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Abstract: In this study, thiol-functionalized ladder-like polysesquioxanes end-capped with methyl
and phenyl groups were synthesized via a simple sol-gel method and characterized through gel
permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic
resonance (NMR), and thermogravimetric analysis (TGA). Additionally, epoxy blends of different
formulations were prepared. Their structural, flame-retardant, thermal, and mechanical properties,
as well as volatile organic compound (VOC) emissions, were determined using differential scanning
calorimetry (DSC), dynamic mechanical analysis (DMA), TGA, scanning electron microscopy (SEM),
limiting oxygen index (LOI), cone calorimetry, and a VOC analyzer. Compared to epoxy blends with
flame retardants containing elemental phosphorus alone, those with flame retardants containing
elemental phosphorus combined with silicon and sulfur exhibited superior thermal, flame-retardant,
and mechanical properties with low VOC emissions. SEM of the residual char revealed a dense
and continuous morphology without holes or cracks. In particular, LOI values for the combustion
of methyl and phenyl end-capped polysilsesquioxane mixtures were 32.3 and 33.7, respectively,
compared to 28.4% of the LOI value for the blends containing only phosphorus compounds. The
silicon–sulfur–phosphorus-containing blends displayed reduced flammability concerning the blends
using a flame retardant containing only phosphorus. This reflects the cooperative effects of various
flame-retardant moieties.

Keywords: epoxy resin; polysilsesquioxane; residual char; flame retardant; cooperative effects

1. Introduction

Epoxy resins (EPs) are important thermoset materials that are extensively used in
chemical, electrical, transport, and defense industries [1–4]. These materials can be used
in various applications, such as coatings, adhesives, electrical and electronic parts, fiber
reinforced, optical fiber, and flame retardant material, because of their excellent chemical
resistance, adhesive strength, mechanical strength, electrical insulation, thermal stability,
dimensional stability, and cost-effectiveness [5–11]. However, EPs are highly flammable
materials with a limiting oxygen index (LOI) for combustion of ≤19.8 [12,13]. Moreover,
application is limited by the production of large amounts of smoke and toxic gases during
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combustion [14,15]. Therefore, for most applications, EPs need to be modified by adding
flame retardants [16]. Flame retardants include inorganic materials like metal hydrates [17],
halogen-based materials containing bromine or chlorine [18], phosphorus-based materials
centered on phosphoric acid esters [19], and nitrogen-based materials, like melamine
cyanurate [20]. Recent developments include biomaterial wood composites that exhibit
flame retardancy and biomimetic properties [21].

Two primary methods exist for enhancing the flame retardancy of EPs. The first
involves the incorporation of brominated bisphenol A. The second entails blending flame
retardant additives into the residual matrix, which is the most common process. However,
halogenated flame retardants can produce toxic volatile dioxins from the polymer matrix
during thermal decomposition in the event of an actual fire. Additionally, additive flame
retardants are susceptible to migration [22,23].

Among various additive flame retardants, phosphorus-based compounds are the most
effective alternatives to halogenated flame retardants. Because their presence provides
excellent flame retardancy, and they do not promote the generation of toxic gases during
combustion [24,25]. Furthermore, in contrast to other additive flame retardants prone
to migration from the polymer matrix, phosphorus compounds typically exhibit good
compatibility with polymers, preventing delamination [26].

Notably, the acidic thermal decomposition products in phosphorus compounds exert
a strong dehydration effect, promoting cationic crosslinking and the formation of a char
layer at the polymer surface [27,28].

This char layer acts as a physical barrier, insulating the polymer materials from further
heat and flame exposure, slowing down its thermal decomposition, and suppressing the
release of flammable gases that could feed the fire [29]. Currently, Diethyl (hydroxymethyl)
phosphonate (DEHMP), a phosphorus compound with excellent compatibility with various
polymers, is attracting interest as a potential flame retardant for polymer-based materials,
such as epoxy resins [30]. However, adding flame retardants may reduce the thermal
or mechanical properties of resins. Therefore, in addition to providing sufficient flame
retardancy, minimizing resin property degradation is essential for tuning a flame-retardant
additive [31].

Functionalized polysilsesquioxanes are widely regarded as a new generation of high-
performance materials and hybrid organic–inorganic structures [32]. Methods for the
synthesis of silsesquioxanes include sol-gel [33], hydrosilylation [34], ring-opening poly-
merization [35], and step-growth polymerization [36]. The sol-gel method is the most
popular synthesis method because it provides a uniform environment for hydrolysis and
condensation reactions and relatively mild reaction conditions, making it compatible with
various organosilane precursors and functional groups, and allowing the synthesis of
organic-inorganic hybrids [37].

Siloxanes are widely used as silicon-based flame retardants because they provide
polymer blends with excellent mechanical properties, high thermal stability, and superior
flame retardancy, even in small amounts [38]. Recently, much attention has been paid to
flame retardants containing silicon, phosphorus, and sulfur [39]. Because of the cooperative
effects of phosphorus–silicon and sulfur, compounds containing all these elements have
been found to have excellent flame-retardant performance [40]. They work together to
form a thermally stable carbon-residue surface, blocking heat and mass transfer during
polymer decomposition.

Additive manufacturing, mainly 3D printing, represents a significant application area
for epoxy resins. Recent studies have explored DGEBA epoxy blends containing various
functional additives, including mixtures with photo-curable acrylic resin for 3D printing
carbon fiber composites [41–43].

However, the issue of VOC emissions during 3D printing remains a concern. Minimiz-
ing VOC emissions from the epoxy resins used in the thermal curing process of 3D printing
is a viable solution [44,45]. The thermal, mechanical, and flame retardant properties of
epoxy systems containing phosphorus, silicon, and sulfur have been investigated [46,47].
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However, the impact of these additives on VOC emissions during combustion has not
been examined. This study aims to manufacture an epoxy blend that increases mechan-
ical properties and flame resistance while minimizing VOC emissions. It also proposes
a high-functionality epoxy blend that alleviates the issue of VOC emissions during the
thermosetting of epoxy used in additive-manufacturing 3D printing.

