48 h against oral bacteria
such as Streptococcus oralis.
Ichikawa, T et al. 2019 [29]: Only one report showed clear plaque
accumulation on the surface of claps PEEK after 2 years.
Barkamo S et al. 2019 [30]: PEEK Ra of blasted surface > polished
surface and facilited the adherence of bacteria, including
Streptococcus sanguinis, Streptococcus oralis, and
Streptococcus gordonii.

PMMA, polymethyl methacrylate; PEEK, polyether ether ketone; PA, polyamide; µm, micrometers. Higher SFE, improved wettability, and diminished CA reduce the adherence of C.
albicans. A low value of SFE is sought to resist plaque in in vitro studies; conversely, high-energy surfaces collect more plaque and select specific bacteria. PMMA (injection-molded
technique) showed better result than PA and PEEK for Ra, SFE, and bacterial adherence. A decrease in surface energy SFE was observed for denture acrylic resins after storage in denture
hygiene substances, but calculated SFE values (42.2 to 46.0 mJ/m2) showed that they were hydrophobic.

Table 2. Different polishings of the polymers of the prosthetic base (mechanical polishing and/or chemical polishing in in vitro studies).

Polymers Different Brands of Resin

Mechanical Polishing (MP)
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Chemical Manually Polishing (CP)
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Findings and Results µm

PMMA
1—Heat-cured (HC) PMMA (Vertex RS
Dentimex, the Netherlands);
2—prepolymerized block of CAD/CAM
(Polident d.o.o. Volčja Draga 42, Sl-5293 Volčja
Draga, Slovenia)

Polishing wheels, felt cones with pumice
slurry, rubber polishers with RHPL and
universal polishing paste (loose abrasives
(aluminumoxide-Al2O3) in paste, Ivoclar
Vivadent, Schaan, Liechtenstein), K50

Immersing them in a preheated jar at 75 ± 1
◦C containing MMA monomer (Lang Dental
Mfg. Co., Wheeling, IL, USA).

1—Heat-cured PMMA denture base material
in both methods showed the highest mean Ra
value (2.44 ± 0.07 and 2.72 ± 0.09 for MP and
CP, respectively); 2—CAD/CAM denture base
material showed the lowest mean values (1.08
± 0.23 and 1.39 ± 0.31 for MP and CP,
respectively) [31].
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Table 2. Cont.

Polymers Different Brands of Resin
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Findings and Results µm

PMMA
1—Heat cured (Probase Hot, Ivoclar Vivadent
Inc., Schaan, Lichtenstein); 2—Probase Cold
(cold-curing denture base, Ivoclar Vivadent
Inc., Lichtenstein); 3—Palapress (Heraeus
Kulzer, Hanau, Germany); 4—SR Ivocap
(heat/pressure-curing (Ivoclar Vivadent Inc.,
Lichtenstein)

Polished with a mechanical milling system.
The working tool speed was 5000 rpm as it
progressed in the horizontal direction.

Manually polished.
The polishing steps were the steps of ISO
20795 standard [32]

The Ra for the manually polished samples was
globally significantly higher than for the
mechanically polished samples [33].

1—heat-cured acrylic resin (Lucitone 199,
Dentsply International, York, PA, USA);
2—auto-cured (AC) acrylic resin (Dentsply
International Inc, York, PA, USA).

MP was performed with a felt-cone with
pumice slurry and a wet felt-cone with caulk
powder and water.

After finishing, the HC and AC specimens
were immersed in MMA monomer heated
approximately to 75 ◦C ± 1 ◦C for 10 secoIds.

The Ra in order of decreasing values were
CP-HC: 1.41, CP-AC: 1.34, MP-AC: 0.73, and
MP-HC: 0.63. MP was the most effective
polishing technique for HC and AC resins [34].

1—HC: (Lucitone, Dentsply International Inc.,
York, PA, USA); 2—LC (light cured) acrylic
resin (Eclipse, Dentsply Interna, Inc.). Both HC
and LC prealably polishing was carried out
with 360-grit sandpaper mounted on a lathe.

Performed with an automatic polishing
machine (The Wirtz, Jean Wirtz, Dusseldorf W,
Germany) for 2 min, under 50 rpm and 500 g
of load with RHPL.

Performed by immersing the HC and LC
specimens in Jet Seal Liquid (MMA at 75 ± 1
◦C; Lang Dental Mfg. Co., USA).

RHPL, UPP, and K50 agents produced
superior surface smoothness for all acrylic
resin specimens and a mean Ra significantly
below the threshold Ra of 0.2 µm. MP was the
most effective polishing technique [35].

Three HC acrylic resin materials (1—DPI,
2—Meliodent, 3—Trevalon Hi) were grouped
as Group A (unfinished), Group B (finished),
Group C (polishing paste), Group D (polishing
cake), and Group E (pumice and gold rouge).

Materials used: universal polishing paste
(Ivoclar), polishing cake (Bego), pumice
(micro-white, Asian chemicals), and gold
rouge (Bego). Instruments used: felt cone, soft
cloth wheels (which were prepared), polishing
unit (Kavo), and a timer.

NR Smoother surfaces were achieved with
Trevalon HI, Meliodent, and DPI. The best
results among the polishing materials came
from the polishing paste, followed by the
polishing cake, pumice, and gold rouge [36].

CAD/CAM, HC, acrylic resin
CAD/CAM dentures (1–5) and conventional
dentures (6). 1—standardized denture resin
specimens: AvaDent Digital Dentures (AD;
Global Dental Science Europe BV, Tilburg,
Pays-Basque); 2—BalticDenture System (BDS;
Merz Dental GmbH, Lütjenburg, Germany);
3—Vita VIONIC (VV; Vita Zahnfabrik, Bad
Säckingen, Germany); 4—Whole You Nexteeth
(WN; Whole You Inc., San Jose, CA, USA);
5—Wieland Digital Dentures (WDD; Wieland
Dental + Technik GmbH & Co. KG);
6—Pforzheim, Germany/Ivoclar Vivadent AG,
Schaan, Liechtenstein, with conventionally
manufactured denture surfaces
(control group).

NR All dentures were manually finished. The
mucosal surfaces were left unfinished and
were examined.

All CAD/CAM dentures exhibited smoother
and more hydrophilic surfaces than
conventional dentures. Significant differences
were found for AD, VV, WN, and WDD
compared to the control group [14].
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Findings and Results µm

PMMA

CAD/CAM, HC, acrylic resin
1—CAD/CAM 3D-printed resin (3D)
(CediTEC DB; VOCO GmbH, Germany);
2—CAD/CAM-milled resin (M) (V—Print
dentbase; VOCO GmbH, Cuxhaven,
Germany); 3—heat-polymerized resin (HP)
(Probase® Hot; Ivoclar Vivadent,
Liechtenstein); 4—autopolymerized resin (AP)
(Probase® Cold; Ivoclar Vivadent,
Liechtenstein); 5—injected molded resin (IM)
(iFlexTM; tcs®, Signal Hill, CA, USA)

Mechanical technique with the Jota® 1877
denture polish kit (Jota AG, Rüthi,
Switzerland) protocol.

Manual technique with the Jota® 1877 denture
polish kit (Jota AG, Rüthi, Switzerland)
protocol.

The resins submitted to manual polishing
showed significantly lower mean surface
roughness values than the control resin.
CAD/CAM-milled acrylic resins
demonstrated lower values of Ra compared to
the conventional PMMA [37].

