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Abstract: A plastic injection waste known as “purge” cannot be reintegrated into the recycling
chain due to its shape, size, and composition. Grinding these cannot be carried out with traditional
mills due to significant variations in size and shape. This work proposes a process and the design
of a device that operates with solar energy to cut the purges without exceeding the degradation
temperature. The size reduction allows reprocessing, revalorization, and handling. The purges
are mixtures of processed polymers, so their characterization information is unavailable. Some
characterizations were conducted before the design of the process and after the cut of the purges.
Some of the most representative purges in a recycling company were evaluated. The flame test
determines that all material mixtures retain thermoplasticity. The hardness (Shore D) presented
changes in four of the purges being assessed, with results in a range of 59–71 before softening and
60–68 after softening. Young’s modulus was analyzed by the impulse excitation technique (IET),
which was 2.38–3.95 GPa before softening and 1.7–4.28 after softening. The feasibility of cutting
purges at their softening temperature was evaluated. This was achieved in all the purges evaluated at
250–280 ◦C. FTIR allowed for corroboration of no significant change in the purges after softening. The
five types of purges evaluated were polypropylene-ABS, polycarbonate-ABS-polypropylene, yellow
nylon 66, acetal, and black nylon 66 with fillers, and all were easily cut at their softening temperature,
allowing their manipulation in subsequent process steps.

Keywords: recycling; purges; polymers; processing; waste

1. Introduction

Polymeric materials can be repeatedly recycled and reused. Gu et al. [1] studied
life cycle environmental issues associated with recycling plastic waste in China. Recy-
cled raw materials were shown to be ecologically preferable to unprocessed materials, as
manufacturing products with the latter has more environmental impact than those made
from reclaimed material. Recycling generally makes high-value products from waste and
significantly reduces environmental impact [2–6]. The use of these recycled polymers in
the reinforcement of construction materials is one of the alternatives that has been most
evaluated in some studies [7–15], concluding that they present improvements in proper-
ties, such as resistance to high temperatures, mechanical durability, resistance to moisture
damage, less porosity, higher resistance to cracking, higher durability, among others.

L. Gu and Ozbakkaloglu [16] critically reviewed studies on using plastics in con-
crete [17,18] and found that recycled plastic fibers can improve their properties. Their
review indicates that its use can contribute to a more sustainable construction industry and
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recommends studies focused on environmental aspects, such as the long-term behavior
and ecological consequences of recycling this type of concrete after use.

Vila-Cortavitarte et al. [19] explored the benefits of substituting polystyrene for tar in
the asphalt mix. They used three types of recycled polystyrene waste in the concrete mix:
general-purpose polystyrene, high-impact polystyrene, and reinforced polystyrene. This
work was mainly focused on reducing the concentration of tar since its carbon emissions
can pollute the environment. The mixture evaluated in this investigation was asphalt
concrete. The two replacement rates of tar with polystyrene were 1% and 2% in a mix,
representing about 23% and 46% of the total amount of tar. The 2% mixture was discarded
due to a cohesion problem. Each sample was subjected to a series of tests to compare the
modified mechanical properties. A blend with 1% polystyrene showed promising results
with improved mechanical properties. The results showed that substituting polystyrene for
tar reduced the environmental problem and contributed to the life cycle evaluation.

Recycling plastic waste for the construction industry is considered one of the best
methods of disposing of plastic waste. Chaukura et al. [20] concentrate on some proposals
for potential uses for these wastes in the manufacture of adhesives, paints, artifacts, garden
furniture, and wastewater treatment products, including mosquito control. Currently,
the methods for recycling plastics are grouped into primary, secondary, tertiary, and
quaternary [21–26]. Since the process followed in primary and secondary recycling is
the same, both are usually called “mechanical recycling”, which is frequently used [3,27].
It consists of two steps: separating the plastic from any other material and cutting it
(sometimes, it is required to introduce it into an extruder to make pellets). Tertiary or
chemical recycling seeks to recover the monomers or basic chemicals from the polymer.
The most widely used techniques are flame, gasification, and liquefaction, although new
technologies are also being developed to convert plastic waste into fuel [28,29]. Although
this type of recycling is widely used, there are still many opportunities. Some works
present separation analyses based on solvents or catalysts [30,31]. In general, solvent
extraction separation includes removing impurities and some plastic additives, dissolution,
and reprecipitation or devolatilization, which occurs when the polymers dissolve in the
solvents and selectively crystallize each polymer. Selective dissolution can be used when
the dissolution of the polymer of interest or all polymers except the target is feasible. The
significant factor for the dissolution process is finding a selective solvent. However, several
factors influence the dissolution of the polymer, such as composition, molecular weight,
polymer structure, solvent composition, type, etc.

