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Abstract: Medical device-associated infection remains a critical problem in the healthcare setting.
Different clinical- or device-related methods have been attempted to reduce the infection rate. Among
these approaches, creating a surface with bactericidal cationic functionality has been proposed. To do
so, a sophisticated multi-step chemical procedure would be needed. Instead, a simple immersion
approach was utilized in this investigation to render the titanium and polypropylene surface with the
quaternary ammonium functionality by using a mussel-inspired novel lab-synthesized biomimetic
catechol-terminated polymer, PQA-C8. The chemical oxidants, CuSO4/H2O2, as well as dopamine,
were added into the novel PQA-C8 polymer immersion solution for one-step surface modification.
Additionally, a two-step immersion scheme, in which the polypropylene substrate was first immersed
in the dopamine solution and then in the PQA-C8 solution, was also attempted. Surface analysis
results indicated the surface characteristics of the modified substrates were affected by the immersion
solution formulation as well as the procedure utilized. The antibacterial assay has shown the titanium
substrates modified by the one-step dopamine + PQA-C8 mixtures with the oxidants added and the
polypropylene modified by the two-step scheme exhibited bacterial reduction percentages greater
than 90% against both Gram-positive S. aureus and Gram-negative E. coli and these antibacterial
substrates were non-cytotoxic.

Keywords: quaternary ammonium; antibacterial; dopamine; mussel-inspired; surface modification

1. Introduction

Despite the technological advances in clinical care, healthcare-associated infections
(HAIs), also known as nosocomial infections, remain critical issues to patient health as well
as healthcare costs. Among these HAIs, infections resulting from the inadvertent microbial
adhesion onto the medical devices or materials used around hospital wards have received
great attention from people in various disciplines, including material scientists, biomedical
engineers, and clinical practitioners [1,2].

From the material science perspective, designing an antimicrobial surface to reduce
microbial adhesion and/or kill the microbes before or after adherence has been the common
approach to reduce material-related infections [3–5]. Among these approaches, killing the
microbes before contact with the surface would rely on the bactericidal agents which were
either released from the surface or added externally by various means. Nevertheless, time-
dependent bactericidal efficacy and the emergence of biocide-resistant strains have hindered
the wide use of bactericidal agents. Building a bactericidal surface, with cationic polymers
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such as pyridinium, phosphonium, and quaternary ammonium functionalities [6–8] to kill
the microbes on contact has become an alternative approach due to its long endurance.
Due to their excellent environmental stability, compounds with quaternary ammonium
functionalities are the most popular selection [2,9,10]. Nevertheless, the safety of quaternary
compounds as disinfectants has been of concern in the latest report [11]. To reduce the safety
concerns about using the quaternary compounds in their free form, multiple processing
steps or complicated/sophisticated chemical reactions would be needed to deposit a layer
with quaternary ammonium functionalities covalently or tightly onto various surfaces
that are commonly used in the medical industry, such as the titanium and polypropylene
studied here.

Titanium and polypropylene were commonly used in different medical applications.
Titanium or its alloys were seen in different orthopedic or dental applications, such as tem-
porary and long-term external fixations, and craniofacial and dental implants [12,13], which
generally required fairly tough physical properties. The medical applications of polypropy-
lene, instead, were more widely noted in various clinical practices [14]. Polypropylene can
be easily processed into different geometric shapes such as tubing, films, or even fibrous
meshes used in hernia or pelvic organ prolapse [15,16]. Nevertheless, there were various
endeavors to improve the biological interactions between the tissue and these two artificial
synthetic materials. Improving the antimicrobial capability also attracted a vast amount of
research interest including the use of functional deposits or surface functionalization of the
titanium or polypropylene [17–22] with different surface modification techniques.

Inspired by mussels’ adhesion capability on various organic and inorganic surfaces in
different aquatic environments, various biomimetic approaches based upon the mussels’
adhesion mechanisms have been attempted in different fields, such as membrane separation,
dentin bonding, coatings, and various biomedical applications to name a few [5,23–27].
These investigations stemmed from the seminal findings of Messersmith’s team on the
DOPA-inspired compound, dopamine’s adhesion onto different materials’ surfaces [28],
and those of Caruso’s team on the natural polyphenol film formation [29] on various
substrates. Depending upon the substrate and the preparation solution, the interactions
between the substrate and the deposited dopamine, polydopamine, or polyphenol as well as
the deposit itself could be attributed to various molecular interactions, such as π–π stacking,
cation–π interactions, hydrogen bonding, covalent bonding, hydrophobic–hydrophobic
interactions, etc. [30–32].

Despite such complicated interactions, the mussel-inspired pathway has been in
research focus for modifying surface characteristics of different substrates. Several studies
have taken the advantages of residual amine or hydroxyl groups in the pre-deposited
polydopamine layer for subsequent grafting polymerization, such as using the surface-
initiated atom transfer radical polymerization, to imbue the modified layer with different
chemical characteristics [33–35]. On the other hand, using a monomer with a dopamine-
like configuration, dopamine methacrylamide (DMA), to form copolymers with various
functionalities before coating can also lead to distinctive thin films [36,37]. Additionally,
using a dopamine-conjugated initiator, such as 2-bromoisobutyryl bromide (BIBB), to form
copolymers with intended functionalities before coating could also lead to successful thin
film deposition [38,39]. Other approaches, such as direct chemical grafting of polymers
with a pre-deposited polydopamine layer [40,41], co-deposition using a solution mixture
of polydopamine and a compound of interest [42–45], and sequential deposition using
polydopamine as the first step followed by the compound of interest [44] have been
attempted. In these approaches, the substrates used were mainly cover glasses or silicon
wafers while medical application-relevant metals and polymers, such as the titanium and
polypropylene used in this study, were rarely used.
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In this study, a novel biomimetic catechol-terminated linear polymer with cationic
quaternary ammonium functionalities was synthesized using SET-LRP (single-electron
transfer living radical polymerization) [46–49] to avoid the free radical scavenger effect
associated with the catechol end if the conventional free radical polymerization step is
utilized [50]. Further, this SET-LRP approach could reduce the chance of polymer chain
scission or incomplete deprotection in the deprotection step if the –OH functional groups
are protected in the atom transfer radical polymerization (ATRP) step as shown in a study
by He et al. [38].