Polysilsesquioxanes with a ladder structure, end-capped with CH3 and phenyl groups,
respectively, have been synthesized for potential flame-retardant applications. They were
characterized using gel permeation chromatography (GPC), Fourier transform infrared
spectroscopy (FTIR), nuclear magnetic resonance (NMR), and TGA. Additionally, epoxy
blends with different formulations were prepared for comparison with the properties
of blends containing phosphorus-only flame retardants. The structure, flame retardancy,
thermal, mechanical, and VOC emission properties of the cured epoxy blends were assessed
using differential scanning calorimetry (DSC), a universal testing machine (UTM), dynamic
mechanical analysis (DMA), thermogravimetric analysis (TGA), cone calorimetry, scanning
electron microscopy (SEM), LOI determination, and a VOC analyzer.

2. Experimental
2.1. Materials

For thermal curing, the diglycidyl ether of bisphenol A (DGBEA, YD-128) with an
epoxy equivalent weight of 172–176 g/eq was purchased from Kukdo Chemical (Seoul,
Republic of Korea). It was vacuum-dried at 80 ◦C for 3 h and then stored in a dryer for use.
m-Xylylenediamine (m-XDA, 99%), supplied by Sigma-Aldrich (Saint Louis, MO, USA), is
an aromatic amine in the liquid state, chosen for its excellent compatibility with DGEBA at
room temperature. It facilitates the formation of an efficient curing system with epoxy resin.
Diethyl (hydroxymethyl) phosphonate (DEHMP, 97%), supplied by TCI (Tokyo, Japan), is
a liquid at room temperature, making it easily mixable with various additives, including
epoxy resins. It was chosen for its ability to enhance flame retardancy without adversely
affecting the material’s processing characteristics. TCI Chemicals supplied materials such
as (3-Mercaptopropyl)trimethoxysilane(95%), Methoxytrimethylsilane (MTMS, 98%), and
Methoxytriphenylsilane (MTPS, 98%) that are suitable for forming polysilsesquioxanes
through the sol-gel process. All materials were used as received, without any additional
purification.

2.2. Synthesis of Thiol-Functionalized Ladder-like Polysilsesquioxane End-Capped with Methyl
Groups (TFLPM)

First, 30 g of solvent (tetrahydrofuran [THF]) and 5 g of (3-mercaptopropyl) trimethoxysi-
lane monomer (25.46 mmol) were added to a 250-mL two-necked flask and stirred using a
magnetic stirrer. Second, a 0.05N sodium hydroxide aqueous solution (1.5 g) was added to
the mixture. Then, the solution was heated at 50 ◦C for 16 h under a nitrogen atmosphere.
After the reaction, MTMS (0.58 g, 5.57 mmol) and 0.91 g of hydrochloric acid (36.5% aque-
ous solution, 25 mmol) were added and stirred at 50 ◦C for 8 h. After removing the solvent
from the reaction mixture, it was washed several times with dichloromethane and distilled
water. Then, dichloromethane and impurities were removed using a rotary evaporator and
dried in a vacuum oven at 100 ◦C overnight.

TFLPM: 1H NMR (300 MHz, CDCl3, ppm): δ = 0.07–0.20 (m, Si–CH3), 0.71–0.84 (s,
Si–CH2), 1.25–1.48 (m, Si–CH2–CH2–CH2–SH), 1.63–1.79 (d, Si–CH2–CH2), 2.49–2.66 (d, Si–
CH2–CH2–CH2), 13C NMR (100.62 MHz, CDCl3, ppm): δ = 1.34 (Si–CH3), 11.18 (Si–CH2),
27.77 (Si–CH2–CH2–CH2–SH). Yield: 78%.

2.3. Synthesis of Thiol-Functionalized Ladder-like Polysilsesquioxane End-Capped with Phenyl
Groups (TFLPP)

First, 30 g of solvent (THF) and 5 g of (3-mercaptopropyl) trimethoxysilane monomer
(25.46 mmol) were added to a 250 mL two-necked flask and stirred using a magnetic stirrer.
Second, a 0.05 N sodium hydroxide aqueous solution (1.5 g) was added to the mixture.
Then, the solution was heated at 50 ◦C for 16 h under a nitrogen atmosphere. After the
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reaction, MTPS (0.52 g, 1.79 mmol) and 1.56 g of hydrochloric acid (36.5% aqueous solution,
43 mmol) were added and stirred at 50 ◦C for 8 h. After removing the solvent from the
reaction mixture, it was washed several times with dichloromethane and distilled water.
Then, dichloromethane and impurities were removed using a rotary evaporator and dried
in a vacuum oven at 100 ◦C overnight. The synthesis of TLPM and TFLPP is shown in
Scheme 1.
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Scheme 1. Synthesis scheme of TFLPM and TFLPP.

TFLPP: 1H NMR (300 MHz, CDCl3, ppm): δ = 0.71–0.88 (s, Si–CH2), 1.25–1.51 (m,
Si–CH2–CH2–CH2–SH), 1.61–1.82 (d, Si–CH2–CH2), 2.45–2.68 (d, Si–CH2–CH2–CH2),
7.28–7.67 (m, Si–PH). 13C NMR (100.62 MHz, CDCl3, ppm): δ = 11.75 (Si–CH2),
27.31 (Si–CH2–CH2–CH2–SH), 127.82 (Ortho-C), 130.28 (Para-C), 134.06 (Meta-C).
Yield: 72%.

2.4. Preparation of Epoxy Blends (EP, EP-DP5, EP-TM5-DP5, and EP-TP5-DP5)

Flame retardants (TFLPM, TFLPP, and DEHMP in a total weight ratio of 10 wt%) were
added into DGBEA, with the weight of the curing agent m-XDA fixed at 10 wt%. The
mixture was stirred magnetically at 400 rpm for 30 min, followed by curing at 130 ◦C for 1 h
and at 150 ◦C for an additional 1 h. The formulations for the flame-retardant EP specimens
are detailed in Table 1.