PA
1—HC PA (Vertex RS Dentimex, the
Netherlands); 2-(Breflex, Bredent, Gmbh.
Co.K.G. Senden, Germany); 3-CAD/CAM.
(prepolymerized block acrylic resin denture
base material (Polydent d.o.o. Volčja Draga 42,
Sl-5293 Volčja Draga, Slovenia)

MP for HC, PA, and CAD/CAM specimens
was performed using polishing wheels, felt
cones with pumice slurry, rubber polishers
with RHPL and universal polishing paste, and
Abraso-Star K50 (K50) with light pressure for
15 s.

CP for HC, PA, and CAD/CAM specimens
was performed by immersing them in a
preheated jar at 75 ± 1 ◦C for 10 s.

PA surface roughness values: 1.77 ± 0.06 (MP)
and 2.18 ± 0.10 (CP). PA contact angles: 67.90
± 2.56 (MP) and 71.40 ± 2.50 (CP)
(hydrophilicity). PA surface roughness values
> CAD/CAM, PMMA values [31].

Polyamide (Valplast, Valplast International
Corp., Long Beach, NY, USA)

NR The polyamide was polished with
Tripoli-Paste and Val-Mirror-Shine polishing
paste (Weithas Corp., Lütjenburg, Germany).

Ra (PA 0.20 µm) did not change significantly
after thermocycling or storage. Neither Ra nor
the elasticity of PA was altered by artificial
aging [38].

PEEK
High-purity (non-filler type) PEEK (JUVORA
Dental Disc Invibio Biomaterial Solutions,
Lancashire, UK)

NR No additional polishing (NT), polishing using
a Iber point (C), polishing using “silky shine”
and a soft brush (S), polishing using “aqua
blue paste” and a soft brush (A), protocol C
followed by protocol S (CS), protocol C
followed by protocol A (CA), protocol C
followed by protocols S and A (CSA).

The PEEK polishing”chairside protocol
produced clinically acceptable surface
roughness, achieved using a brush and a mild
polishing agent for more than 3 min [39].

PEEK (PEEK-IOF) BioHPP inorganic ceramics
and metal oxides

NR Polished with 1000-grit SiC paper.
A high-gloss finish was added using a 1 µm
diamond paste applied with a cotton buff.

PEEK displayed the greatest change (increase)
in contact angle values after air-polishing
treatment. However, this effect could be
prevented by veneering PEEK-IOF with
DMA-nano components [40].
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Findings and Results µm

PEEK
1—PEEK bioHPP (bredent Gmbh & Co. Press
mode); 2—autopolymerizing denture PMMA
(uniling PF 20, bredent Gmbh & Co. KG). All
specimens were prepolished with a fine
pumice stone (ERNST HINRICHIS Dental
GmbH) and goat-hair brushes (bredent GmbH
& Co. KG, Weissenhorner Str. 2, 89250
Senden, Germany).

Four laboratory polishing methods.
1—ABR: Abrasive polishing paste (bredent
GmbH & Co. KG); 2—OPA: Opal L polishing
paste (Renfert GmbH); 3—CER: Ceragum
silicone polisher (bredent GmbH & Co. KG);
4—DIA: Diagen-Turbo, Ginder (bredent
GmbH & Co. KG).

Three chairside methods:
1—SUP: Super-snap, polishing discs (Shofu
dental GmbH); 2—PRI: prisma gloss, polishing
paste (Dentsply De trey GmbH); 3—ENH:
enhance, polishing system (Dentsply
De trey GmbH).

Chairside polishing methods resulted in lower
SR than laboratory-based methods. Both the
SUP and PRI protocols led to PEEK surfaces
with lower SR than ENH [41].

HC, heat-cured; LC, light-cured; MP, mechanical polishing; CP, chemical polishing; PMMA, polymethylmethacrylate resin; MMA, methyl-methacrylate monomer; DMA, dimethyl-
methacrylate; PA, polyamide; PEEK, polyetheretherketone; SEM, scanning electron microscopy; AC, auto-cured denture base acrylic resins; RHPL, Resilit High-luster Polishing Liquid;
UPP, universal polishing paste; K50, Abraso-Star K50; SR, surface roughness; AD, AvaDent; BDS, Baltic Denture System; VV, Vita VIONIC; WN, Whole You Nexteeth; WDD, Wieland
digital dentures; DPI, dental promotion and innovation; CAD/CAM, computer-aided design/computer-aided manufacturing. CAD/CAM-milled acrylic resins had lower Ra values
than heat-cured PMMA. Mechanical polishing of PMMA was superior to chemical polishing. Polishing the PAs made it possible to obtain a roughness close to 0.2 µm. Chairside
polishing of PEEK also made it possible to obtain clinically acceptable values.
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Table 3. Frequency and protocol for cleaning various polymer denture bases.

Polymer

Frequency of Use of Denture
Cleansers (DC) against
Candida spp. Adhesion
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Immersion of Denture in
Chlorhexidine Digluconate

(CHG)
Sodium Hypochlorite (NaOCL)

Polymers 2024, 16, x FOR PEER REVIEW  12  of  13 
 

 

 

   PMMA The daily use of a DC overnight
significantly reduced the total
bacterial count [42–46].

The biofilm model on PMMA
remained largely unaffected by
brushing only [45]. Before
overnight (8 h) storage
conditions for limited
colonization of C. albicans it is
desirable to brush or use an
alkaline peroxide-based
tablet [47].

No statistically significant
difference in total bacterial level
between ultrasonic cleaning and
brushing was found [44]. The
adjunctive use of
cetylpyridinium chloride with
ultrasonic cleaning did not yield
additional benefits [46].

Tow conventional heat-cured
acrylic resins (1—QC-20
(Dentsply, Addlestone, UK),
2—Acron-hiTM (Kemdent,
Swindon, UK) and one
polyamide (DeflexTM) were
tested with the following
solutions: 1—Polident 3 min™,
2—Corega™, and
3—Fittydent™. Polident 3
minTM and CoregaTM tablets
should be used for all denture
resin types, whereas
FittydentTM should only be
proposed for those who use
Deflex™ [48]. HC PMMA resin
(Vertex-DentaIV., Zeist, the
Netherlands) was subjected to a
4-week incubation with a daily
change of 4 solutions
(1—Clene® (Bitec global group,
Japan), 2—Polident® (PTI
Royston LLC, USA), 3—3%
sodium bicarbonate (NaHCO3,
Tianjin Lisheng Pharmaceutical
Co. LTD, China),
4—phosphate-buffer Saline
(PBS, Gi bco® Invitrogen™,
Cambridge, MA, USA)).
Clene®, and Polident®

decreased fungal growth by
approximately 98% and 100%,
respectively [49].

Disc of 3D-printable resin
(NextI Denture 3 D+,
Soesterberg, The Netherlands)
mixed with
phytochemical-filled
microcapsules and immersed in
an effervescent tablet (Polident
Quick, GSK Ireland) seemed to
be a more effective inhibition of
fungal cell growth compared
with sterile tap water storage
[50]. The treatment with 1%
grapefruit seed extract (GSE) for
5 min almost eliminated the
biofilm that formed on the resin
[51]. Denture base PMMA
(ACRON, GC, and Tokyo,
Japan) immersed in ozone
ultrafine bubble water (OUFBW)
inhibited the early formation of
C. albicans biofilms [52].