Dissolution is the most widely used technology, particularly in the automotive industry.
However, it is estimated that only 20% of plastics can be recycled this way [32]. Regarding
transforming polymers into hydrocarbons, Ragaert et al. [33] compiled state-of-the-art
techniques, such as pyrolysis, chemolysis, hydrogen techniques, fluid catalytic cracking,
and gasification. In addition, they discussed the main challenges and potential methods
for this type of recycling. Finally, in quaternary recycling (known as energy recovery),
as its name suggests, plastic waste is used as an energy source through incineration.
Thakur et al. [34] mention that power generation by recycling plastic waste is currently
one of the most eco-efficient methods, due to the massive process, and follows almost all
strict emission standards and energy requirements. However, they point out that many
hazardous chemicals, such as gases and dioxins, can evolve from incomplete solid waste
combustion, leading to severe environmental pollution by carbon dioxide, toxic chemicals,
and harmful ashes. For this reason, some incineration methods are being studied to propose
those that reduce the emission of toxic substances [35,36].

Plastics have caused severe environmental pollution since they involve extracting
petroleum and are thrown away. Even collecting and recycling them implies a highly
energy-consuming process. Nonetheless, compared with using new raw materials, recy-
cling is accepted as less harmful. The process of recycling plastics, even considering that
there is an implicit deterioration per cycle, is an industry that follows more regulations.
One of many factors in polymer environmental pollution is the extreme dependency that
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modern society has on them. The cost/benefit ratio for each person does not consider
the collateral consequences of the items’ post-use destiny. Sustainability and the circular
economy precisely consider the post-use of plastic products through purge reutilization.
We are using plastics at an extreme level, considering that they degrade oppositely to glass,
metal (even corroded metal can be melted again), and ceramics.

It is important to note that when any of the methods mentioned above do not recover
plastic waste, it is sent to landfills. This is more than a solution; it is a severe problem due to
its reduced degradability and the ample space it occupies, together with runoff and leakage
of microplastics (MP) or nanoplastics (NP) [37,38]. Huang et al. [39] mentioned that landfills
could have increased plastic-degrading microorganisms, causing biodegradation that,
together with environmental oxidation, become drivers for plastic degradation. They show
that polymers have differences in their generation rates of microplastics, with polyethylene
above polypropylene (PP) or polystyrene (PS). Also, they proposed the carbonyl index to
quantify the polymer degradation as a function of the disposal age. So, biodegradation
through biological treatments is a widely evaluated alternative. It proposes using enzymes
and organisms that can digest plastic, trap carbon, and return it to the environment as a
disposable resource [4,40–42].

Vimala and Mathew [43] tested Bacillus subtilis for its potential to use polyethy-
lene as its sole carbon source. They discovered that some microbial species produce
surfactant compounds (biosurfactants) that enhance the degradation process. Further-
more, UV-treated polymer films facilitated their viability to feed microorganisms, which
increases biodegradation.

Restrepo-Flórez et al. [44], in their study of the microbial degradation and deterioration
of polyethylene, show a comprehensive summary of the microorganisms that, according to
some studies, participate in the biodegradation of polyethylene. They also present their
effects on the properties of polyethylene and summarize the process of its degradation. They
stated that, although slow, the speed can be modulated by the intensity and physicochemical
factors, such as ultraviolet light or other oxidizing agents. Therefore, the biodegradation of
polymers could be a cooperative process in natural ecosystems.