Table 1. Formulations of EP blends.

Blends
Formulation (wt%)

EP TFLPM TFLPP DEHMP m-XDA

EP 90 0 0 0 10

EP-DP5 85 0 0 5 10

EP-TM5-DP5 80 5 0 5 10

EP-TP5-DP5 80 0 5 5 10

2.5. Characterization of TFLPM, TFLPP, and Epoxy Blends

TFLPM and TFLPP were structurally analyzed using a Spectrum-400 FTIR spectrome-
ter (Perkin Elmer, Waltham, MA, USA) that conducted 100 scans in the wavenumber range
of 650–4000 cm−1. The ATR crystals at room temperature received the samples (10 µm)
through dropping. All spectra were adjusted through CO2 reduction, noise removal, and
baseline fitting. 1H, 13C, and 29Si NMR spectra were performed with CDCl3 as the solvent
and using 300-MHz NMR equipment (Bruker, Billerica, MA, USA, Avance 300) at room
temperature.
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The molecular weights of TFLPM and TFLPP were determined through size exclusion
chromatography using an EcoSEC HLC-8320 GPC from TOSOH Corporation (Tokyo,
Japan). A 0.15% solution (wt/vol) of TFLPM or TFLPP in THF was injected into the GPC
system. Separation utilized a combination of Guard Super MP (HZ)-M+2 and TSK Gel
Super-multipore HZ-M columns (150 mm × 4.6 mm, 3 µm). The mobile phase comprised
high-performance liquid chromatography-grade THF, flowing at a rate of 0.45 mL/min.
The column temperature was set at 40 ◦C. The GPC system was calibrated with a range
of thin polystyrene molecular weight standards: 580, 2980, 9960, 30,230, 69,650, 128,600,
325,600, and 660,500 Da.

The thermal stability of the samples was determined using a TGA-4000 thermal
analyzer (Perkin Elmer, Waltham, MA, USA). Here, 5–10 mg samples were heated in a
nitrogen environment at a rate of 10 ◦C/min from 50 ◦C to 800 ◦C.

A DSC (Perkin-Elmer DSC-8500, Waltham, MA, USA) was used to investigate the ther-
mal behavior of EP, EP-DP5, EP-TM5-DP5, and EP-TP5-DP5. A 5 to 10 g sample was placed
in an aluminum pan for the DSC, and the experiment was conducted under a nitrogen
atmosphere of 5 ◦C/min in the 30–200 ◦C range. The thermal stability and decomposition
temperatures of the fully cured epoxy compound were measured by TGA using a Perkin
Elmer Pyris 1 thermal analyzer. Samples weighing 5–10 mg were placed on a ceramic
pan and heated in a nitrogen atmosphere to prevent oxidation. The heating process was
performed at a constant rate of 10 ◦C/min from 50 ◦C to 800 ◦C. The thermogravimetric
analysis (TGA) was carried out on TGA Q5000 IR thermal gravimetric analyzer (TA In-
struments, New Castle, DE, USA). About 4–10 mg of epoxy resins was heated from room
temperature to 800 ◦C under air or nitrogen purges. Cone calorimetry tests were conducted
using the cone calorimeter (Fire Testing Technology, East Grinstead, UK) following ISO
5660 standard [48] procedures. Each specimen, with dimensions of 130 × 130 × 3 mm3,
was prepared, mounted on aluminum foil, and irradiated horizontally at a heat flux of
35 kW m−2.

Thermomechanical properties were measured using DMA under the nitrogen atmo-
sphere in tensile mode. The constant frequency was 1 Hz, and the heating temperature
was from −50 ◦C to 200 ◦C. The dimension of the specimens was 25 mm × 25 mm. The
total VOC (TVOC) emission from the samples was quantified using a thermal extractor
(TE, Gerstel, Linthicum, MD, USA) with flow regulation (10–300 mL/min). The VOCs
were released from the samples by carrier gas at a 134 mL/min flow rate and collected
in an adsorption tube. A separate glass extraction tube was used for each 25 mg sample.
The TE consisted of a controllable (room temperature) furnace that heated the glass tube
(178 mm, diameter 13.6 mm) containing the sample. VOC analysis was performed ac-
cording to ES 02603.1: “Methods for measurement of VOC emissions from interior and
construction materials—Solid absorber tubes and GC-MS/FID method”. VOCs were ex-
tracted using a Tenax TA adsorption tube (Supelco, Bellefonte, PA, USA) and a micro-pump
(MP-30, SIBATA, Saitama, Japan) under a steady flow of pure nitrogen gas. A total of 1 L
of gas was sampled during the thermal extraction procedure at 25 ◦C ± 5 ◦C for 30 min.
Individual calibration lines for the following compounds were used for the qualitative
analysis: TVOC, benzene, toluene, ethylbenzene, o-, m-, p-xylene, and styrene. The TVOC
concentration (µg/m3) was calculated using the toluene calibration curve for the total area
of the chromatogram between n-hexane and n-hexadecane. The epoxy cure blends of LOI
were determined using an LOI tester (FTT, Derby, UK) by making specimen dimensions
130 × 6.5 × 3.0 mm3 according to the ASTM 2863 standard [49]. After placing the speci-
men vertically in the LOI tester, a constant flow of high-purity nitrogen and oxygen was
introduced from the bottom, and the combustion behavior was checked by igniting the
leading edge of the specimen. SEM analysis was performed using Nova Nano FE-SEM 450
(FEI Company, Hillsboro, OR, USA).

The LOI value was calculated using the following Equation (1).