Specimens (acrylic resin
Lucitone 550, Dentsply Ind.
Com; Ltd.a., Petropolis, RJ,
Brazil) were immersed for three
cycles of 8 h in 2% CHG or 1%
NaOCL. Residues of CHG were
cytotoxic to gingival fibroblasts
compare toIaOCL [53]. The
in vitro effectiveness of five
denture cleansers (Fittydent
tablets, 2% CHG, 0.2% CHG,
0.5% and 1% NaOCL), was
tested for microbial adhesion to
the surface of base resins for
conventional and CAD/CAM
(milling and 3D printing)
dentures: 1—conventional
(Meliodent, Kulzer GmbH;
Heraeus Kulzer Germany);
2—milling, Zintec CAD
software (Wieland Digital
Denture (Danbury, CT, USA));
and 3—3D-printed Denture I
NextDent, Soesterberg, the
Netherlands). The denture
cleansers increased the
roughness of all PMMAs.
Concerning cleansers, the best
result was obtained with 2%
CHG and 0.5% and 1%
NaOCL [54].
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   PA After 20 days immersed in
Corega Protefix, and Valclean,
the highest surface roughness
was observed in the Valplast
polyamide resin. No difference
was observed in PMMA resins
(Paladent) [55].

Among the three commonly
used DCs with different pH
(Valclean—acidic,
Clinsodent—alkaline, and
Polident—neutral), Valclean
showed statistically significant
greater stain removal efficiency
than Polident or
Clinsodent [56].

Valplast was found to have a
significantly lower gloss and a
higher roughness than Paladon
65 before cleansing. After
cleansing (control; Val-Clean,
peroxide cleanser; Corega
Extradent, peroxide cleanser),
the gloss of both materials
decreased and only the
roughness of Paladon 65
increased [57,58].

The tested cleanser tablets were
more effective for PMMA resin
than for thermoplastic
polyamide resin [59]. For
patients who have
polyamide-based prosthesis, the
use of citric acid-based cleansers
may be more recommended
than sodium perborate [59].

Compared with Curaprox
(eucalyptus oil, Curaprox, UK,
Huntingdon, UK) the
effervescent tablets (Corega,
Protefix, Perlodent) significantly
altered the surface hardness and
roughness of the polyamide
(Deflex-Nuxen SRL, Buenos
Aires, Argentina) [60].

Thermo-injected polyamide
denture
resin base colonized with C.
albicans and disinfected with
0.12% chlorhexidine
and Neem extract demonstrated
the highest antimicrobial
efficacy, with decreased surface
roughness and no alteration in
denture hardness [61].
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   PEEK Daily DC recommended Individual prophylaxis can be
conducted with toothbrushes.
For professional prophylaxis,
air-abrasion devices using
gentle powders are effective.
Laboratory protocols should
include gentle cleaning methods
like ultrasonic bath [41].

PEEK prophylaxis in laboratory
protocol includes gentle
cleaning methods like ultrasonic
bath [41].

Four dentures (1—SR Triplex
Hot heat-polymerized PMMA
(Ivoclar Vivadent AG., Schaan,
Leichenstein); 2—SR Triplex
cold auto-polymerized PMMA
(Ivoclar Vivadent AG., Schaan,
Leichenstein); 3—Deflex
Injection molded polyamide,
Nuxen —L, Buenos Aires,
Argentina); 4—unfilled PEEK
CAD/CAM Juvora Dental Disc
(Juvora, London, UK) were
tested.
Three denture cleansers (DCs)
after immersion for 120 days in
a chemical solution applied to
PEEK and other denture base
materials (DBMs) on long-term
water sorption and solubility
were compared: Corega tablet
(CT), Protefix tablet (PT)
(Queisser Pharma, Flensburg,
Germany), and 1% sodium
hypochlorite (NaOCl) solution
(SH) (Aklar Kimya, Ankara,
Turkey), as well as a control
(distilled water, DW). The PEEK
group showed lower mean
solubility values in DC than the
other DBM groups.
Auto-polymerized and
injection-molded polyamide
showed higher solubility [62].

Higher numbers of Strep. oralis
and C. albicans on PEEK
specimens confirmed the impact
of the higher surface roughness
and contact angle values on the
microbial adhesion and
described PEEK as less
desirable than CoCr from a
microbiological perspective [63].

PEEK seemed to be more stable
against discolorations than
other denture resin materials.
Regarding the cleaning
potential, individual
prophylaxis can be conducted
with toothbrushes. For
professional prophylaxis,
air-abrasion devices using
gentle powders are effective.
Laboratory protocols should
include gentle cleaning methods
like ultrasonic bath. Regarding
the cleaning potential,
individual prophylaxis can be
conducted with toothbrushes.
For professional prophylaxis,
air-abrasion devices using
gentle powders are
effective [41,42].

PBS, phosphate-buffer saline; DC, denture cleanser; DCI, denture cleanliness index; CoCr, cobalt chromium; CFU, colony-forming units; GSE, Grapefruit seed extract; P, polident;
OUFBW, ozone ultrafine bubble water. Daily frequency protocol (DC with brushing) for cleaning denture is recommended for the three polymers. The cleaning tablets tested proved
effective for all PMMA and PEEK resins, whereas for the same result, thermoplastic polyamide resin required specific tablets. On the other hand, self-polymerized and injection-molded
polyamide showed higher solubility than PMMA. Concerning PEEK, the cleaning tablets were effective with low solubility. Generally speaking, denture cleansers increased the
roughness of all PMMAs. Concerning liquid cleansers, the best result was obtained with 2% CHG for CAD/CAM PMMA and 0.5% and 1% NaOCL for all PMMAs. Regarding
thermo-injected polyamide-based resins colonized by C. albicans, disinfection with 0.12% chlorhexidine demonstrated the highest antimicrobial level.
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Table 4. Comparison of different relining prosthetic base polymers (PMMA, polyamide, and PEEK).

Polymers Relining Materials Findings

Unique relining materials Two heat-cured acrylic dentures (PMMA)—Lang (Lang Dental
MFG Co., Wheeling, IL, USA) and VIx RS (Vertex Dental,
Zeist, the Netherlands)—were prepared in the dental laboratory.
Six silicone relining chairside self-cured materials were used: 1—Mucopren soft,
(Kettenbach, es chenburg, Germany); 2—Mucosoft (Parkell, NY, USA);
3—Mollosil® plus (Detax Ettlinghen, Germany); 4—Sofreliner Touch (Tokuyama,
Tokyo, Japan),; 5—GC Reline™ Ultrasoft (GC Dental Products Co, Tokyo, Japan);
6—Silagum automix comfort (DMG, Hamburg, Germany).
One self-curing (PEMA) chairside reline resin (Rebase II, Tokuyama, Tokyo,
Japan) was used.

The contact angle increased for the materials in the following order: PMMA,
PEMA, and silicone. The wettability of the denture relining except RebaseII and
Mollosil® plus was increased after water storage (24 h). The HC PMMA denture
base showed the highest wettability. It can be suggested that heat-cured PMMA
resin should provide superior denture retention and patient comfort than
self-cured PEMA and silicone denture relining material [64].

Conventional heat-polymerized PMMA
PMMA and PMMA MMA pretreatment

Soft liner type (silicone-based or PMMA-based) The highest bond strength was observed in samples with silicone-based soft
liners regardless of pretreatment. Silicone-based liners underwent adhesive
failures, whereas PMMA-based liners underwent cohesives failures. In vitro
exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA
resin, suggesting that MMA pretreatment is recommended for relining
procedures [65].