Different facile surface modification/coating schemes were attempted in this study
to change the surface characteristics and biological contact properties of medical-grade
titanium and polypropylene, the two commonly used metallic and organic materials in
medical devices, while bearing distinctive chemical natures on their surfaces, by a sim-
ple immersion approach using this novel mussel-inspired compound, as compared to
previous laborious schemes reported for improving the antimicrobial characteristics of
titanium [51,52] and polypropylene [53,54]. These schemes included the use of a simple
one-step immersion method with different amounts of dopamine added into the novel
synthesized cationic polymer solution. A two-step immersion method, in which the sub-
strate was modified by the dopamine, then followed by the novel cationic polymer, was
also attempted on the polypropylene substrate. Adding the oxidants CuSO4/H2O2 into
the immersion solution was also explored since these oxidants have been indicated to in-
crease the polydopamine deposition rate [55,56]. The surface characteristics, antimicrobial
capability, and cytotoxicity of different modified specimens were investigated. And the
optimal processing scheme for preparing the antibacterial titanium and polypropylene
was identified.

2. Materials and Methods
2.1. Materials

The chemicals used in this study, namely dopamine hydrochloride (DA), methyl
trifluoroacetate (MTFA), triethylamine (TEA), p-toluenesulfonic acid (PTSA, Ts-OH),
2,2-dimethoxypropane (DMP), calcium chloride, silica gel, potassium carbonate, tetrahy-
drofuran (THF), α-bromoisobutyryl bromide (BIBB), dichloromethane (DCM), trifluo-
roacetic acid (TFA), 2-(dimethylamino) ethyl methacrylate (DMAEMA), 1-bromooctane,
acetonitrile (AeCN), copper(I) bromide, tris[2-(dimethylamino)ethyl] amine (Me6TREN),
tris(hydroxymethyl)aminomethane (Trizma base), hydrogen peroxide, and copper(II)
sulfate pentahydrate were purchased from different vendors, including Sigma-Aldrich
(St Louis, MO, USA), Alfa Aesar (Ward Hill, MA, USA), J.T. Baker (Phillipsburg, NJ, USA),
SHOWA (Chuo-ku, Japan), Fluka (Milwaukee, WI, USA), MACRON (Phillipsburg, NJ,
USA), and DUKSAN (Gyeonggi, Republic of Korea), at the highest purity available.

2.2. Synthesis of PQA-C8

The overall synthesis scheme of the polymeric quaternary ammonium salt with a
catechol terminal end, PQA-C8, is shown in Scheme 1.
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Scheme 1. The synthesis scheme for the polymeric quaternary ammonium salt with a catechol
terminal end, PQA-C8.

2.2.1. Synthesis of TFADA

A total of 20 g dopamine-HCl (105 mmol) was dissolved in 350 mL methanol and
added into a round-bottom flask under argon protection. Then, 23 mL methyl trifluo-
roacetate (MTFA, 229 mmol) and 64 mL triethylamine (TEA, 459 mmol) were added into
the flask. The reaction was carried out at room temperature for 24 h. After removal of
the solvent, 1 N HCl(aq) was added to adjust the pH value to 3–4; the mixture was then
extracted with ethyl acetate several times, washed with brine, dried over Na2SO4, the
solvent was removed, and the compound was finally dried in vacuum. The brown, solid
TFADA was obtained.

2.2.2. Synthesis of TFADAAC

To protect the catechol group, the following step was carried out. A total of 7 g
TFADA (28 mmol) was dissolved in 400 mL benzene and added into a three-neck round-
bottom flask, and 15 mL 2,2-dimethoxypropane (DMP, 122 mmol) was added into the flask.
A Soxhlet extractor was used to remove the byproducts. The thimble in the Soxhlet was
filled with 30 g anhydrous CaCl2 to absorb water and methanol. After the first reflux,
0.2167 g p-toluenesulfonic acid (TsOH, PTSA, 1.38 mmol) was added into the flask. The
reaction was carried out overnight and could be monitored by the FeCl3 test on a TLC
plate. The solvent was then removed and passed through silica gel chromatography with
dichloromethane. The final product was recrystallized in hexane and dried in a vacuum.
The white, crystalline TFADAAC was obtained.

2.2.3. Synthesis of DAAC

A total of 6 g TFADAAC (20.7 mmol) was dissolved in 180 mL methanol and added
into a round-bottom flask. A total of 8.58 g of K2CO3 (62.1 mmol) and 5 mL of deionized (DI)
water were added to the flask. The solution was heated up to reflux temperature and the
reaction was monitored with a TLC plate. After filtration of the mixture and removal of the
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solvent, the product was dissolved in DI water and extracted with chloroform several times,
washed with DI water, dried over Na2SO4, the solvent was removed, and the compound
was dried in a vacuum overnight.

2.2.4. Synthesis of BrDAAC

A total of 2 g DAAC (10.4 mmol) was dissolved in 20 mL tetrahydrofuran (THF)
and added into a two-neck round-bottom flask. A total of 2.02 mL triethylamine (TEA,
14.5 mmol) was added into the flask and purged with argon for 20 min. The mixture was
cooled in an ice bath, and then 1.343 mL α-bromoisobutyryl bromide (BIBB, 10.9 mmol) was
added. The reaction was carried out at room temperature overnight. The crude product
was then mixed with ethyl acetate for precipitation. The precipitate was then filtered and
washed with 1 N NaHCO3(aq), DI water, and brine, subsequently, and then dried over
Na2SO4. Further purification by silica gel column chromatography with DCM as an eluent
was undertaken. The solvent was removed and dried under vacuum, and the light brown,
solid BrDAAC was obtained.