Nowak et al. [45] and Mohan et al. [46] present some proposals for the biodegradation
of plastics with different types of microorganisms, achieving a weight reduction of up to
2.3%. In primary, secondary, and tertiary recycling, it is important that plastic waste be
as small as possible. For this, it is necessary to cut and grind it. There is a residue from
the cleaning processes of plastic injection machines known as “purging” that cannot be
reintegrated into the recycling chain. These are usually a mixture of polymers with some
reinforcements. They have a paste consistency of size and hardness that is not possible to
grind in conventional equipment due to the cost of wear and replacement of the blades, as
well as the energy required for the motors. Currently, recycling companies only receive this
type of material, classify it, store it temporarily, resell it, or export it. It should be noted that
due to the management described, the profit is minimal, and there tend to be losses.

Derived from international agreements for the import of waste, companies have
limitations for the export of purges. This generates an accumulation within the company’s
facilities, with all the problems that this entails, including the lack of space, the costs of
movement of the material, the prices of containers, and the severe danger due to the risk
of combustion.

Some landfills are authorized to receive this type of material. However, this implies
an additional environmental and economic cost to the expense already made. Also, it
can only be made in restricted quantities. Likewise, various national and international
technical standards describe the safety, prevention, and protection conditions for storing the
material due to fire risk in the workplace, which determines having a maximum volume.
Regarding quaternary recycling, there is no information on the environmental aspects
that the incineration of the purge material brings. In any case, it would be necessary to
characterize the material and study its emissions. Any contribution added to the recovery
of polymeric waste represents an economic and environmental gain.
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The case presented in this study seeks to reintegrate purges into the recycling chain
through their characterization, evaluation of the conditions to reduce their size, equipment
design, and softening and cutting processes that use renewable energy sources, taking care
that the change processes do not degrade the material and do not significantly impact the
purges that they cannot be reintegrated.

2. Materials and Methods

Purges are discarded materials in an injection process due to the cleaning carried out
when there is a change in the type of part produced. The equipment is cleaned to guarantee
the production of plastic objects without contamination of the previously used material,
causing the residue called purge. The traditional way is to gradually introduce the new
material, dragging the previous one until it is eliminated. This form of purging results in
a mixture of more than one polymer, fillers, or additives with irregular sizes and shapes,
some reaching up to around 30 cm per side. Figure 1 shows some purges.
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This material forms with a paste consistency that solidifies in such size and hardness
that it is not possible to grind it in conventional equipment. It is nearly impossible to cut
purges. It is costly in terms of labor hours, security, materials, tools for use, rotary cutter,
different saws (band saw, hacksaw, jigsaw), CNC router, grinder, laser cutter, waterjet
cutter, plasma cutter, etc. So, exploring alternatives for industrial applications, especially
renewable energies, is desirable.

2.1. Selection and Characterization

Five of the most frequent purges in the company Reciclajes Victoria (Queretaro, Mexico)
were selected. Although all samples were from the same waste management company, they
originated from different plastic processing companies. Intrinsically, purges are made of a
type of polymer with or without a dye that changes from piece to piece. That condition
makes the properties change from one piece to another.

First, they were evaluated for how they behaved when trying to soften them and
whether it was possible to cut them. Afterward, a series of characterization tests were
carried out, such as flame tests, hardness, thermogravimetric analysis (TGA), Fourier
transform infrared spectroscopy (FTIR), and resonant frequency damping analysis (RFDA)
(used to calculate Young’s modulus). Figure 2 shows the test equipment or instruments for
(a) flame, (b) hardness, and (c) RFDA.
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For the flame test, there is no standard as a reference. Therefore, it was carried out
by exposing a piece of a purge of approximately 1 cm2 to the flame of an alcohol burner,
observing and taking note of all the changes in the material for about 3 min (Figure 2a).

The hardness is evaluated according to the method indicated in the ISO 868 stan-
dard [47], with a portable Shore D hardness tester TT 0.90 HD 0.25 mm. The measurement
value is taken after 5 s and the result is expressed as “HSD hardness Shore D” (Figure 2b).