LOI =
[O2]

([O2] + [N2])
× 100, (1)
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where [O2] is the oxygen flow rate (L/min−1) and [N2] is the nitrogen flow rate (L/min−1).
The flammability of epoxy-cured blends materials was measured following the ASTM 3801
standard [50] with a specimen size of 130 × 130 × 3 mm3, pretreatment at 23 ◦C ± 2 ◦C,
and 50% ± 5% relative humidity for 48 h. A universal material testing machine model
5567 (universal testing machine, UTM, Instron, Norwood, MA, USA) was used to measure
the tensile strength of the epoxy blends following ASTM D638 [51]. Tensile tests were
performed at a 10 mm/min test speed, 10 tests were performed for each specimen, and
the mean value was used. A lap shear test was performed to measure the mechanical
properties of the specimen. The test specimen consisted of an aluminum plate with an area
of 25.4 × 10 mm2 coated with a 0.2 mm thick epoxy adhesive layer. Tests were performed
according to ASTM D1002 [52], using a model 5567 universal testing machine (Instron,
Norwood, MA, USA) at a speed of 1.3 mm (0.05 in)/min. Before testing, specimens were
cured for 3 h at 130 ◦C in an oven. Lap shear strength was calculated as an average of five
samples for each configuration, with error bars representing one standard deviation.

3. Results and Discussion
3.1. Structural Analyses of TFLPM and TFLPP

Figure 1 displays the FTIR spectra of TFLPM and TFLPP, highlighting several charac-
teristic signals confirming the successful synthesis of the synthetic materials. The presence
of sharp and intense signals at 845 and 1255 cm−1 in TFLPM corresponds to the bending vi-
brations of Si−CH3. These signals were detected with high intensity only in TFLPM. TFLPP
also identified vibration absorption signals at 1431 and 1589 cm−1, which were the C−C
stretching vibrations. The C−H stretching vibrations of the phenyl groups were detected at
809 and 3058 cm−1, respectively. In both TFLPM and TFLPP, the mercapto S−H stretching
mode of the mercapto groups shows a weak signal at 2555 cm−1, and the absorption bands
at 2851 and 2958 cm−1 were assigned to the alkane−CH2 groups. For ladder-structured
polysilsesquioxanes, TFLPM and TFLPP exhibited characteristic horizontal and vertical
silsesquioxane signals at 1020 and 1105 cm−1. In general, closed cage structures, such as
polyhedral oligomeric silsesquioxane (POSS), display a single strong absorption signal near
1100 cm−1, while ladder-like structures around 1050 and 1150 cm−1 exhibit two absorption
signals [53]. The TFLPM and TFLPP absorption signals exhibited a similar pattern to those
observed in previous studies of ladder-like polysilsesquioxanes [54].
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Figure 1. FTIR spectra of the synthesized TFLPM and TFLPP.

Structural analysis of NMR spectra for TFLPM and TFLPP is provided in the
Supporting Information. Specifically, Figure S1a,b presents the 1H NMR spectra of TFLPM
and TFLPP, respectively, while Figure S2a,b displays their corresponding 13C NMR spectra.
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Gel permeation chromatography (GPC) was employed to determine TFLPM and TFLPP
molecular weights. Table 2 presents the results, indicating an average molecular weight
of 3782 for TFLPM and 4682 for TFLPP, based on polystyrene calibration. The polydisper-
sity indexes (PDIs) were measured as 1.78 and 1.95 for TFLPM and TFLPP, respectively.
Figure S3a,b presents the Maldi-TOF MS spectra of TFLPM and TFLPP, respectively.

Table 2. Molecular weights of TFLPM and TFLPP.

Sample Mn (g/mol) Mw (g/mol) PDI (Poly Dispersity Index) [Mw/Mn]

TFLPM 2122 3782 1.78
TFLPP 2340 4682 1.95

An XRD analysis was conducted to investigate the structures of TFPLPM and TFLPP,
as presented in Figure 2. According to the literature [55], laddered polysilsesquioxanes
typically manifest two characteristic diffraction signals. Two distinct diffraction signals
were observed around 8◦ and 20◦, corresponding to the distance between their organic
groups (designated as a) and the length of their siloxane bond (Si-O-Si) (designated as b),
respectively [56]. The dimensions corresponding to the a and b diffraction signals were
calculated to be 14.1 and 4.1 Å for TFLPM and 14.7 and 4.4 Å for TFLPP.
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Table 3. Thermal data obtained from TGA thermograms of TFLPM and TFLPP. 
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Doyle’s integral procedural decomposition temperature (IPDT) provides a quantita-
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sistent regardless of the number of decomposition steps observed in TGA analysis. A* is 
a simplified value that combines the residual mass and temperature and can be expressed 

Figure 2. XRD pattern of TFLPM and TFLPP.

3.2. Comparative Analysis of Thermal Characteristics of TFLPM and TFLPP

Figure 3a,b display the decomposition curves of TFLPM and TFLPP, respectively.
As seen in Table 3, TFLPP exhibits a higher maximum decomposition temperature than
TFLPM. This includes the decomposition temperature at a 5% weight loss (Tdec−5%), the
decomposition temperature at maximum weight loss (Tmax), thermal stability indices (A*,
K*), and the integral procedural decomposition temperature (IPDT). The decomposition
temperature at a 5% weight loss was 407.38 ◦C for TFLPM and 429.77 ◦C for TFLPP.
Additionally, due to the formation of the polysilsesquioxane structure, the residual mass of
TFLPM and TFLPP reached 43.82% and 47.53%, respectively.

Table 3. Thermal data obtained from TGA thermograms of TFLPM and TFLPP.

Tdec−5% (◦C) Tmax (◦C) A* · K* IPDT (◦C) Residual Mass (%)

TFLPM 407.38 501.02 0.67 706.31 43.82
TFLPP 429.77 526.17 0.72 725.74 47.53



Polymers 2024, 16, 842 8 of 19

Polymers 2024, 16, x FOR PEER REVIEW 8 of 20 
 

 

5 10 15 20 25 30

 TFLPM
 TFLPP

2θ (degree)

In
te

ns
ity

 (a
rb

. u
ni

ts
)

(a)

(b)

 
Figure 2. XRD pattern of TFLPM and TFLPP. 