2.2.5. Synthesis of BrDA

A total of 2 g BrDAAC (5.85 mmol) was first dissolved in 75 mL dichloromethane
(DCM) and then added into a round-bottom flask and cooled in an ice bath for 15 min.
Then, 25 mL trifluoroacetic acid (TFA) was added into the flask. The reaction was carried
at room temperature for 6 h. After removing the solvent by a rotary evaporator, the dark
brown, viscous liquid BrDA was obtained.

2.2.6. Synthesis of DMAEMA-C8

The quaternization reactions were carried out according to Wan et al. [57]. A total of
10 mL of 2-(dimethylamino) ethyl methacrylate (DMAEMA, 59.3 mmol) was in a 250 mL
round-bottom flask equipped with a magnetic stirrer, wherein 11.277 mL 1-bromooctcane
(65.6 mmol) was then added into the solution. Subsequently, approximately 30 mL of
acetonitrile (AeCN) was added into the flask as solvent. The mixture was stirred at 60 ◦C
for four days. A white powder was obtained after removing the solvent, then washed with
anhydrous ether several times, and dried under a vacuum.

2.2.7. Synthesis of PQA-C8

The SET-LRP synthesis procedure was modified from Zhang et al. and Guo et al. [46,47].
A total of 26 µL tris[2-(dimethylamino)ethyl]amine (Me6TREN, 0.1 mmol) and 500 µL H2O
were added into a Schlenk tube (or flask) and were bubbled with argon for 5 min. A total of
14 mg CuBr was then added into the tube under a slight positive pressure of argon and this
was kept bubbling for a further 10 min. The suspension turned purple and was set to keep
stirring under an ice/water bath for 15 min. Meanwhile, 1 mL H2O, 4 mL methanol, 75 mg
BrDA (0.25 mmol), and 1312 mg DMAEMA-C8 (3.75 mmol) were added into another tube and
bubbled with argon for 15 min. After bubbling, the initiator/monomer aqueous solution was
transferred to the other tube with Cu(0)/CuBr2/Me6TREN via a cannula. The polymerization
was carried out for an hour, then dialyzed against water for 2 days, and freeze-dried to remove
the water.

2.3. Surface Modification of Different Substrates

The titanium plates (AcrUshin Co., Tokyo, Japan) and polypropylene (PP) sheets
(Tzefeng Plastics, Kaohsiung, Taiwan) were cut into small pieces and then cleaned with
neutral detergent, deionized water, ethanol, and acetone under sonication several times.
The titanium plates were stored in methanol while the PP sheets were dried and stored
under vacuum. The titanium plates were further cleaned in piranha solution for 1 h and
rinsed with deionized water before coating.

These substrates were immersed in the 10 mg/mL PQA-C8 in ethanol–tris buffer
solution (1:1 volume ratio, 10 mM pH = 8.5) at different ratios of dopamine for 24 h, or 2 h if
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the oxidants were added in the reaction, at room temperature (Table 1). The concentration
of oxidants, if used, was 1.25 mg/mL and 0.67 mg/mL for CuSO4 and H2O2, respectively.
Subsequently, the substrates were ultrasonically washed with deionized water and dried
with argon, then stored in vacuum.

Table 1. Sample nomenclature for those coated via the one-step method. X: Ti or PP.

Sample
(X = Ti, PP) Conc. of PQA-C8 Conc. of Dopamine Oxidants and

Coating Duration

Bare X Cleaning only

10:0-X 10 mg/mL - Nil
The coating duration

was 24 h
10:0.5-X 10 mg/mL 0.5 mg/mL

10:1-X 10 mg/mL 1 mg/mL

10:0-X (CuSO4/H2O2) 10 mg/mL - CuSO4/H2O2
The coating duration
was reduced to 2 h

10:0.5-X (CuSO4/H2O2) 10 mg/mL 0.5 mg/mL

10:1-X (CuSO4/H2O2) 10 mg/mL 1 mg/mL

In contrast to the one-step immersion scheme above, a two-step method was used to
modify the PP substrates, in which the PP substrates were immersed into the dopamine
solution first, followed by the PQA-C8 solution (Table 2). The final samples were ultrasoni-
cally cleaned as those coated by the one-step method were.

Table 2. Sample nomenclature for those coated via the 2-step method.

Sample Treatment

Bare PP Cleaning only

DA-PP Cleaning followed by immersion in 2 mg/mL of dopamine solution
(10 mM tris buffer) for 4 h

PQA-DA-PP The DA-PP was further immersed in 10 mg/mL of PQA-C8 solution
(ethanol–tris buffer; 1:1 volume ratio, 10 mM pH = 8.5) for 24 h

2.4. Characterization

The chemical configurations of PQA-C8 and the intermediates in the synthesis scheme
were confirmed by nuclear magnetic resonance (NMR) (Bruker AVNEO 500NMR or AVI-
IIHD700, Fällanden, Switzerland). Various surface characteristics, including surface hy-
drophobicity, surface morphology, and chemical bonding state and element composition
of the modified surfaces were analyzed by water contact angle (WCA) measurements
(Model 100SB, Sindatek Inc., Taipei City, Taiwan), scanning electron microscopy (SEM)
(SU8010, Hitachi, Tokyo, Japan), and X-ray photoelectron spectroscopy (XPS) (PHI Quan-
tera II, ULAVAC-PHI, Chigasaki, Japan), respectively.