The Young’s modulus was determined by the impulse excitation technique (IET) using
an IMCE brand RFDA equipment. The samples for the RFDA analyses were obtained by
cutting the purges using a band saw and polishing them to obtain smooth surfaces for
rectangular parallelepiped pieces.

First, the bending vibration frequency was measured and Young’s modulus was calcu-
lated using the mass and dimensions of the sample according to different measurements
and standard ASTM E1876-22 [48]. Next, the samples are mechanically struck by hand
with a small flexible hammer. Then, the induced vibration signal is detected with a USB mi-
crophone (10 Hz–16 kHz), and later, the elastic properties are calculated using the software
RFDA-MF basic v1.2.0. The calculation basis is the following relationship:

E = 0.9465

(
mF2

f
w

)(
L3

t3

)
T (1)

where, E is Young’s modulus (GPa), Ff is the bending frequency, m is the mass (g), w is
the width (mm), L is the length (mm), t is the thickness (mm), and T is a correction factor.
Figure 2c shows the experimental setup with the device bearing one sample.

Thermogravimetric analysis (TGA) was carried out to know the temperatures at
which the material undergoes some degradation, so that the material does not exceed this
temperature when softening. The test is carried out on a TA-Instruments (New Castle,
DE, USA) SDTQ600 unit. The record produced by the analysis is a curve representing a
mass variation as a function of temperature. The norm that was taken as a reference was
ISO-11358 Plastics [49]. The DSC/TGA analyses were conducted using polymeric powders
extracted from the purges. A hand-held electric drill was used to obtain a powder from
each type of polymeric purge. The powder was treated using a Krups coffee grinder with
stainless steel blades. The powder sieving was performed using a No. 400 mesh (38 µm).

Fourier transform infrared spectroscopy FTIR was carried out to determine the type
of bonds and functional groups present, considering that the purges are a mixture of more
than one polymer. The samples were analyzed using Bruker (Ettlingen, Germany) Tensor
37 FTIR equipment, using an ATR, in transmittance mode with 32 scans and a resolution of
1 cm−1. Plates of the purges (1 × 1 cm) were cut into different sections of each purge sample.
They were analyzed with FTIR with coupled ATR, obtaining several spectra (1 averaged
from 30 spectra per point) at different sections of the purge, and the spectra with the highest
occurrence were presented.

Except for flame test, all the other tests were carried out before and after softening
the purges with heating. The conditions were determined through a series of tests on
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samples of size around 10 × 5 × 2 cm to determine the time and temperature at which
the material softens. When this happens, the pieces are cut to determine that the cut can
be made easily in softening conditions. The heating was carried out in a model FE340
muffle (Felisa, Fabricantes Feligneo S.A. de C.V., Zapopan, Mexico), voltage 120 Vac, power
1500 W, frequency 60 Hz.

2.2. Determination of the Processes, Design, and Manufacture of the Prototype to Soften and Cut
the Purges

Using the information obtained in the characterization, the Six Sigma methodology
is used to design and manufacture the prototype and the processes. Several analysis
tools were used to ensure the correct design: Functional Block Diagram “DBF”, diagram
“Diagram “P”, Design of experiments “DOE”, ANOVA, Hypothesis Test T, and others. The
software used for data analysis were SolidWorks® V2018 Modeling software and MINITAB
V14 for statistical data analysis.

3. Results and Discussion
3.1. Higher Frequency Purges and Flame Test

Table 1 shows the most frequent purges in Victoria recycling, their content, description,
and observations made during the flame test.

Table 1. Some representative industrial purges from polymer injection.

Polymers Physical Description Observations Image

PP-ABS Gray with many marked
lines

The material quickly deforms, the flame is yellow and
blue, bubbles, and becomes rubbery but does not drip,
and carbonizes in its walls. As a result, it can be
stretched and makes almost no smoke.
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Acetal
(polyoxymethylene,

POM)
White with many grains

Quickly begins to burn and deform. The flame is
yellow and blue, and it causes a small amount of fumes.
It has a marked odor. It bubbles a lot but does not drip,
can be stretched, becomes rubbery, and gets carbonized
at the end.
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Nylon 66/black with
fillers Spaghetti-shaped black

It takes time to begin to burn and change its form. It
bubbles but does not drip, making almost no smoke.
The flame is yellow and blue, hardly stretched, and
nearly no carbonization at the end.
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butadiene styrene (PP-ABS), polycarbonate with ABS and polypropylene (PC-ABS PP),
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their main physical characteristics are described. The separation of the purges that contain
mixtures of materials is not always evident.