3.2. Comparative Analysis of Thermal Characteristics of TFLPM and TFLPP 
Figure 3a,b display the decomposition curves of TFLPM and TFLPP, respectively. As 

seen in Table 3, TFLPP exhibits a higher maximum decomposition temperature than 
TFLPM. This includes the decomposition temperature at a 5% weight loss (Tdec−5%), the de-
composition temperature at maximum weight loss (Tmax), thermal stability indices (A*, K*), 
and the integral procedural decomposition temperature (IPDT). The decomposition temper-
ature at a 5% weight loss was 407.38 °C for TFLPM and 429.77 °C for TFLPP. Additionally, 
due to the formation of the polysilsesquioxane structure, the residual mass of TFLPM and 
TFLPP reached 43.82% and 47.53%, respectively. 

100 200 300 400 500 600 700 800
20

30

40

50

60

70

80

90

100

Temperature (°C)

W
ei

gh
t l

os
s 

(%
)

(a)  TFLPM
 TFLPP

 
100 200 300 400 500 600 700 800

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Temperature (°C)

D
er

iv
at

iv
e 

lo
ss

 (%
/m

in
)

 TFLPM
 TFLPP

(b)

 
(a) (b) 

Figure 3. (a) TGA and (b) DTG curves of TFLPM and TFLPP under nitrogen atmospheres. 

Table 3. Thermal data obtained from TGA thermograms of TFLPM and TFLPP. 

 Tdec−5% (°C) Tmax (°C) A* · K* IPDT (°C) Residual Mass (%) 
TFLPM 407.38 501.02 0.67 706.31 43.82 
TFLPP 429.77 526.17 0.72 725.74 47.53 

Doyle’s integral procedural decomposition temperature (IPDT) provides a quantita-
tive measure of thermal stability [57]. Calculated as a ratio of areas, IPDT remains con-
sistent regardless of the number of decomposition steps observed in TGA analysis. A* is 
a simplified value that combines the residual mass and temperature and can be expressed 

Figure 3. (a) TGA and (b) DTG curves of TFLPM and TFLPP under nitrogen atmospheres.

Doyle’s integral procedural decomposition temperature (IPDT) provides a quantitative
measure of thermal stability [57]. Calculated as a ratio of areas, IPDT remains consistent
regardless of the number of decomposition steps observed in TGA analysis. A* is a
simplified value that combines the residual mass and temperature and can be expressed as
a ratio of the total area under the TGA thermal analysis curve and the residual mass. In
this case, thermal stability was mainly influenced by initial decomposition temperature
and residual mass. To calculate IPDT and assess the thermal stability of TFLPM and TFLPP,
the area under the decomposition curve was integrated using Equation (2):

IPDT (◦C) = A* · K* (Tf − Ti) + Ti, (2)

where
A* is the area ratio of the total curve and total TGA thermo-gram ((S1 + S2)/(S1 + S2 + S3)),
K* is the coefficient of A* ((S1 + S2)/S2),
Ti is the initial experimental temperature (50 ◦C), and
Tf is the final experimental temperature (800 ◦C).
Figure 4 presents a schematic for calculating IPDT. S2 is obtained by multiplying the

residual amount by the temperature interval. S1 is the difference between the total area
under the decomposition curve and S2. S3 represents the remaining area under the baseline.
As shown in Table 3, both TFLPM and TFLPP exhibited excellent thermal stability and heat
resistance, with IPDT values of 706.31 and 725.74 ◦C, respectively. The observed difference
in thermal stability can be attributed to the varying molecular weights and properties of
phenyl and methyl groups. Polymers with higher molecular weights generally exhibit
greater resistance to high temperatures due to enhanced van der Waals intermolecular
forces [58].

Additionally, the difference in thermal stability between silsesquioxanes with phenyl
and methyl groups can be explained by the bond dissociation energies (BDEs) of Sp2 and
Sp3 hybridized C-H bonds. Sp2 hybridized C-H bonds in aromatic rings, like phenyl groups,
exhibit higher BDEs than Sp3 hybridized C-H bonds in methyl groups. This disparity is
due to the Sp2 carbon atoms’ larger s-character (33%) and the resulting shorter, stronger
bonds from the greater overlap between carbon and hydrogen s-orbitals, compared to the
25% s-character in Sp3 hybridized carbons [59,60]. Therefore, more energy is required to
break Sp2 C-H bonds than Sp3 C-H bonds, making silsesquioxanes with phenyl groups
less susceptible to bond cleavage under thermal conditions.
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Figure 4. Schematic of S1, S2, and S3 for A* and K*.

3.3. Comparative Analysis of the Thermal Stability of Epoxy Blends

Figure 5a,b display the TGA and DTG curves of epoxy blends in a nitrogen atmosphere,
while Figure 5c,d show the TGA and DTG curves of epoxy blends in an air atmosphere.
Based on the thermal analysis, important thermal safety factors, temperature of decomposi-
tion at 5% weight loss (Tdec−5%), the decomposition temperature at maximum weight-loss
(Tmax), thermal stability indexes (A*, K*), and IPDT, were calculated and presented in
Table 4.
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Figure 5. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) curves of 
epoxy blends in nitrogen (a,b) and air (c,d) atmospheres. 

Table 4. Epoxy blends’ thermal stability data obtained from TGA thermograms. 