CAD/CAM PMMA
Dimethacrylate-based additively manufactured
PMMA-based conventionally fabricated denture-base resins

The tensile force applied to different materials was tested:
1—Heat-cured laboratory-side soft reliner;
2—Self-cured chairside soft reliner;
3—Self-cured chairside hard reliner.

The highest tensile bond strength was found between the conventional base and
the self-cured chairside hard reliner (but no significant results were found with
the laboratory-side reliner) [66].

CAD/CAM PMMA
3D-printed denture base by SLA method using DENTCA Denture Base II
(DENTCA Inc., Torrance, CA, USA)

Six surface treatment were applied to chairside relining materials with
Tokuyama Rebase II Normal (PEMA) (Tokuyama Dental Corp, Tokyo, Japan):
1—no surface treatment (control); 2—Tokuyama Rebase II Normal adhesive (A);
3—Rocatec pre–sandblasting (Al2O3-110 µm)) (P); 4—Rocatec Pre + Tokuyama
rebase II Normal adhesive (PA); 5—Rocatec Pre + ESPE silane (PS); 6—Rocatec
system (Rocatec Pre + Rocatec Plus (Silica Al2O3-110 µm) + ESPE Sil (PPS).

The best adhesive and cohesive strength was obtained with the Rocatec system
applied to a 3D-printed denture [67].

CAD/CAM PMMA
Conventional HC PMMA (ProBase Hot, Ivoclar Vivadent, Schaan,
Liechtenstein)
Milled Ivobase (Ivo-Base CAD for Zenotec, Wieland Dental, Pforzheim,
Germany)
Milled Ivotion (Ivotion A2/Pink V Denture Disc, Ivoclar Vivadent, Schaan,
Liechtenstein)
3D-printed group (NextDent DentuID+, NextDent B.V., Soesterberg, the
Netherlands)

Conventional relining PMMA resin (ProBase Cold, Ivoclar Vivadent, Schaan,
Liechtenstein) monomer of the reliner (ProBase Cold Monomer, Ivoclar Vivadent,
Schaan, Liechtenstein)

The shear bond strength of relined 3D-printed resins for a complete denture was
lower than relined resins employed for CAD/CAM milling and conventional
HC. When considering 3D-printing for CRDP fabrication, it is advisable to use it
in clinical situations where frequent denture relining is not anticipated [68].

POLYAMIDE
Thermoplastic polyamide resin (Biotone; BT), injection mold (High Dental,
Osaka Japan)
Conventional heat-polymerized PMMA (Paladent 20; PAL20. Heraeus Kulzer,
Hanau, Germany).
Thermoplastic acrylic resin (Acrytone; ACT) (High Dental, Osaka, Japan)

Tow chairside relining resins:
Tokuyama Rebase II; TR II. PEMA (autopolymerizing polyethyl methacrylate)
(Tokuyama Dental corp. Tokyo, Japan);
Mild Rebaron LC, MRL, a light-activated PEMA (GC, Tokyo, Japan).

Among the three denture base resins, polyamide resin exhibited lower bond
strength. However, no significant difference was observed for thermoplastic
polyamide resin [69].
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Table 4. Cont.

Polymers Relining Materials Findings

POLYAMIDE/PMMA/CAD/CAM
One polyamide (Vertex Thermosens, the Netherlands)
One conventional PMMA (Meliodent HC, Kulzer, Hanau, Germany)
Three PMMAs, CAD/CAM denture base material/subtractive
(Ivoclar Vivadent, Schaan Liechtenstein)
Polident pink disc basic, subtractive (Volcja draga, Slovenia)
Anaxdent pink blank (U. Anaxdent GmbH, Germany)
Two PMMAs CAD/CAM denture base material/additive (Freeprint Denture,
Imprimo, Germany)
Imprimo LC Denture, Iserlhon, Germany

Two soft denture liners:
Soft denture liner, acrylate-based, direct relining method (GC Europe,
Leuven, Belgium);
Reline II soft, silicone-based, direct relining method (GC Europe,
Leuven, Belgium).

Relining polyamide denture base materials showed lower values of tensile bond
strength with silicone-based soft liner than HC PMMA and subtractive denture
base materials. The basic Polident pink CAD/CAM disc showed the highest
tensile bond strength value in combination with the silicone-based soft liner [70].

PEEK Surface treatment of PEEK begins with sulfuric acid etching, which promotes the
highest bond strength, followed by air abrasion of the alumina particles. Then,
the use of specific adhesives containing MMA, PETIA (pentaerythritol
triacrylate), and dimethacrylates is recommended [71].

Sulfuric acid and alumina-particle air abrasion were the most effective surface
treatments for promoting adhesion to PEEK. For clinical use, air abrasion with
alumina particles can be considered the preferred solution [71]. In vitro PEEK
presented a mixed type of failure involving adhesion and cohesion [72].

CRDPs, complete removable dental prosthesis; PMMA, polymethylmethacrylate resin; PA, polyamide; PEEK, polyetheretherketone; SR, surface roughness; PBS, phosphate-buffered
saline; SBS, shear bond strength; RMGI, resin-modified glass ionomer cement. The best relining was obtained with conventional thermoset PMMA and a CAD/CAM-milling block. A
specific system is necessary to obtain adhesive and cohesive strength with a relining 3D-printed denture base. PAs have low adhesion strength. PEEK is still under investigation, requires
specific preparation, and exhibited a mixed type of failure involving adhesion and cohesion.
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Table 5. Synthesis of the results concerning polymers (PMMA, PA, PEEK) for denture microbial plaque formation, polishing, relining, and hygiene.

Polymers Microbial Adherence
Treshold SFE: 40 mJ/m2

Polishing
Treshold RA: 0.2 µm

Antimicrobial
Nanoparticules Relining Cytotoxicity Hygiene General Condition

PMMA Lower Ra. Conventional
injection-molded PMMA
technique [16].
Sultana N et al. 2023 [16]:
0.06 ± 0.02 µm (SR Ivocap
High Impact; Ivoclar
Vivadent AG, Schaan,
Liechtenstein) CAD/CAM
acrylic resins demonstrated
lower values of Ra
compared to conventional
PMMA [37].

The
antifungal/antimicrobial
effect of the material
incorporated into the resin
may have had a superior
effect in preventing DS over
simply coating the surface
of the denture base [73].

The highest tensile bond
strength was between the
conventional base and the
self-cured chairside hard
reliner [66]. The shear bond
strength of the relined
3D-printed resins for a
complete denture was
lower than the relined
resins employed for
CAD/CAM milling and
conventional HC [68].

Lower level of cytotoxicity PMMA is easy to maintain
in the long term.
CAD/CAM-milled
prostheses are suggested in
the presence of denture
stomatitis due to reduced
attachment of Candida
albican [74].

Suitable for the majority of
clinical indications, and
small amounts of MMA for
hypoallergenics patients

Polyamide Higher Clinicaly level > PMMA Polyamide resin presented
more viable cells of Candida
albicans/PMMA [23].

Lower bond strengh Toxicity profile Difficult in the long term
while respecting the
manufacturer’s constraints

Temporary removable
prosthesis, Parkinson’s
disease, microstoma

PEEK Intermediate Chairside > laboratory
method

Chitosan-based hybrid
coatings on the PEEK
surface contributed to the
development of a
biocompatible material
(antibacterial,
anti-inflammatory) [75].