The flame tests were conducted to determine the general behavior of the material
when heat was applied. Table 1, in its third column, shows the observations made. It is
noticeable that all the polymers retain their thermoplasticity.
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3.2. Softening and Cutting Initial Tests

The temperature at which each type of purge can be softened was determined, and
the temperature was varied to evaluate the status of the materials at different times. Table 2
shows the results obtained by maintaining a constant temperature. Once the material
softened, the required time was identified, it was removed from the muffle, and some
observations were made about the behavior of the purge related to the cutting process.

Table 2. Softening and cutting tests.

Polymers Weight
(g)

Temperature
(◦C)

Time
(min) Observations

PP-ABS 16.7 250 20
It can be easily cut, and it can be
stretched, but it tends to become

rubbery.

PC-ABS-PP 52.99 250 20 It can be easily cut and stretched.

Nylon 66 yellow 6.64 250 20

It cools down very fast and
hardens. It can be stretched.
Changes to a dark color. It is

relatively difficult to cut and has a
sandy consistency.

Acetal
(polyoxymethy-

lene, POM)
29.88 300 45

It cools down very fast and
hardens. It can be stretched.

Changes to a dark color. Difficult
to cut.

Nylon 66/black
with fillers 19.63 300 50

It cools down very fast and
hardens. It can be stretched but has

a dusty consistency.

Table 2 shows that the time for the purge containing nylon is similar to those with a
higher amount, even when the quantity is less. This is because this material takes longer to
soften. However, the polymers softened and cut easily in most cases.

3.3. Process Design and Equipment

Although the characterization tests were carried out before designing the processes to
soften and cut the purges, the results are shown afterward to highlight the differences once
the purges have been cut.

The overall design goal is to create processes and devices to soften and diminish the
sizes of polymer purges using renewable energy sources, without exceeding the maximum
temperature to avoid degradation of the polymers and keeping the design as simple as
possible to facilitate its operation.

Figure 3 is a diagram, or process map. It shows the necessary processes, functions,
and interactions to achieve the design objective.

Figure 3 is a process scheme showing the necessary stages, functions, and interactions
to achieve the design objective. The three stages of the process identified are as follows.

(1) Heat collection system (“solar collector”). The purpose is to convert solar radiation
into heat.

(2) Softening zone. The purpose is to soften the purges and maintain the temperature
reached for this purpose.

(3) Cutting. Once the purges have been softened, the purpose of this last stage is to cut
them off.

The design of each of these stages is explained in the following sub-sections.
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3.4. Heat Collection System (“Solar Collector”)
3.4.1. System Modeling and Construction

The types of solar collectors were analyzed, and according to the temperature required
to soften without degrading (180–280 ◦C), a Fresnel lens solar concentrator was used. The
auxiliary components are the lens and the support. Table 3 shows the requirements and the
mechanism to achieve them. Figure 4 shows the final design.

Table 3. Requirements and the mechanism to achieve them.

Requirements Answer

Increase or decrease the diameter of the focus Height adjustment mechanism
Adjusted to the position of the sun Angle adjustment mechanism

A softening zone Sample tray
Easy to move Drive wheels and brake

No risk of the lens falling off Padded retainer
Samples can be inserted and removed without

risk of burns Handle—endless screw system or rails

Figure 4a shows the three stages of the process (the cutting one is inside the softening
zone). Figure 4b shows the attachment designed for the solar collector. The pieces that
compose it are the following.

(1) Lens support consists of two frames. The inner frame supports the lens and modifies
its inclination angle, referencing the position perpendicular to the height posts. The
outer frame gives the lens sun-tracking capabilities.

(2) The design comprises two lateral posts, each comprising two rectangular tubes (one
inside the other) that allow movement to achieve different lens heights relative to
the sample. In addition, adjustment holes are spaced one inch apart for a total of
twenty-six. Thus, a wide range of heights can be achieved.