2.5. Antibacterial Test

Since the density of modified PP was less than that of water, instead of using the flat flask,
the antibacterial test was performed by placing the nascent or modified substrates into the
glass tubes tightly while not touching the round bottom of the tubes. The bacteria (S. aureus,
ATCC 21351, and E. coli, ATCC 23501) were first cultivated in Luria–Bertani medium for 24 h
at 37 ◦C. After serial dilutions, 1 mL of bacteria suspension (2 × 106 CFU/mL) was added
into each tube that contained the substrates and incubated for 6 h at 37 ◦C under 150 rpm of
shaking. The substrates were fully immersed in bacteria solution throughout this incubation
duration. Previous studies have indicated that UV irradiation could enhance the bactericidal
capability as well as lead to a significant reduction in bacterial attachment and subsequent
biofilm formation on titanium dioxide surfaces, an oxidized layer commonly found on the
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titanium substrate [58,59]. Henceforth, the antibacterial test was performed “in the dark”
to avoid the interference of light that may change the interactions of the microbes and the
unmodified/modified Ti and PP substrates. After that, the samples were ultrasonicated for
5 min to detach the adhered bacteria on the substrates. Last, the bacteria suspension in the
tube was removed, diluted, and spread onto agar plates to count the colonies to measure the
viability of the bacteria.

2.6. Cytotoxicity Assay

L929 mouse fibroblast cells (NCTC clone 929, BCRC-RM60091) were used in the
cytotoxicity test. According to the standard ISO 10993-5 and ISO 10993-12 protocols, the
cytotoxicity test was conducted by the extraction method. The L929 cell suspension was
cultured in Minimum Essential Medium (MEM) containing 10% horse serum (HS), 1%
penicillin–streptomycin (P/S), 1% HEPES solution, 1% MEM non-essential amino acid
solution (100x), 1% sodium pyruvate solution, and 1% GlutaMAXTM-1 (100x) at 37 ◦C and
5% CO2, and the medium was replaced every three days. The testing substrate was first
sterilized by soaking it in 75% ethanol. The testing substrates (n = 5) were then immersed
in the culture medium and incubated for 24 h. The L929 cells (density = 104 cells/well)
were seeded in a 96-well plate and cultured for 24 h at 37 ◦C and 5% CO2 atmosphere. The
medium was replaced with the eluent from the substrate after 24-h medium incubation and
then incubated at 37 ◦C and 5% CO2 atmosphere for 24 h. The cell viability was determined
by the MTT assay. An Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect
the absorption at 570 nm. The reference wavelength was set at 650 nm. A polyethylene
plastic wrap and a latex glove were used as the negative and positive controls for the
cytotoxicity testing.

2.7. Copper Ion Release Test

To confirm the relationship between the possible released copper ions and cytotoxicity
assay results, an inductively coupled plasma mass spectrometer (ICP-MS) (THERMO-
ELEMENT XR, USA) was used to measure the copper ion concentration released if the
samples were prepared with the CuSO4/H2O2 oxidants added. Each sample was immersed
in 5 mL PBS at room temperature under 150 rpm for 3 days. After that, the samples were
taken out, then the copper ion concentration in the PBS was measured by ICP-MS.

2.8. Statistical Analysis

All the quantitative analyses were repeated at least three times except the XPS analyses,
and the results are expressed as mean ± standard deviation. Quantitative comparisons
using Student’s t-testing with a p-value of less than 0.05 were considered statistically
significant.

3. Results and Discussion
3.1. PQA-C8 Synthesis

The chemical configuration of the lab-prepared PQA-C8, the final polymeric quater-
nary ammonium compound with catechol terminal ends, and the intermediates including
the TFADA, TFADAAC, DAAC, BrDAAC, BrDA, and DMAEMA-C8 shown in Scheme 1,
were analyzed by 1H-NMR spectroscopy (Figures S1–S7). The NMR spectra indicated all
these compounds were well prepared at >90% purity.

3.2. Surface Characterization
3.2.1. Surface Morphology
Surface Morphology of the Modified Titanium Substrates

The surface morphologies of the bare titanium and the titanium substrates modified
with different methods are shown in Figure S8. The bare titanium presented few pits and a
coral-like structure, likely resulting from the piranha cleaning/oxidation/etching effect
after immersion for 1 h. After immersion into the PQA-C8 solution with or without the
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dopamine, while no oxidants were added, various submicron or micron sizes of aggre-
gates/deposits were noted on the titanium substrates. Further, with more dopamine added,
a less particulate-like structure was noted on the modified titanium substrate (i.e., 10:1-Ti
vs. 10:0.5-Ti vs. 10:0-Ti). After adding the oxidants, CuSO4/H2O2, into the PQA-C8 +
dopamine solution, the titanium substrate surface presented larger aggregates as compared
to their counterparts (e.g., 10:0.5-Ti (CuSO4/H2O2) vs. 10:0.5-Ti) even at a shorter immer-
sion duration (2 h vs. 24 h). This may be attributed to the enhanced formation of PQA-C8 +
dopamine aggregates or polymers in the solution before being attached/deposited onto
the titanium substrate.

Surface Morphology of the Modified Polypropylene Substrates

Various sub-micron pits/holes were noted on the bare PP surface (Figure S9), likely
resulting from the processing effects on the PP sheet formation. After immersion into
the PQA-C8 + dopamine solution in different weight ratios, without or with the oxidants
CuSO4/H2O2, surface deposits were noted on these one-step process-modified PP sub-
strates; they exhibited different surface roughness or aggregates. For the PP substrate
modified by the 2-step process, DA-PP, larger aggregates were noted as compared to the
bare PP. Further immersion of the DA-PP substrate into the PQA-C8 solution led to even
larger aggregates on the PQA-DA-PP surface. This suggested that the surface deposits
were successfully formed on the PP substrates using the 2-step process scheme.