Still under investigation No evidence of cell damage
caused by PEEK [76,77].

Efficacity decrease on the
long term

Patients with low stress
tolerance and sensitivity to
metallic materials

Overall, PMMA presented advantages over PA and PEEK in most of the sections mentioned.
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4. Discussion

A removable prosthesis residing in the oral cavity exposes the existing planktonic
microbiota (bacteria, archaea, viruses, and eukaryotic organisms) to stress [78–80]. These
conditions are favorable for the growth of DMP [81–83]. Quantitatively, this biofilm is
defined as a community of more than 1011 microorganisms per gram of dry weight [84,85],
attached to the extrados and intrados of the surface of the prosthesis and sur-rounded by
an extracellular matrix (ECM) produced by the bacteria and Candida themselves [86,87].
This matrix, composed of macromolecules such as exopolysaccharides, proteins, and
DNA [88], provides structural integrity to the biofilm and offers a physical barrier that may
be impenetrable to drugs.

In contact between the soft tissues, living tissue and the inert polymer provide another
favorable environment in the oral cavity for microbial colonization [89–91]. At the level of
the intrados, this decreased space leads to a reduction in oxygenation, salivary flow, and
pH, which promotes the activity of secreted aspartyl proteinases (SAPs) in the matrix. This
environment plays a central role in the pathogenicity of Candida [92–94].

The maturation of the C. albicans biofilm proceeds according to the same steps but
more slowly than the bacterial biofilm. The presence of hyphae and pseudohyphae is the
main difference between the two biofilms. Recent targeted studies have explained the initial
adhesion to the prosthetic surface, the subsequent development of mature biofilms [95],
the formation of the extracellular matrix, and finally, the dispersal mechanism [96–98]
(Figure 1).
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Figure 1. Biofilm envelops the denture in distinct stages. In the transition from the planktonic,
free-floating state to the sessile state, attached microorganisms begin radically changing their gene
and protein expression profiles.

Up to three quarters of patients who wear removable prostheses can develop an
inflammation called “denture stomatitis” (DS). This pathology is characterized by an
imbalance of the microbial flora or dysbiosis, resulting simultaneously in an abundance of
opportunistic pathogens such as C. albicans [99,100], the differential proliferation of certain
bacterial species determined using culture and next-generation sequencing (NGS) [101–109],
and a decrease in microbial diversity [102–104].

Dental surgeons aware of the risk posed by this infectious condition to vulnerable
patients should regularly check the oral health of users of removable prostheses [110]. For
this, although DMP cannot be totally eradicated, it can be controlled through oral hygiene
practices that include a daily regimen of brushing the mucous membrane and the denture,
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followed by rinsing with an antiseptic mouthwash [111–113]. Maintaining a healthy state
helps to avoid the transition from a harmless commensal to a pathogen.

An oral hygiene regime adapted to the different polymers requires knowledge of the
particularities of the materials used as well as the effects of their modifications (polishing
and relining) on the oral microbiota [114]. The objective of this review is to provide an
update of the specificities of the polymers (PMMA, PA, and PEEK) used in prosthetic bases
to help facilitate the maintenance of a healthy oral environment.

Several current precautions and methods make it possible to limit the drift of the oral
microbiota toward dysbiosis in wearers of removable prostheses.

4.1. Polymers in the Oral Environment

Once it is introduced in the mouth, a denture is rapidly coated by saliva and consti-
tutes the ideal platform for dynamic microbial growth of DMP [115–117]. These biofilms
represent a wide range of microorganisms, comprising all three domains of life. Their
proximity to the denture polymer offers numerous possibilities for physical and chemical
interactions between different species and kingdoms (Delaney, C.; 2019) [118]. On the other
hand, the interaction between the prosthetic base and the biofilm on the surface of the oral
mucosa can favor the release of potentially toxic substances from the polymer that in turn
interact with the host tissues [119].

Biofilm development under an acrylic denture increases the risk of DS fivefold com-
pared with a metallic denture [120]. Another drawback associated with poor denture
hygiene is bad breath, which can be the cause of patient discomfort [121]. These bad odors
are related to the microbial plaque of the denture [122]. Studies using new technologies
(next-generation sequencing, NGS) in the field of bacterial identification highlighted the
emergence of the phyla Firmicutes and Fusobacteria and the genera Leptotrichia, Atpobium,
Megasphaera, Oribacterium, and Campylobacter as being associated with the bad smell of
prostheses. Here, good oral hygiene is essential to combat bad odors [123].

In DS, lack of or ineffective brushing in the absence of a cleanser promotes the rapid
growth of biofilm on the surface of prostheses [9,10]. Clinically, the selection of polymer
used for the prosthetic base must consider the adhesion of microorganisms. This colo-
nization promotes the penetration of the microbiota and reduces the fracture resistance of
prostheses [124].

4.1.1. Polymer and Microbial Adhesion

A roughness (Ra) promotes adhesion and bacterio-fungal aggregation on acrylic
resins [125]. However, some authors point out that the initial colonization does not differ in
accordance with the range of dental materials [126,127]. In the same way, research has not
highlighted a link between the roughness of the surface, the hydrophobicity/hydrophilicity
of the acrylic resin, and the metabolic activity of adherent C. albicans cells [128]. Aggregation
of C. albicans with other microorganisms and the influence of saliva, through its antimi-
crobial power, flow, and composition, seem to dominate the conditions of adhesion to the
surface of a prosthesis (roughness and SFE) [129]. For other authors, Candida adhesion was
strongly affected by Ra, saliva, and bacteria, but not by SFE [125]. Despite this discrepancy,
the results suggest that a reduction in the C. albicans biofilm may be related to modifications
of the surface of the PMMA thanks to the coating. The coating promotes hydrophilicity and
in addition to the influence of roughness [130]. In addition, the DMP is subject to various
mechanical constraints such as food tenacity, temperature fluctuations, chewing forces, and
the load of the prosthetic device [104–131]. Microbial adhesion has been studied in relation
to PMMA, in particular, and much less so in relation to PA and PEEK.

4.1.2. PMMA and Adhesion

PMMA is naturally hydrophobic [19] Gad MM, 2022, but this material, which is
used in the composition of dentures, contains many carboxylate and methyl ester groups.
This chemical composition, on the one hand, accounts for the hydrophilic nature of the



Polymers 2024, 16, 40 17 of 31

dentures and, on the other hand, produces a large amount of SFE. In vitro, the adhesion
of Pseudomonas fluorescens proved to be favorable to hydrophobic surfaces, with the
lowest adhesion threshold for a roughness of 0.4 µm. Although the weakest adhesion of
mammalian cells occurred at a roughness of 0.1 µm, the latter was favored in the presence
of hydrophilic surfaces (PMMA) Choi SY, 2016 [132]. However, the variations in the
chemical composition of the material used for the denture base partly explain the disparity
in characteristics between the different brands of PMMA on the market Sipahi, 2001 [133].
Compared to the traditional fabrication method, acrylic resin injection offers a reduction in
the surface roughness of the prosthesis base as well as decreased bacterial adhesion [21]
Moslehifard E, 2022 (Table 1).

4.1.3. Polyamide and Adhesion

Analysis of the adhesion of microorganisms, in particular, yeasts, to PA remains very
limited. Nevertheless, an experiment conducted on the effect of a prosthetic cleanser on
the formation of a mycofilm on a PA resin (Flexite MP) and a polymethyl methacrylic resin
(Acron MC) showed that C. albicans had a significantly higher growth rate on PA than on
PMMA de Freitas Fernandes FS [134].