(3) Plate where the softening zone was located.
(4) This plate incorporates a manual sliding system that allows it to be removed from the

focus for user safety.
(5) The device supports have swivel wheels with a braking system that moves and stops

the device.
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3.4.2. Softening Zone

The first thing that was determined for this thread was that the radiation would not
be directly on the purge due to the solarization of the polymers (breaking of polymeric
chains by high-intensity aces) and the difficulty in controlling the temperature. This implies
the need for a means to move the heat achieved by the collector toward the softening
zone. In the state of the art, the use of added thermofluids with carbon particles and air
as heat transport was found [50–54]. This alternative was chosen due to the ease of its
implementation. The study for the design of this process was carried out in stages.

Figure 4c shows the proposed heating system related to an electrical furnace. There
is an internal zone in which to put the purge (cubic box). Instead of electrical resistances,
they were substituted by a receptor plate for solar radiation. An internal fan was used
to better distribute heat. Some other factors were addressed, such as the material and
dimensions of the box, fan position, material, size, and position of the plate. Considering
the required characteristics, the chosen box and plate materials were aluminum and copper,
respectively. The absorbing plate could have many variants, such as using graphite,
selective absorbing coatings of black nickel [55,56], black copper [57], black cobalt [58], and
graphene oxide [59,60], among others.

Figure 4c shows the proposed system for heating and cutting the purges. The compo-
nents are #1 cab, #2 cab cover, #3 thermocouple, #4 m6 screws, #5 support plate, #6 hinge,
#7 m5 screws, and #8 base. The absorbing plate was on the box (#5). This was fixed using
four screws (#4) that adjust the distance between the plate and the plastic purge. The base
for the purge (#8) rotates and has holes that allow air to flow throughout. The red lines (#3)
indicate the placement of thermocouples to sense temperature in four zones. The box had a
door or lid for insulation.

Once the softening zone was manufactured, its performance was evaluated, and
adjustments were made. This was carried out in two stages: (1) In conjunction with the
solar collection system, (2) In evaluating the most relevant components. The focal point
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was circle–elliptically shaped with a diameter of about 10 cm, which means an area of about
78.54 cm2. The local ambient conditions were in the range of 20–27 ◦C and the relative
humidity was about 35–45%.

Correlation studies were carried out between two factors to evaluate the functionality
and interaction of the solar collection system and the softening zone. Study (A) investigated
the relationship between the distance between the Fresnel lens and the receiving plate
(height X), and the diameter of the radiation focus on this plate (Y1). Study (B) investigated
the height (X) and the temperature within the softening zone or base of the samples
(Y2). Although a relationship is expected between these variables X vs. Y1 and X vs. Y2,
the objective in both studies is to find the mathematical function Y = f(x) that models this
relationship and find at which value of X the highest temperature is reached, understanding
that this also depends on weather conditions and exposure time (as long as it has an R
factor higher than 80%).

Table 4 shows the results obtained. The experiment conditions were the following:
ambient temperature: 29 ◦C, relative humidity: 34.8%, pressure: 1023 hPa, solar power:
1350 W/m2, wind speed: 29.6 km/h, exposure time: 1 min, receiver material: copper
plate, independent variable: X = height, dependent variable: Y1 = diameter of the focus,
Y2 = temperature. The results were analyzed with the Minitab V14 software.

Table 4. The correlation results.

Height (cm) Diameter (cm) Temp. (◦C)

71.5 52 40
83.3 45 60
95.3 38 80
107 28 200

119.5 22 200

Figure 5 shows the graphic analysis of the height–temperature correlation and height
analysis vs. diameter (X vs. Y1).
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Figure 5a shows that the greater the height X, the diameter of the radiation focus
decreases linearly. Therefore, the mathematical model is valid since the relationship has
a factor higher than 80% with an adjustment value of R = 99.2% and a variance of 1.10.
Diameter = 98.28 cm and height [cm] = 0.643 cm. Table 5 shows the ANOVA analysis
of variance.
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Table 5. ANOVA for the Height–Temperature calculus and the Height vs. Diameter.