3.2.2. Surface Hydrophilicity
Surface Hydrophilicity of the Modified Titanium Substrates

For the titanium substrate modified by the one-step deposition process without using
the dopamine and oxidants (10:0-Ti) (Figure 1a), the contact angle was increased (p < 0.05)
after 24-h immersion in PQA-C8, likely resulting from the hydrophobic alkyl chains as-
sociated with PQA-C8. In contrast, the contact angle of the PQA-C8-modified titanium,
prepared with the oxidants while without the dopamine addition (10:0-Ti CuSO4/H2O2),
remained similar to the untreated bare titanium control (p > 0.05). This may be attributed
to the added oxidants hindering the transformation of surface Ti-OH formed after piranha
solution cleaning to the Ti-O-Ti that can facilitate the surface bonding of PQA-C8 through
the quinone end, the terminal end formed after oxidation of catechol [60]. Reduced trans-
formation of the catechol end to the quinone structure due to the bulky cationic polymer
end, as compared to the dopamine, could likely contribute to this finding. Nevertheless,
incomplete coverage on the titanium substrate (see Section 3.2.3 XPS analysis) due to the
shorter immersion time (2 h vs. 24 h) may lead to this bare-Ti-similar contact angle finding
as well.

Adding dopamine to the PQA-C8 immersion solution resulted in a further increase in
surface hydrophobicity (10:0.5-Ti and 10:1-Ti), either without or with the oxidants. Never-
theless, the contact angle did not vary significantly (p > 0.05) with the amount of dopamine
added (Figure 1a). Further, the substrates prepared with the oxidants added presented
a higher surface hydrophobicity than their counterparts, e.g., 10:0.5-Ti (CuSO4/H2O2)
vs. 10:0.5-Ti, even with a shorter immersion duration. This is likely attributed to the
enhancement in PQA-C8 deposition when dopamine was added. In addition, adding
the CuSO4/H2O2 oxidants could transfer the catechol configuration in dopamine to the
quinone structure, leading to a further increase in surface hydrophobicity [55].

Surface Hydrophilicity of the Modified Polypropylene Substrates

In contrast to the titanium substrate, the one-step PQA-C8-modified PP without
CuSO4/H2O2 oxidants showed lower contact angle values than the bare hydrophobic PP
substrates (p < 0.05), likely resulting from the incorporation of quaternary ammonium
functionalities (Figure 1b). This implicated that PQA-C8 was deposited on the PP substrate.
Adding dopamine into the PQA-C8 solution at different ratios without CuSO4/H2O2
oxidants led to lower contact angle values (p < 0.05). This suggested that dopamine could
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enhance the PQA-C8 deposition, as noted on the titanium substrate. However, the contact
angle could increase if a higher amount of dopamine is added (10:1 PP vs. 10:0.5-PP, p < 0.05).
In contrast, adding dopamine into the PQA-C8 solution with CuSO4/H2O2 oxidants did
not significantly change the contact angle (p > 0.05). The degree of contact angle variation
is apparently influenced by the substrate utilized. When the CuSO4/H2O2 oxidants were
added to the PQA-C8 + dopamine solution, the surface hydrophobicity variation on the
modified PPs was quite distinct from that on the titanium. This further substantiated
the fact that the deposition process would be greatly affected by the substrate’s chemical
and/or physical characteristics.
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In contrast to the one-step immersion scheme for modifying the PP substrates, a
two-step modification scheme was explored based on the hypothesis that dopamine can
enhance PQA-C8 deposition, noted from the contact angle findings in the one-step process.
Previous studies have suggested that a deposited polydopamine layer can serve as the
anchor for subsequent deposition on various substrates [61–64]. The two-step modification
scheme utilized here was immersing the substrate into the dopamine solution first and
then immersing in the PQA-C8 solution. This two-step modification scheme was not
attempted on the titanium substrate since the surface titanium oxide layer on the Ti substrate
(see Section 3.2.3 XPS analysis) can be bound with the catechol functionalized polymers
by chemisorption [60]. In contrast, the PP surface presented only a small number of
oxygen-containing functionalities, likely the hydroxyl groups (see Section 3.2.3 XPS analysis,
Table 4). Henceforth, to overcome this problem, the polymeric substrates may need to be
modified before the PQA-C8 deposition. In this regard, the two-step modification scheme
was explored.

Instead of using an acidic chemical etchant or plasma to add the specific chemical
functionalities needed, the PP substrates were immersed into the dopamine solution fol-
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lowed by the PQA-C8 solution. This gentle immersion approach could reduce the chance
of deterioration of physical properties in polymeric substrates that could occur if plasma or
chemical etchants were used.

For the PP substrate modified by the two-step modification scheme, the surface contact
angle value decreased significantly (p < 0.05) after first immersion into the dopamine
solution (i.e., DA-PP in Figure 1c). This could be attributed to the polydopamine deposited
on the hydrophobic PP substrates. The surface contact angle increased (p < 0.05) with the
additional PQA-C8 immersion (i.e., PQA-DA-PP), likely due to the long C8 alkyl chains
on the PQA-C8. Subsequent surface XPS analysis (see Section 3.2.3 XPS analysis) would
further delineate the differences in surface chemical characteristics of these modified PPs.

3.2.3. XPS Analysis

The surface atomic percentages of different modified titanium and PP substrates
are shown in Tables 3 and 4, respectively. The quaternary N+% was determined by N1s
atomic percentage times; the C-N+ area percentage value was derived from the N1s curve
fitting. The N1s peak was deconvoluted to the C-N (399.8 eV) and C-N+ (402.4 eV) for all
samples except the bare Ti, in which it was deconvoluted to the Ti-N (397 eV) and C-N
(399.8 eV) [65,66] (Figures S10 and S11).