As a crystalline polymer, PA has better biocompatibility for patients who are allergic
to acrylic resins. But over time, PA has significant disadvantages, displaying high water
absorption, increased solubility, an overly rough surface, and bacterial contamination. In
addition, this material remains difficult to polish and may result in color deterioration
in the mouth Vojdani, 2015 [135]. Higher microbial adhesion was recently observed on
injection-molded PA than PMMA (Table 1) [16] Sultana, 2023.

In order to remedy this, minimal changes in the injection manufacturing protocol of
two PA prosthetic base materials were tested in vitro (Perflex Biosens (BS), Netanya, Israel
and VertexTM ThermoSens (TS), Soesterberg, The Netherlands. By slightly modifying the
melting temperature (5 ◦C) and pressure (0.5 bar), no improvement in the surface finish
was observed for Biosens, whereas for ThermoSens, the surface roughness was significantly
reduced Chuchulska, 2022 [136].

4.1.4. PEEK and Adhesion

As early as 2007, Kurtz et al. emphasized the non-allergenic properties of PEEK and
its low affinity for dental plaque. PEEK is considered hydrophobic and has a low SFE. As
a result, C. albicans adhesion is facilitated [27,137]. This was compared to the formation
of biofilm on the surface of different materials in vitro (zirconia, titanium, PMMA, and
PEEK). In their study, PEEK and PMMA yielded the same results but were linked to less
biofilm formation than zirconia and titanium. However, the surface condition of PEEK
was smoother than that of zirconia and titanium [138]. It has been reported that PEEK has
good biocompatibility in vitro and in vivo, causing neither toxic nor mutagenic effects nor
clinically significant inflammation. In addition, PEEK lends itself to sufficiently effective
polishing so as to delay the fixing of microbial plaque [139]. PEEK without any additives
is biologically inert and naturally hydrophobic when in contact with saliva. The 80◦–90◦

contact angle of saliva can be reduced by adding plasma coatings, which are effective
methods for modifying surface properties [140] to improve the hydrophilicity [138].

When comparing PEEK with other computer-aided design/computer-aided manufac-
turing (CAD/CAM) materials, PEEK samples are slightly rougher than PMMA samples.
The reason is linked to the ceramic particles that are added to PEEK [25] (Table 1).

4.1.5. Polymer and Accumulation of DMP

After the adhesion of the first colonizers on the denture surface, to preventively limit
the accumulation of microorganisms, and particularly of Candida and bacteria populations,
several parameters can be modified to facilitate the optimization of the manufacture of
polymers. The incorporation of antifungal agents into denture base resin may reduce the
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colonization of C. albicans [141]. There are few data on PAs and PEEKs, whereas PMMAs,
in contrast, have been the subject of numerous experiments (Table 3).

For example, nanoparticles (such as fluoridated apatite-coated titanium dioxide, FAp-
TiO2) in PMMA facilitate the production of reactive oxygen species by promoting the photo-
catalytic effect after irradiation, which neutralizes the attachment of C. albicans. This effect
is sought to facilitate the maintenance of removable prostheses in geriatric patients [142].
The incorporation of bioactive glass (BAG) in thermopolymerized or polymerized acrylic
resins at room temperature significantly lowers the adhesion of C. albicans. For both types
of polymerization, the hardness of acrylic resins is improved by adding BAG [140].

Another parameter can be modified to promote hydrophilicity to limit the adhesion of
C. albicans on an acrylic resin denture with photopolymerized coating [143]: Plasma treat-
ment of PMMA on the surface increases SFE, facilitates wettability, and lowers the contact
angle, all of which reduce the adhesion of C. albicans [144,145]. In contrast, trimethylsilane
coating increases hydrophobicity, reduces wettability of the denture base surface, and
inhibits the adhesion of C. albicans [146]. The TiO2 coating creates a super-hydrophilic
surface. It thus promotes wettability, which is essential for reducing Candida adhesion. The
implementation of the PMMA surface coating involves only moderate costs while preserv-
ing the properties of the original material [147,148]. Recently, to assess the effectiveness and
the antibacterial properties of a silver nanoparticle (NAg), a solution of NAg mixed with
acrylic acid and methyl methacrylate (MMA) monomer was tested (in vitro and in vivo on
animals) and compared with a PMMA solution without NAg. The results concerning the
state of the prosthetic surface, the mechanical properties, the antimicrobial effect of NAg,
the longevity, and the biological and toxic harmlessness of the NAg/PMMA prosthesis
base were superior to the PMMA base without NAg. However, clinical confirmation must
be provided by studies with humans [41–44,140,149–151].

4.1.6. Polishing to Limit Microbial Adhesion

The adhesion of early microbial colonizers is closely related to the finish of the den-
ture surface. This adhesion during the initial phase of microbial colonization on flexible
prostheses is similar to that of acrylic resin prostheses. This result was confirmed by a
laboratory study showing that acrylic resin and PA resin are easily colonized by Candida
species. However, the growth rate of this fungus is significantly higher on PA resin than on
PMMA (p < 0.001) [152].

Different tests of the surface condition of the material (polishing) have shown that
the polishing method alone (wood sandpaper: grit 180) is essential in terms of roughness
compared with the drying method of self-curing acrylic resin. Moreover, chemical polishing
(at 70 ◦C for 10 s) aggravates the roughness [74,153]. Regarding PMMA resin, the residual
monomer acts on the SFE by reducing adhesion and Candida growth [134]. For PA resin
(Breflex polyamide, Bredent, GmbH Co. KG, Senden, Germany) fabricated using the
injection-molding technique, no significant correlation was observed in contact angles for
mechanical polishing versus chemical polishing. This difference was related to the specific
physical properties of the materials used [31].

The design and manufacture of CAD/CAM prostheses machined from blocks of
polymerized PMMA under high temperature and high pressure led to a smoother surface
finish than PMMA-HC based on CAD/CAM prostheses [154]. As a result, for patients at
risk of Candida fungal infection, the surface properties of CAD/CAM PMMA represent a
possibility of reduced adhesion of this fungus (Table 2).

Quezada (2022) [37] and Corsalini (2009) [33], using the same in vitro mechanized and
manual polishing methods, attempted to standardize a polishing protocol. However, since
contradictory results were reported, with one favoring the manual method and the other
the mechanized method, new investigations have to be carried out.

An explanation for the contradictory results is offered by previous research. The
structure of PMMA directly after polymerization had a low initial roughness, and subse-
quent polishing made it easy to reach clinically acceptable values. On the other hand, PAs



Polymers 2024, 16, 40 19 of 31

were more difficult to polish due to their fibrous semi-flexible structure and low surface
hardness [155]. Although PEEK and PMMA have similar values of Vickers hardness, the
composition and the state of the surface roughness differed between the two materials [156].
Therefore, surface polishing that is specific to the two materials is required.

Thus, regarding the polishing of PEEK, Kurahashi et al. (2020) [39] suggest the use
of a soft brush coupled with a cleaning agent for more than 3 min to achieve clinically
acceptable surface roughness (Table 2).

Heimer et al. [41] compared the effects of laboratory and chairside polishing methods
on the surface roughness of PEEK and reported that chairside polishing of PEEK yielded
lower surface/laboratory roughness values (Table 2).