Blends Atmosphere Tdec−5% (°C) Tmax1 (°C) Tmax2 (°C) A* · K* IPDT (°C) Residual Mass (%) 
EP 

N2 

305.54 414.77 - 0.57 630.73 18.63 
EP-DP5 270.49 372.68 - 0.49 603.47 21.26 
EP-TM5-DP5 400.95 487.46 - 0.64 675.52 24.22 
EP-TP5-DP5 432.56 504.67 - 0.69 700.83 28.49 
EP 

Air 

293.13 357.41 541.06 0.53 609.54 14.84 
EP-DP5 262.54 311.39 484.51 0.44 584.26 17.11 
EP-TM5-DP5 383.51 373.77 546.98 0.59 653.61 19.97 
EP-TP5-DP5 417.33 481.55 605.76 0.62 688.27 21.56 

Pure EP exhibited a decomposition temperature of 305.54 °C at a 5% weight loss in 
the nitrogen atmosphere, with a char yield of 18.63% at 800 °C. The char yield showed a 
linear increase to 21.26 (EP-DP5), 24.22 (EP-TM5-DP5), and 28.49% (EP-TP5-DP5) for the 
phosphorus-only and silicon–sulfur–phosphorus flame retardant-added blends, respec-
tively. EP-DP5, containing only phosphorus flame retardant, showed a remarkable de-
crease in decomposition temperature (270.49 °C) at a 5% weight loss compared to pure 
EP. EP-DP5 with phosphorus flame retardant alone likely led to a plasticizing effect, re-
ducing the epoxy’s crosslinking density and glass transition temperature, as evidenced by 
the decrease of temperature of decomposition at 5% weigh loss [61]. In particular, EP-TP5-
DP5 displayed superior thermal stability and char yield due to its high phenyl content, 
which enhances molecular chain stiffness and improves thermal stability [62].  

Under air conditions, the TGA curves for epoxy blends reveal a two-step degradation 
process: the decomposition of the epoxy chain followed by the decomposition between 
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Table 4. Epoxy blends’ thermal stability data obtained from TGA thermograms.

Blends Atmosphere Tdec−5% (◦C) Tmax1 (◦C) Tmax2 (◦C) A* · K* IPDT (◦C) Residual Mass (%)

EP

N2

305.54 414.77 - 0.57 630.73 18.63
EP-DP5 270.49 372.68 - 0.49 603.47 21.26
EP-TM5-DP5 400.95 487.46 - 0.64 675.52 24.22
EP-TP5-DP5 432.56 504.67 - 0.69 700.83 28.49

EP

Air

293.13 357.41 541.06 0.53 609.54 14.84
EP-DP5 262.54 311.39 484.51 0.44 584.26 17.11
EP-TM5-DP5 383.51 373.77 546.98 0.59 653.61 19.97
EP-TP5-DP5 417.33 481.55 605.76 0.62 688.27 21.56

Pure EP exhibited a decomposition temperature of 305.54 ◦C at a 5% weight loss in
the nitrogen atmosphere, with a char yield of 18.63% at 800 ◦C. The char yield showed
a linear increase to 21.26 (EP-DP5), 24.22 (EP-TM5-DP5), and 28.49% (EP-TP5-DP5) for
the phosphorus-only and silicon–sulfur–phosphorus flame retardant-added blends, re-
spectively. EP-DP5, containing only phosphorus flame retardant, showed a remarkable
decrease in decomposition temperature (270.49 ◦C) at a 5% weight loss compared to pure EP.
EP-DP5 with phosphorus flame retardant alone likely led to a plasticizing effect, reducing
the epoxy’s crosslinking density and glass transition temperature, as evidenced by the
decrease of temperature of decomposition at 5% weigh loss [61]. In particular, EP-TP5-DP5
displayed superior thermal stability and char yield due to its high phenyl content, which
enhances molecular chain stiffness and improves thermal stability [62].

Under air conditions, the TGA curves for epoxy blends reveal a two-step degradation
process: the decomposition of the epoxy chain followed by the decomposition between
the char residue and oxygen [63]. Compared to nitrogen environments, the epoxy blends
in air exhibit slightly lower Tdec−5% (◦C), T max (◦C), and IPDT values. The observed
thermal stability of the epoxy blends suggests their stability for applications even under
oxidative conditions.

3.4. LOI Test and UL94-V Ratings for Epoxy Blends

The limited oxygen index (LOI) is a widely used metric to assess polymeric materials’
flammability and flame retardancy [64]. Materials exhibiting an LOI above 30% are catego-
rized as flame retardants [65]. Such materials must also receive a UL 94 V-0 rating to be
considered flame retardant [66]. Details regarding the UL 94 V test requirements can be
found in Table S1.

The LOI and UL-94 V tests evaluated the flame retardancy of the EP system, with
results presented in Figure 6. Pure EP exhibited high flammability, evidenced by a low
LOI of 20.8% and an NR rating in UL-94 testing due to the melt-dropping phenomenon.
EP-DP5 systems containing phosphorus flame retardants increased the LOI to 28.4% and
achieved a UL-94 V-1 rating. Furthermore, the EP-TM5-DP5 and EP-TP5-DP5 systems,
incorporating silicon, sulfur, and phosphorus, reached a UL-94 V-0 rating and achieved LOI
values of 32.3 and 33.7%, respectively. These results suggest a cooperative effect within the
EP-TM5-DP5 and EP-TP5-DP5 systems, which incorporate silicon, sulfur, and phosphorus
flame retardants, leading to enhanced flame retardancy compared to systems containing
only phosphorus additives.
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3.5. Cone Calorimeter Test of Epoxy Blends

The cone calorimetry test (CCT) is a widely adopted method for evaluating the flame
retardancy performance of polymers. The test results directly correlate with the actual
calorific value of combustion and offer important combustion parameters, making it one of
the most advanced methods for combustion behavior assessment [67]. Figure 7 presents
the characterization curves for heat release rate (HRR) and total heat release (THR). Cone
calorimetry data (CCT), such as time to ignition (TTI), maximum HRR, and total THR, are
listed in Table 5.
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Table 5. The cone calorimeter results of the pure EP and its blends.