Surface Chemical Characteristics of the Modified Titanium Substrates

For the bare Ti substrate, C1s, N1s, and O1s were noted and it likely resulted from the
adsorbed adventitious hydrocarbons during the Ti plate preparation process (Table 3). The Ti2p
atomic percentage was greatly reduced after modification with PQA-C8 + dopamine solution
without or with the addition of CuSO4/H2O2 oxidants as compared to the ones modified
with the PQA-C8 only. Additionally, an increase in C1s and N1s atomic percentages and a
decrease in O1s atomic percentage were noted in such a comparison. This indicated that a layer
of mixed dopamine + PQA-C8 deposit was formed on the Ti surface. Further, the N1s and
quaternary N+ percentage increased with more dopamine added into the immersion mixture
without or with the CuSO4/H2O2 oxidants. This suggested that the addition of dopamine into
the deposition solution could assist the deposition of PQA-C8 onto the Ti substrate.

Nevertheless, the decreases in the Ti2p and O1s atomic percentages and increases
in N1s and quaternary N+ percentages were far lower when the CuSO4/H2O2 oxidants
were added into the deposition solution as compared to their counterparts. This can
likely be attributed to incomplete deposit coverage due to the shorter deposition duration
and/or the chemical effects exerted by the oxidants on the Ti substrate and PQA-C8 as
described in Section 3.2.2, surface hydrophilicity. Further, a Cu2p signal was noted on
these oxidants-added modified Ti samples despite ultrasonic cleaning after deposition
treatment, likely resulting from the chelation of copper with dopamine or the catechol
chemical configuration [45].

Table 3. Surface atomic percentage of titanium substrate modified by different methods.

Sample Ti2p C1s N1s O1s Cu2p N+

Bare Ti 18.8% 30.7% 2.9% 47.6% - 0%
10:0-Ti 8.1% 51.3% 3.7% 36.9% - 2.34%

10:0.5-Ti 1.6% 69.5% 5.8% 23.2% - 2.87%
10:1-Ti 0.7% 71.7% 6.1% 21.5% - 3.06%

10:0-Ti (CuSO4/H2O2) 11.9% 41.3% 2.8% 40.4% 3.6% 1.77%
10:0.5-Ti (CuSO4/H2O2) 8.9% 50.6% 3.3% 35.0% 2.2% 1.65%
10:1-Ti (CuSO4/H2O2) 5.9% 58.0% 4.2% 29.1% 2.7% 2.81%

To further delineate the surface chemical characteristics of the deposit, the C1s spectra
of different titanium substrates were deconvoluted [67,68]. The Ti-C noted on the bare Ti
substrate, likely resulting from the Ti preparation process, disappeared completely after
immersion into the deposition solution (Figure S12 and Table S1). Further, all PQA-C8 +
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doapmine-modified Ti substrates, with or without CuSO4/H2O2 oxidants, exhibited all
carbon bonds noted in the PQA-C8 and dopamine chemical configuration and the relative
percentages of these bonds did not vary much (Table S1).

Surface Chemical Characteristics of the Modified Polypropylene Substrates

For the PP substrates modified by the one-step deposition process in the non-oxidant-
added system, in opposition to the findings noted for the titanium substrates (Table 3),
the N1s and quaternary N+ percentage values on the modified PP substrates were quite
low for samples modified with PQA-C8 solution only (i.e., 10:0-PP, Table 4). Adding
dopamine into the deposition solution in the non-oxidant-added system enhanced the
PQA-C8 deposition onto the PP substrate. This finding further highlights that the surface
chemical and/or physical characteristics of the bare substrate could play important roles,
yet to be determined, in the solution deposition process.

Adding the CuSO4/H2O2 oxidants into the PQA-C8 + dopamine deposition solution
could increase the surface N1s and N+ atomic percentage values. In the meantime, unlike
the titanium substrate, the Cu2p atomic percentage was very low on these modified PP
substrates. This may implicate less dopamine/catechol chemical structure bound to the PP
substrate as compared to the titanium one.

The surface chemical composition of the PP modified by a two-step process was also
analyzed (PQA-DA-PP in Table 4). The PQA-DP-PP presented similar surface chemical
atomic percentages as those modified by the one-step process with dopamine and oxidants
(CuSO4/H2O2) added, but without the Cu2p signals.

Table 4. Surface atomic percentage of polypropylene substrate modified by different methods.

Sample C1s N1s O1s Cu2p N+

Bare PP 93.7% 0.7% 5.6% - 0%
10:0-PP 82.1% 0.8% 17.1% - 0.56%

10:0.5-PP 80.0% 3.5% 16.6% - 2.47%
10:1-PP 79.7% 4.1% 16.2% - 2.24%

10:0-PP (CuSO4/H2O2) 88.6% 1.7% 9.3% 0.5% 1.31%
10:0.5-PP (CuSO4/H2O2) 76.7% 3.9% 19.0% 0.4% 2.93%
10:1-PP (CuSO4/H2O2) 79.1% 3.3% 17.5% 0.2% 2.65%

PQA-DA-PP 76.2% 4.1% 19.6% - 2.67%

The C1s spectra of the PP substrates modified by the one-step and the two-step process
were curve-fitted as well (Figure S13 and Table S2) [67,68]. The C-C/C-H area percentage
decreased after the PP was modified and the least value was noted on the PQA-DA-PP
substrate, implicating the two-step process was likely the most effective process to deposit the
PQA-C8 onto the PP surface. Additionally, adding the dopamine into the PQA-C8 deposition
solution, with or without adding the CuSO4/H2O2 oxidants, can lead to an increase in C=O
area percentage and a decrease in C-C/C-H area percentage as compared to the ones of
samples modified by the pure PQA-C8 solution. This suggested that dopamine can assist the
PQA-C8 deposition onto the PP substrate.