Fused deposition modeling of PEEK is one of the most practical additive techniques;
compared to other polymers, PEEK remains stable over the long term regarding its wear
and color [157,158]. The biocompatibility and biostability of PEEK are supported by the
U.S. FDA drug and device master files [159]. Another way to limit the initial adhesion of
microorganisms and particularly of C. albicans on the prosthetic surface is to use a coating.

4.1.7. Denture Base Surface Coating to Limit Adhesion

Among the types of coatings available, cold plasma under heat-polymerized acrylic
resin prevents the early adherence of C. albicans [160]. Another goal for coating the polymer
(PMMA) with creamers is to enhance the resistance of the denture base surface. Indeed,
coating creamers (inorganic–organic hybrid polymeric) enhance the scratch resistance of
PMMA denture resin (increasing the flexural strength (FS), flexural modulus (FM), and
hardness) [161,162]. To date, in view of the diverse results of experiments, no consensus
has been reached on this topic. To fight against the adhesion of Candida, the surface of the
denture base must be smooth, hydrophilic, and without roughness. Further investigations
are needed to better understand the correlation between factors affecting the hydrophobicity
of the denture base and the adhesion of C. albicans.

4.1.8. Effects of Cleaning on Denture Materials (Table 3)

Currently, the use of a prosthesis cleanliness index makes it possible to assess the
hygiene of prostheses by visualizing the quantity of stains on the intrados of the denture.
Rinsing beforehand eliminates invisible microbial plaque. The scores, ranging from 0 (best)
to 4 (worst), help to adapt the hygiene instructions for the wearers of dental prostheses [163].

The use of bleach-based cleansers, according to the recommended dosages (containing
1.5% or 2% w/v sodium hypochlorite and/or 1.7% w/v sodium hydroxide) and duration
of use (at least 3 min daily), is associated with sufficient antimicrobial activity against
Streptococcus mutans and C. albicans, without any changes to acrylic color, surface roughness,
or mechanical properties [164,165]. However, in the long term, these cleansers corrode and
tarnish metal prostheses. Effervescent cleansers have also proven their effectiveness, but
they are not recommended in the presence of prosthesis relining materials.

Manual brushing with a toothbrush plus soap and water is the most common method
for maintaining removable dentures (Milward P, 2013) [166]. Several adjuvants to increase
the effectiveness of manual cleaning in the form of pastes, gels, foams, and powders are on
the market [167].

The use of antiseptics to inhibit or eliminate microorganisms and immersion in a
chemical solution for 8 h are recommended. Sodium hypochlorite, chlorhexidine diglconate,
and alcohol can disinfect or reduce the dental plaque on acrylic resin dentures without
being cytotoxic [110,112,113]. The different methods of cleaning dentures can influence the
physical and aesthetic characteristics of the prosthesis materials. Also, in order to ensure
the clinical durability of removable prostheses, patients and clinicians should be aware of
the manufacturer’s instructions for use [168].

Although there is no consensus regarding how to best maintain prosthetic hygiene
compatible with the patient’s state of health [61], the disadvantages of many procedures
have been thoroughly evidenced [169].
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Hydrogen peroxide-based disinfectants should not be used regularly, as they cause
surface roughness of the PMMA. NaOCl is less aggressive and generates slight alterations
on the surface of the prosthetic base [170]. In addition, sodium hypochlorite was found to
be non-cytotoxic after six months of use [171].

Flexural strength is reduced by immersion cleaning of removable PMMA prostheses
modified with nano-ZrO2. Thus, a significant decrease in this resistance after immersion
in different denture cleansers was reported, which was strong for sodium hypochlorite,
intermediate for Corega, and low for Renew [170,172,173]. Several habits should be avoided,
such as rinsing with boiling water and prolonged maintenance in a dry atmosphere or
water, because these alter the qualities of PMMA and promote microbial colonization. Both
bleach and isopropyl alcohol (IPA) are highly antimicrobial, but bleach is incompatible
with components of metal dental prostheses and IPA mouthwashes damage PMMA [174].

Concerning denture cleaning tablets, the polarity of the resins, the concentrations
of the tablets, and the chemical content of the cleanser may directly affect the formation
of C. albicans biofilm [68]. Thus, the dosage and prescription of disinfecting tablets can
vary depending on the resin used to make the prosthetic base. In tablet form, Polident®

has been proven to be effective as a denture cleanser. But after 30 days of immersion in a
solution based on Polident®, the heat-polymerized acrylic resin may undergo alterations
to its physical and mechanical properties. This may be related to the accelerated aging of
resins caused by chemicals found in denture cleansers [175].

The mechanical properties of PEEK do not change during the sterilization process. An
in vitro study showed that the solubility of PEEK in physiological saliva and distilled water
is lower than that of PMMA [156]. In the study by Demirci under the same conditions, the
solubility values of PEEK in distilled water were found to be similar to those of PMMA (HP:
Ivoclar Vivadent AG., Schaan, Liechtenstein). In the presence of a cleanser (Corega tablet,
Protefix tablet (PT), 1% sodium hypochlorite (NaOCl)), the solubility values of PEEK were
found to be lower than those of PMMA. In this study, higher water sorption and solubility
values were observed than those obtained by Lieberman [156]. The explanation proposed
mentions the consequences of the effects of cleansers on PEEK and PMMA surfaces for
120 days. Thus, for these authors, the water sorption and solubility values of PEEK can be
attributed to the molecular imbalance occurring on the surface of the PEEK [62].

The use of microwave disinfection in combination with denture cleansers and brushing
has also been shown to effectively disinfect dentures, although microwaves may also
physically distort denture resin [176]. The personalized implementation of the currently
available means for disinfection is informed by the general condition of the patient, the
material composition of the prosthetic base, and the presence or absence of DS.

4.2. Denture Base Relining (Table 4)

After some time (following bone resorption), it is necessary to reline the intrados in
order to improve the stability, support, and retention of removable dentures. There are sev-
eral commonly used relining materials, such as cold or hot polymerization, polymerization
in visible light, and acrylic resins polymerized in microwaves [177,178].

At the interface between the reliner and the prosthetic base, the bond strength de-
pends on the chemical composition of the two materials that come into contact with each
other [179]. The bonding strength can be improved by treating the two surfaces that are
in contact with each other [179–182]. The parameter characteristic of relining is the shear
bond strength (SBS). This parameter is better for relining using thermosetting resin as well
as both CAD/CAM and conventional thermosetting denture resin compared to self-curing
relining resin [183,184]. An in vitro study showed that reliners with thermopolymerizable
acrylic resins had an increased SBS compared to reliners with self-curing acrylic resins. This
also applied to bases of conventional dental prostheses and CAD/CAM but without a sig-
nificant difference. However, there was a significant difference between autopolymerizing
acrylic resin bond strength with CAD/CAM and conventional denture bases.
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Autopolymerizing reliner material seems to produce a stronger bond with CAD/CAM
denture bases. It has been pointed out that self-curing relining material appears to produce
a significantly stronger bond with a CAD/CAM denture base compared to a conventional
resin base [184]. Recently, various in vitro tests of the adhesion of composite materials
on thermosetting resins, on CAD/CAM, and on printed groups yielded the following
results: In order of the best performance regarding the adhesion of high-viscosity/low-
viscosity composites (SR Nexco, high viscosity (SR); and Kulzer Creactive, low viscosity
(K)), the thermosetting resin group was first, followed by the CAD/CAM group, and finally
the 3D-printed groups. However, the differences noted between these groups were not
significant [185].