Blends TTI (s) HRR (KW/m2) THR (MJ/m2)

EP 73 868.5 94.3
EP-DP5 77 703.1 76.4
EP-TM5-DP5 85 619.8 66.8
EP-TP5-DP5 91 539.2 56.7

Figure 7a,b demonstrates a significantly lower heat release rate (HRR) and total heat
release (THR) for EP blends compared to pure EP. Additionally, as shown in Table 5, the
time to ignition (TTI) is significantly extended to 85 s for EP-TM-DP5 and 91 s for EP-TP5-
DP5, compared to 73 s for pure epoxy. This extended TTI suggests a longer potential escape
window for individuals in the event of a fire. These fire test results, therefore, demonstrate
that the sulfur and phosphorus–silicon system combination effectively enhances the flame
retardancy of EP.
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3.6. Morphology of Epoxy Blends

Scanning electron microscopy (SEM) analysis was used to investigate the connec-
tion between the microstructure and flame retardancy of the EP system’s char layer after
combustion [68,69]. The findings are presented in Figure 8a–d. Figure 8a reveals a dis-
continuous surface for the pure EP, characterized by numerous holes and identifiable
cracks on the char residue. This structure is ineffective in preventing the migration of
flammable decomposition volatiles and the penetration of oxygen and heat, leading to
poor flame-retardant properties. Figure 8b demonstrates that incorporating a phosphorus-
containing flame retardant results in a more continuous and dense char layer with fewer
holes and more char residue, indicating improved flame retardancy. Figure 8c,d shows
that adding a silicon–sulfur–phosphorus-containing flame retardant further enhances the
char layer’s continuity and density, accompanied by increased char residue, improving the
flame retardant performance.
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Figure 8. Residual char morphologies: (a) EP; (b) EP-DP5; (c) EP-TM5-DP5; and (d) EP-TP5-DP5.

Energy-dispersive X-ray spectroscopy (EDX) analysis determined the elemental com-
position of the epoxy blend char residue (C, O, N, Si, P, and S), as shown in Table 6. Com-
pared to pure EP, both EP-DP5 (containing phosphorus) and the silicon- and phosphorus-
containing blends, EP-TM5-DP5 and EP-TP5-DP5, exhibited an increased carbon weight
percentage. This increase in EP-TM5-DP5 and EP-TP5-DP5 is attributed to the stabilizing
effect of silica residue. Especially, EP-TP5-DP5, with the highest sulfur content, also dis-
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played the highest carbon weight percentage. These results suggest that EP-TP5-DP5, due
to its high sulfur content, releases relatively more SO2, a non-combustible gas that dilutes
the atmosphere and enhances flame retardancy.

Table 6. Elemental analysis of epoxy blends of combustion residual.

Blends
Element Content, wt%

Carbon (C) Oxygen (O) Nitrogen (N) Silicon (Si) Phosphorus (P) Sulfur (S)

EP 78.71 16.53 4.76 - - -
EP-DP5 79.12 15.13 4.31 - 1.44 -
EP-TM5-DP5 81.67 8.61 4.11 3.67 1.46 0.48
EP-TP5-DP5 83.03 6.62 3.92 4.34 1.51 0.58

3.7. Comparative Analysis of the Thermomechanical Properties of Epoxy Blends

Quantifying internal structure and rheological changes during thermoset gelation
remains a significant challenge. Therefore, dynamic viscoelasticity measurements are
typically performed post-reaction. These measurements offer insight into physical and
mechanical properties through rheological parameters like viscosity and dynamic moduli.
Specifically, the storage modulus (G′) characterizes the elastic behavior, while the loss
modulus (G′′) reflects the viscous component. In particular, at the gelation point, the loss
tangent becomes independent of frequency. Additionally, the point of overlap between
G′ and G′′ (tan δ = 1), as proposed by Tung and Dynes [70], can be determined as the
gelation point.

tanδ =

(
G′′

G′

)
= tan

(nπ
2

)
. (3)

Both the loss modulus (G′′) and loss tangent (tan δ) exhibit sensitivity to material
molecular motion and transitions. As crosslinked epoxy molecules initiate micro-Brownian
motion, both viscoelastic properties increase. This increase is reflected as a peak in the tan δ

graph, signifying segmental diffusion and marking the gelation point. The corresponding
temperature at this point is designated as the glass transition temperature.

The glass transition temperature (Tg) is an important parameter for thermosetting
resins, and it was measured using DSC. Figure 9a reveals a single Tg for all epoxy blends,
indicating good dispersion of additives within the epoxy matrix. As evident in both
Figure 9a and Table 7, EP, EP-DP5, EP-TM5-DP5, and EP-TP5-DP5 exhibited Tg values
of 105.33, 101.03, 107.58, and 109.40 ◦C, respectively. The highest Tg is observed for EP-
TP5-DP5, which can be attributed to the increased rigidity imparted by the relatively high
number of benzene rings introduced by the phenyl end-caps [71]. On the other hand,
incorporating phosphorus-only flame retardants decreased Tg compared to pure EP. This
can be explained by their plasticizing effect [72], which weakens interactions between
polymer chains and increases free volume within the material [73].
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Table 7. Glass transition temperature (Tg) and storage modulus (MPa) of epoxy blends.

Blends Tg (DSC) (◦C) Tg (DMA) (◦C)
Storage Modulus (MPa)

50 ◦C Tg + 40 ◦C

EP 105.33 105.43 1947.16 10.49
EP-DP5 101.03 102.47 1394.17 8.91
EP-TM5-DP5 107.58 107.66 2090.30 23.07
EP-TP5-DP5 109.40 109.88 2274.33 31.29

This is consistent with the Tg values measured by DSC, as shown in Figure 9a.
Figure 9b presents the storage modulus measured in the DMA analysis. As shown

in Table 7, the EP-TP5-DP5 exhibited the highest storage modulus at 50 ◦C, reaching
2274.33 MPa. In particular, high storage moduli were also observed across all other tem-
peratures. Figure 9c shows the tan δ curve obtained via DMA, with corresponding glass
transition temperatures determined from the peaks. These Tg values (105.43, 102.47, 107.66,
and 109.88 ◦C for EP, EP-DP5, EP-TM5-DP5, and EP-TP5-DP5, respectively) closely match
the Tg values measured by DSC in Figure 9a.