3.3. Antibacterial Assay

The antibacterial activity, as determined by the bacterial reduction percentage, of
differently modified samples was first examined against Gram-positive S. aureus (Table 5).
Although contact angle and XPS analyses implicated that adding dopamine can assist
the PQA-C8 deposition on titanium substrates, the one modified by the PQA-C8 only
(i.e., 10:0-Ti) presented the highest bacterial reduction percentage in the non-oxidant-
added system (10:0-Ti vs. 10:0.5-Ti vs. 10:1-Ti; p < 0.05). This may be due to the surface
orientation of the bactericidal cationic terminal functionalities, as well as the neighboring
chemical environment around the quaternary functionalities yet to be determined. In
contrast, adding the CuSO4/H2O2 oxidants to the immersion solution greatly improved the
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antibacterial capability of the modified titanium substrates if the dopamine was added into
the PQA-C8 solution (i.e., no statistical difference was noted between 10:0-Ti and 10:0-Ti
(CuSO4/H2O2); p > 0.05). This may be partially attributed to the surface Cu ions noted by
the XPS analyses (Table 3). Nevertheless, changes in the surface chemical configuration
and composition of these CuSO4/H2O2 oxidant-modified titanium substrates should not
be overlooked and extra experimental works are warranted to elucidate these findings.

Table 5. The bacterial reduction percentage of different samples against S. aureus and E. coli (n = 3).

Sample Bacterial Reduction (%)

S. aureus (ATCC 21351) E. coli (ATCC 23501)

10:0-Ti 97.7 ± 2.4 72.28 ± 13.8
10:0.5-Ti 64.8 ± 12.5 -----
10:1-Ti 46.0 ± 4.7 -----

10:0-Ti (CuSO4/H2O2) 98.1 ± 0.5 98.49 ± 0.6
10:0.5-Ti (CuSO4/H2O2) 98.4 ± 0.6 98.23 ± 0.8
10:1-Ti (CuSO4/H2O2) 98.0 ± 1.5 99.25 ± 0.8

10:0-PP 49.8 ± 4.5 -----
10:0.5-PP 68.5 ± 5.8 -----
10:1-PP 54.1 ± 6.5 -----

10:0-PP (CuSO4/H2O2) 97.78 ± 0.3 <30
10:0.5-PP (CuSO4/H2O2) 95.05 ± 0.7 <30
10:1-PP (CuSO4/H2O2) 80.26 ± 12.9 -----

PQA-DA-PP 99.9 96.17 ± 1.1

For the one-step-modified PP, only the PP substrates modified using the CuSO4/H2O2
oxidants showed a fair antibacterial capability against S. aureus. Although dopamine can
assist the PQA-C8 deposition onto the PP substrates (Table 4), the antibacterial capability
of the modified PP substrate was not much improved without adding CuSO4/H2O2
oxidants, implicating these surfaces may not have the right surface configuration needed
for antibacterial applications. Nevertheless, the detailed causes remain to be explored.

The PP modified by a two-step process, instead exhibited a good antibacterial capa-
bility against S. aureus. This implicated that the dopamine deposited in the first step did
not only enhance the following PQA-C8 deposition (Table 4) but also enhanced the right
antibacterial surface configuration needed against S. aureus.

The modified samples with greater than 90% bacterial reduction percentage against
S. aureus were further tested against Gram-negative E. coli (Table 5). The titanium substrates
modified with the solution added with CuSO4/H2O2 oxidants and the PP modified by the
two-step process also had a good antibacterial capability against E. coli while the others did
not. These findings were in accord with a previous study in which Gram-negative microbes
were less likely to be killed by a surface with quaternary ammonium functionalities than
Gram-positive ones [69]. Nevertheless, other surface characteristics, such as the density
of cationic quaternary ammonium functional groups, and others that needed to be further
explored, could also lead to different antimicrobial capabilities against microbes with different
Gram stains noted here.

3.4. Cytotoxicity Assay

Cytotoxicity assessment following the ISO 10993-5 and ISO 10993-12 protocols was
performed on the modified samples with greater than 90% bacterial reduction percentage
against S. aureus. Samples that showed greater than 70% cell viability were considered
non-cytotoxic [70,71]. Figure 2 demonstrates that all samples were non-cytotoxic, with
more than 80% cell viability.
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3.5. Copper Ion Release Test

Since copper ions were reported to be cytotoxic, it is imperative to determine the concen-
trations of copper ions released when the samples were modified with the use of CuSO4/H2O2
as the oxidative reagents. After immersion in PBS solution for 3 h, the released copper ion
concentrations for the samples tested for cytotoxicity (Figure 2) were determined. It was noted
that the release of copper ions was quite low in any case (Table S3). This finding was in accord
with the low cytotoxicity values noted in Figure 2. This finding further suggested that the
higher antibacterial activity noted on these CuSO4/H2O2 oxidant-modified samples (Table 5)
could be partially attributed to surface, not released, copper ions.

3.6. Discussion

Improving the antibacterial capability of artificial synthetic biomaterials remains a
challenging task, especially from the perspective of ease of production process as well as
the cost associated with the process. This study has indicated the antibacterial capability
of metallic titanium and organic polypropylene can be improved by surface modification
with a novel mussel-inspired catechol-terminated cationic polymer with quaternary am-
monium functionalities by simple immersion methods using different immersion solution
formulations and processing methodologies. This finding may guide the future direction in
selecting the immersion process conditions/parameters for improving the surface antimi-
crobial characteristics of other existing metallic and organic FDA-approved biomaterials
with this novel cationic polymer.