Source GL MC F P GL SC MC F P

Regression 1 21,082 19.54 0.022 1 592.333 592.333 484.54 0
Height

[cm] 1 21,082 19.54 0.022

Error 3 1079 3 3.667 1.222
Total 4 4 596

Source GL MC F P 3 3.667 1.222

Considering the value of p, which is less than the value of the statistical error α = 0.05,
p = 0.022 < α = 0.05, it is concluded that the temperature Y2 depends directly on the
height X.

Figure 5b graphically shows the correlation between X and Y2. It shows that the higher
the height X, the more the temperature increases linearly. Therefore, with an adjustment
value of R = 82.3% and a variance of 1.10, the mathematical model is valid since the rela-
tionship has a factor greater than 80%. Temperature = 249.6 ◦C and height [cm] = 3.836 cm.

Using the prediction equation, the temperature-maximizing height is about 120 cm.
According to the holes that regulate the height, an elevation of about 122 cm was used
in tests.

3.4.3. Evaluating the Most Relevant Components of the Softening Zone

Two relevant elements are observed for the scope and temperature control: (1) The fan
use. (2) The material of the radiation receptor plate.

Through a design of experiments, these factors are evaluated, determining the impact
on the temperature reached in four points of the box and finding the condition that maxi-
mizes the temperature in the position of the base or central position (that shortens the time
to soften the purge). Table 6 shows the DDE approach.

Table 6. Approach to the design of experiments.

Factors 2 Base design 2, 4 Factor Level + Level −

Test runs 8 Replica 2 Fan With Without
Blocks 1 Center points (total) 0 Absorbing material Copper Steel sheet

Table 6 shows the approach introduced in the Minitab V14 software, DDE: two factors
(fan and receptor material), two replicates, without central points, and all in a single block,
giving ten experiments. The experimental conditions were as follows. Ambient tempera-
ture: 18 ◦C, relative humidity: 63.6%, pressure: 1025 hPa, solar power: 952 W/m2, wind
speed: 0 km/h, exposure time: 2 min, X1 = fan, evaluating using it or not, X2 = material
of the absorbing plate, evaluating a copper or steel sheet. The dependent variables were
as follows. Y1 = Upper right position temperature, Y2 = Central position temperature,
Y3 = Upper left position temperature, Y4 = Lower left position temperature, Y5 = Lower
right position temperature.

Figure 6a shows the position of the thermocouples on one of the sides and the center
(the other side has the same position), and Figure 6b shows the fan.

Table 7 shows, in the “Test run” column, the order of the experiments (random order),
while the “Fan” and “Receiving sheet” columns show the conditions under which the corre-
sponding experiment is carried out. The Y1–Y5 columns correspond to the temperature ◦C
obtained under each evaluated condition. Table 7 shows the analysis of variance (ANOVA)
for Y1 = Upper right position temperature.
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Table 7. Shows the test plan with the results obtained.

Test Run Fan Receiving Sheet Y1 Y2 Y3 Y4 Y5

1 No galvanized 74 98 79 84 90
2 Yes galvanized 74 78 72 72 82
3 No copper 110 130 104 90 106
4 Yes galvanized 76 76 76 80 90
5 Yes copper 92 80 80 72 80
6 Yes copper 90 82 80 74 80
7 No copper 120 130 110 88 100
8 No galvanized 86 104 86 94 100

Table 8 shows the ANOVA analysis of variance. Considering the value of the p statistic,
Fan p = 0.022, receiver material p = 0.003, they are less than the statistical error α = 0.05,
with which it is concluded that both variables influence linearly the temperature obtained
in position Y1. The interaction of these p = 0.075 is above the error; therefore, there is no
interaction. The same ANOVA analysis was performed for each thermocouple position
(Y2–Y5) and the results are summarized in Table 9.

Table 8. ANOVA for Y1.