To assess the maintenance of rebased resin bases, five disinfectant solutions were
tested: sodium hypochlorite, sodium perborate, chlorhexidine gluconate, apple vinegar,
and distilled water. A prosthesis base (Vipi Wave) rebased with an acrylic resin (Tokuya-ma
Rebase Fast II) after dipping showed alterations in its roughness regardless of the solution
used [173,186]. Kim et al. tested relining using two hard resins, one of the self-hardening
type (Tokuyama rebase II) and the other of the light-activated type (Mild Rebaron LC). They
carried out these two relinings on a thermoplastic polyamide resin (Biotone; BT), on a classic
thermopolymerizable acrylic resin (Paladent 20; PAL20), and, finally, on a thermoplastic
acrylic resin (Acrytone; ACT). The results showed that the thermoplastic polyamide resin
(Biotone) had the lowest adhesion strength of the three materials tested [69].

More recently, Vuksic Josip et al. (2023) [70] tested relining (with a soft denture
liner and a silicone-based, direct relining method) on several resins: (1) Meliodent heat
cure (Kulzer, Hanau, Germany), denture base material, PMMA, heat-cured; (2) Vertex
Thermosens (Vetex Dental, Soesterberg, The Netherlands), denture base material, PA,
technical injection; (3) three CAD/CAM subtractive materials; and (4) two CAD/CAM
additive materials. With the same reliner (GC Reline II Soft), the bond strength of the PA
(Vertex) and both additive manufactured denture bases was significantly lower than that of
the three materials used for subtractive denture fabrication and heat-cured PMMA (Table 4).
However, the authors expressed their reservations because, to date, there are only a few
studies available, mainly on flexible rebasing. The tests differ between these studies, and
different materials were used as controls (PMMA from different manufacturers).

The bioinert nature of PEEK can make adhesive bonding difficult. The SBS of PEEK
can be increased by roughening the material or by embedding molecules on the surface
through sandblasting, acid treatment, laser, or adhesive systems.

SBS values greater than 10 MPa between PEEK and resin-based composites have
been reported to be clinically acceptable. However, the hydrophobic surface and low SFE
of PEEK make it difficult to establish a strong and long-lasting bond. Therefore, PEEK
material surface treatments and adhesive systems with resin are hot research topics focused
on the application of PEEK in the restorative field. Modalities concerning the effectiveness
of bonding to the surface of PEEK are not yet sufficiently developed for routine use.

4.3. General Conditions and Dentures

Whichever material is chosen, after adhesion, inadequate oral hygiene facilitates the
accumulation of biofilm, colonizing the surface of the prosthesis. This biofilm can consti-
tute a risk factor for infection, especially for patients who are older or who are immuno-
compromised and/or have endocrine deficiency [187]. For these patients, special vigilance
is necessary regarding prosthetic oral hygiene in order to avoid infectious complications.

Indeed, this additional microbial load can lead to an imbalance between bacterial
species, bacteriophages, and fungi, thus promoting the resistance and virulence of my-
cofilms to the detriment of the host. The secretions of bacteria and fungi, by participating in
the aggression of biotic surfaces (mucous membranes and teeth), promote the production of
various inflammatory mediators such as cytokines [188]. The use of removable prostheses
in these conditions after a certain period of time promotes bone resorption.
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Some older denture wearers have medical conditions such as arthritis and dementia
that can impair their ability to carry out oral hygiene procedures effectively, thus requiring
assistance from caretakers and some education [189]. Specific treatments are available if a
Candida infection is suspected [190], with accompanying denture disinfection/cleaning or
replacement [8]. Other conditions such as Parkinson’s disease can lead to dentures falling
out of patients’ hands because of trembling. In these cases, thanks to its flexibility, the PA
prosthesis makes it possible to overcome small bone and mucous undercuts. Crossing this
undercut promotes retention. The prosthetic base made of PA, due to its high resilience
and impact resistance, is less prone to fractures than PMMA [191].

For patients who are hypoallergenic to prosthetic materials, different alternatives
exist. Whether PMMA, PEEK, or PA, the polymerization reaction releases more or fewer
toxic molecules. By dissolving in the saliva, these molecules can diffuse away from the
mouth [192,193]. These are essentially, after the polymerization, the residual monomers
(MMA, methyl methacrylate; BuMA, butyl methacrylate; EMA, ethyl methacrylate; EGDMA,
ethylene glycol dimethacrylate) that are responsible for the toxic and allergenic effects of
acrylates [194].

This residual monomer depends both on the method of polymerization (duration, cold
or heat) and on the volume of the prosthetic base; it only becomes stable after 2 weeks of
wearing the dentures. It is low for thermopolymerized resins and at the palatal level of the
thin prosthetic base [8].

Moreover, the acidic environment and the temperature of the oral cavity promote
the release of substances contained in resins such as formaldehydes, benzoyl peroxides,
benzoic acid, hydroquinone, and phthalates, as well as cobalt, nickel, and beryllium. With
respect to the mucous membrane, these products can cause type IV allergic reactions, or an
intolerance can appear in the long term [195].

As a remedy, so-called hypoallergenic resins for dental prostheses have appeared
on the market. To be suitable for hypoallergenic patients, the denture base resins should
contain only a very small amount of MMA [196].

MMA can be replaced by diurethane dimethacrylate, polyurethane, polyethylene
terephthalate, polyethylene terephthalate, or polybutylene terephthalate. However, only
two of these have similar mechanical characteristics to PMMA resin standards: Polyan
Plus® and TMS Acetal Dental [195].

The in vitro comparison between PMMA and PA regarding cytotoxicity has not re-
vealed any obvious differences. Findings remain disparate about the materials studied and
the protocols used. The results vary depending on the duration of the experiments and on
the different parameters analyzed, such as temperature and surface condition supplement
II. For patients with low stress tolerance and sensitivity to metallic materials, PEEK is
indicated for partial removable prostheses. PA bases are also an alternative for patients
who are allergic to other denture base materials and for patients with microstomia [26].

5. Conclusions

Regarding the choice between different polymers and in view of the complexity of
DMP, we still lack sufficient knowledge about the characteristics of denture biofilms. Thus,
the tolerance of DMP to existing antifungal drugs, its ability to evade components of the
host’s immune system, and its resistance to the mechanical forces underlying the prosthesis
make it a central subject of studies.

To summarize, Table 5 highlights the pertinent points that facilitate the differentiation
between indications for PMMA, PA, and PEEK concerning DMP formation.

1. To limit the adhesion and accumulation of prosthetic microbial plaque, removable
prostheses milled from a PMMA block best meet this requirement. Those made from
PA are less efficient in terms of the colonization of microorganisms. As for PEEK, the
long-term anti-adhesion properties seem to gradually diminish.

2. Regarding the polishing and maintenance of removable prostheses, PMMA is also
more efficient than PA and PEEK.
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3. Relined PMMA bases, both via thermosetting and machining, are easy to implement
and effective.

This calls for the establishment of an effective strategic plan in the fight against
persistent oral–prosthetic microbial infections that are likely to spread remotely via saliva
or the bloodstream, such as DS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16010040/s1, Table S1: In vitro coating or addition of
antimicrobial components in PMMA.; Table S2: Cytotoxicity and biocompatibility of PMMA and
polyamide. References [142,197–213] are cited in the supplementary materials.
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