The antimicrobial capabilities of the titanium and polypropylene modified by the
optimum conditions were comparable to those reported [18,72,73]. Nevertheless, this
investigation is only the beginning of screening the processing conditions for the opti-
mum antibacterial characteristics against the two common pathogenic microbes S. aureus
and E. coli. Further antimicrobial evaluation should be tailored based on the final clin-
ical applications. For example, a clinically relevant flow field should be utilized if the
polypropylene is tubular. Other microbes, such as Porphyromonas gingivalis and Prevotella in-
termedius/nigrescens needed to be examined if the titanium is used for dental implants since
these microbes were commonly noted in peri-implantitis sites [74].

The novel catechol-terminated cationic polymer synthesized here can be considered
as one of the quaternary ammonium compounds (QACs). Despite their common use
as disinfectants, the safety of QACs has been of concern in the latest report [11]. This
study utilized processing schemes to ensure this cationic polymer can be covalently or
tightly bound to the titanium and polypropylene substrates. Henceforth, the cytotoxicity
assay using the eluent from these modified substrates based upon the ISO 10993-5 and
ISO 10993-12 standards has shown non-cytotoxicity against L929 mouse fibroblast cells.
Nonetheless, once the final clinical application is determined, cytotoxicity against the
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human cells which direct contact to the modified materials, such as uroepithelium cells in
urinary tube applications or osteoblasts and human fibroblast cells in dental/orthopedic
uses, should be examined using both eluent and direct surface-contact methods to ensure
these cationic polymer-modified materials are safe. Advanced, clinically relevant animal
models are still warranted to confirm these modified materials can be of use in the final
clinical setting.

The process scheme to prepare the optimum antimicrobial surface was quite different
between the metallic titanium and organic polypropylene substrates. For the titanium
substrate, a simple one-step immersion scheme can greatly improve the antimicrobial
capability using the solution containing the novel cationic polymer, different amounts
of dopamine, and oxidants. In contrast, for the polypropylene substrate, this one-step
immersion scheme did not improve the antimicrobial capability against both S. aureus and
E. coli. Rather, a two-step scheme, in which the dopamine was first deposited, followed by
the deposition of the novel catechol-containing cationic polymer, can greatly increase the
antibacterial properties of polypropylene. This implicated the importance of the substrate’s
surface properties in governing the surface deposition process, either through chemical
reactions or strong physical bonding, such as hydrogen bonds or electrostatic interactions.
For a poly-olefinic substrate, such as the polypropylene studied here, the virgin surface may
not have the desired characteristics or surface functionalities needed for proper deposition
of this catechol-containing cationic polymer. A pre-deposited polydopamine layer could
enhance the deposition and orientation of cationic functionalities that are needed for
greater antimicrobial capability. Such a polydopamine-assisted grafting/deposition process
has been proposed in various studies [61–64,75,76] and, henceforth, a similar two-step
immersion scheme would be the likely choice for improving the antimicrobial properties of
substrates not having the reactive functionalities towards this novel catechol-terminated
cationic polymer, for example polyethylene (PE), polyvinyl chloride (PVC), or even elastic
polystyrene–butadiene–styrene rubber (SBS).

4. Conclusions

A novel polymer with cationic quaternary ammonium functionalities and a biomimetic
catechol terminal end, PQA-C8, was successfully synthesized. This polymer was employed
for mussel-inspired surface modification of medical-grade titanium and polypropylene
using a one-step or a two-step immersion scheme. Different amounts of dopamine were
added into the PQA-C8 ethanol–tris buffer solution (pH = 8.5), with or without the use of
CuSO4 and H2O2 oxidants, as the immersion solution for the one-step modification scheme.
Contact angle and XPS analyses indicated that, using the one-step modification process,
dopamine would assist the PQA-C8 deposition onto the titanium and polypropylene with
or without the CuSO4 and H2O2 oxidants. Using the two-step modification scheme, in
which the dopamine was deposited onto the plastic substrate before the PQA-C8, can easily
change the surface properties of polypropylene.

The antibacterial assay revealed that only a few modified substrates, namely the
one-step dopamine + PQA-C8-modified titanium substrates with the oxidants added and
the two-step modified polypropylene, exhibited bacterial reduction percentages greater
than 90% against both Gram-positive S. aureus and Gram-negative E. coli. This highlighted
the importance of surface configuration/surface composition of the deposited PQA-C8-
containing layer on different modified substrates in governing the material’s antibacterial
activity. Further experiments are warranted to further elucidate these interrelationships as
well as large-scale/industrial-scale production of antibacterial surfaces with such simple
immersion schemes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16040503/s1, Supplementary Materials (polymers).pdf for
Figures S1–S13 and Tables S1–S3. Figure S1: The 1H-NMR spectra of TFADA; Figure S2: The 1H-
NMR spectra of TFADAAC; Figure S3: The 1H-NMR spectra of DAAC; Figure S4: The 1H-NMR
spectra of BrDAAC; Figure S5: The 1H-NMR spectra of BrDA; Figure S6: The 1H-NMR spectra
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of DMAEMA-C8; Figure S7: The 1H-NMR spectra of PQA-C8; Figure S8: The SEM micrographs
of the bare Ti substrate and different modified Ti ones; Figure S9: The SEM micrographs of the
bare PP substrate and different modified PP ones; Figure S10: The N1s curve fitting results for the
bare Ti substrate and different modified ones; Figure S11: The N1s curve fitting results for the bare
PP substrate and different modified ones; Figure S12: The C1s curve fitting results for the bare Ti
substrate and different modified ones; Table S1: The C1s curve-fitting results of titanium substrate
modified by different methods; Table S2: The C1s curve-fitting results of polypropylene substrate
modified by different methods; Table S3: Released copper ion concentration.
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