3.8. Comparative Analysis of the Mechanical Properties of Epoxy Blends

Tensile and flexural tests were conducted to evaluate the mechanical properties of
epoxy blends. Figure 10 shows the tensile stress–strain curves, and Table 8 summarizes
the corresponding tensile and flexural data. Particularly, EP-DP5 with added phosphorus
exhibits a significantly reduced crosslinking density in the cured epoxy resin, resulting
in a marked decrease in tensile stress and strain. On the other hand, in the case of EP-
TM5-DP5 and EP-TP5-DP5 with polysilsesquioxane, the inorganic Si-O-Si core acts as a
high-functional anchor, and the flexible organic branches have a reinforcing effect on the
DGEBA matrix [74], leading to improved tensile strength and mechanical properties.
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Table 8. Mechanical property results of the pure Ep and its blends.

Blends Tensile Strength (MPa) Tensile Modulus (GPa) Flexural Strength (MPa) Flexural Modulus (GPa)

EP 68.5 ± 1.6 3.16 ± 0.09 97.4 ± 2.7 2.92 ± 0.19
EP-DP5 61.8 ± 1.9 2.42 ± 0.16 89.2 ± 3.4 2.58 ± 0.09
EP-TM5-DP5 75.6 ± 2.8 3.72 ± 0.09 106.8 ± 2.3 3.21 ± 0.15
EP-TP5-DP5 85.3 ± 2.2 4.34 ± 0.19 123.3 ± 1.9 3.58 ± 0.11



Polymers 2024, 16, 842 15 of 19

Furthermore, EP-TP5-DP5 end-capped with phenyl groups displays superior mechan-
ical properties compared to EP-TM5-DP5 end-capped with methyl groups. The phenyl
group is larger and bulkier than the methyl group, affecting the packing and arrangement
of the polymer chains, and can increase mechanical properties through steric effects of
intermolecular interactions [75,76].

Figure 11 compares the lap shear strengths of various epoxy blends, revealing a general
decrease in mechanical properties with the addition of phosphorous flame retardants, as
reported in the literature [77]. Consistent with expectations, EP-DP5 exhibited a lower
lap shear strength than EP. In particular, both EP-TM5-DP5 and EP-TP5-DP5 displayed
increased strength compared to EP, as evident in the Figure 11. Among the epoxy blends,
EP-TP5-DP5 achieved the highest lap shear strength of 13.26 MPa, representing a 25%
improvement over EP. This enhancement can be attributed to the cooperative effect of
silicon–sulfur–phosphorus.
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3.9. Analysis of the VOC Emissions of Epoxy Blends

Table 9 presents the VOC factors for the epoxy blends. These factors include five
specific VOCs (benzene, toluene, ethylbenzene, xylene, and styrene) known to be harmful
to human health and the environment, as well as the total VOCs (TVOCs), which measure
the entire concentration of volatile organic compounds and other organic substances that
evaporate into the air, regardless of their potential harm. Table 9 reveals TVOC emissions
of 268.45, 230.30, 189.22, and 168.12 µg/m3 for EP, EP-DP5, EP-TM5-DP5, and EP-TP5-
DP5, respectively. Especially, EP-TM5-DP5 and EP-TP5-DP5, incorporating silicon–sulfur–
phosphorus flame retardants, exhibit significantly lower TVOC emissions (<200 µg/m3).
The observed reduction in VOC emissions can likely be attributed to the high molecular
weight of TFLPM and TFLPP. Generally, higher molecular weights correlate with lower
vapor pressure, reducing volatility and, consequently, minimizing emissions [78]. These
results are consistent with previous findings [79] and suggest that by reducing the potential
for vaporization, the release of VOCs during combustion can be minimized, consequently
mitigating potential risk in the event of an actual fire.
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Table 9. Comparison of VOC emissions for EP, EP-DP5, EP-TM5-DP5, and EP-TP5-DP5.

[µg/m3] EP EP-DP5 EP-TM5-DP5 EP-TP5-DP5

TVOC 268.45 230.30 189.22 168.12
5VOCs 6.81 6.4 5.9 4.9
Toluene 0.92 0.9 0.83 0.6
Benzene 5.89 5.3 4.1 3.3

Ethylbenzene 0 0 0 0
m, p-Xylene 0 0 0 0

Styrene 0 0 0 0

4. Conclusions

This study successfully developed novel ladder-structured polysilsesquioxane flame
retardants, end-capped with methyl (CH3) and phenyl groups, respectively, via the sol-gel
method. Epoxy blends incorporating TFLPM and TFLPP demonstrated superior flame
retardancy compared to phosphorus-only flame retardants, which is attributed to the
cooperative effects of silicon, phosphorus, and sulfur. The enhancement is ascribed to
the cooperative effect of silicon–phosphorus–sulfur. Epoxy blends incorporating silicon–
sulfur–phosphorus achieved a UL 94 V-0 rating. The non-flammable gas produced by
sulfur decomposition played a crucial role in gas-phase flame retardation by diluting the
combustible gas and reducing oxygen concentrations. Among the epoxy blends, those con-
taining TFLPP exhibited the highest LOI value (33.7%) and residual char content according
to the LOI Test and TGA analysis. SEM results further indicated that blends containing
TFLPP generated a dense, uniform char layer. Epoxy blends enriched with phenyl groups,
particularly those containing TFLPP, showed increased stiffness and glass transition tem-
perature (Tg), resulting in a higher storage modulus and a 25% improvement in lap shear
strength compared to pure epoxy (EP). Importantly, these blends also demonstrated the
lowest volatile organic compound (VOC) emissions.

The developed epoxy blend also provides significant advantages for using 3D printing
in additive manufacturing. It improves mechanical strength and flame retardancy while
reducing the emission of volatile organic compounds (VOCs). This reduction mitigates
potential environmental and health issues that could arise during the thermal curing
process of 3D printing.
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