Source DF Adj SS Adj MS F-Value p-Value

Model 3 1901.5 633.83 20.12 0.007
Linear 2 1721 860.5 27.32 0.005

Fan 1 420.5 420.5 13.35 0.022
Receiving sheet 1 1300.5 1300.5 41.29 0.003

2-Way Interactions 1 180.5 180.5 5.73 0.075
Fan * receiving sheet 1 180.5 180.5 5.73 0.075

Error 4 126 31.5
Total 7 2027.5

* Interaction between Fan and Receiving sheet.

Table 9. Summary of temperature results in the thermocouples’ (Y’s) positions.

Y
Fan
X1

Material
X2

Interaction
X with More

Influence
Best Combination
X1 X2

Y1= Upper right position temperature Yes Yes No Material Without Copper
Y2 = Central position temperature Yes Yes Yes Fan Without Copper

Y3 = Upper left position temperature Yes Yes Yes Fan Without Copper
Y4 = Lower left position temperature Yes No Yes Fan Without Same

Y5 = Lower right position temperature Yes No No Fan Without Same

The first column, Y, indicates the thermocouple position. The second to fourth indicate
if the X factor, or the interaction of these, influences the results of the Y. The fifth indicates
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which of the X has the greatest influence. The last two columns indicate the combination
with which the highest temperature is obtained.

In conclusion to this analysis, we can say that in the central and upper zones, the
temperature is affected by the type of receiving material and the use, or not, of the fan; in
the lower part, it only affects the use, or not, of the fan. To evaluate the configuration that
maximizes the temperature, only position Y2 is considered; that is, the central area where
the sample is placed. The result is “Copper receptor material” and “Without fan”.

3.5. Hardness Testing

Thirty hardness measurements were made in different areas of the purge to determine
material homogeneity before and after material softening. The t-student statistic test was
applied with a 95% confidence level and a hypothesis approach. Null hypothesis H0:
µ1 − µ2 = 0, alternative hypothesis H1: µ1 − µ2 ̸= 0.

The hypothesis test is carried out with the test statistic of the p value to evaluate if there
is a statistical difference in the mean hardness values before and after the heat treatment
of the sample. An error value of 0.05 is considered to accept or reject the null hypothesis,
assuming normal data for this number of measurements. On the other hand, the Levene
statistical test is applied to evaluate the impact on the variation in the results obtained
in both conditions for each of the purges. Table 10 shows the results obtained and the
conclusion of the statistical analysis.

Table 10. Hardness analyses (Shore D) of five polymer purge types with thirty measured samples.

Polymers Average Hardness
before Heating

Average Hardness after
Heating–Cooling

Conclusions of the Average
Analyses

Conclusions of the Variance
Analyses

PP-ABS 59.03 60.6 p-value = 0.149
No change p-value = 0.115 No change

PC-ABS-PP 71.33 63.23 p-value = 0.00 Different after the
heat decreases

p-value = 0.591
No change

Nylon 66 yellow 69.53 62.63 p-value = 0.001 Different after the
heat decreases

p-value = 0.364
No change

Acetal 66.37 68.67 p-value = 0.005 Different after the
heat increases

p-value = 0.218
No change

Nylon 66/black
with fillers 59.8 64.43 p-value = 0.00

Different after the heat increases
p-value = 0.701

No change

In the conclusions of the averages analysis, we can see no changes in PP-ABS, PC-ABS-
PP, and Nylon 66 yellow. Their hardness decreases after softening, while Acetal and Nylon
66/black with fillers hardness increases. Variation does not change in any of the samples.
Figure 7 shows how the data are distributed before and after softening each purge type.
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Figure 7 shows that the data have an equal distribution before and after the softening
of the material. There was a slight difference between the means in all purges.

3.6. Young’s Module

Table 11 shows the results of the measurements made before and after softening
the material.

Table 11. Young’s modulus (GPa).

Polymers YM before YM after Comparative

PP-ABS 3.88 (±0.02) 3.17 (±0.01) ↓ 18%
PC-ABS-PP 2.38 (±0.001) 1.70 (±0.001) ↓ 28%

Nylon 66 yellow 3.94 (±0.01) 4.28 (±0.01) ↑ 9%
Acetal

(polyoxymethylene, POM) 2.45 (±0.001) 3.04 (±0.01) ↑ 24%

Nylon 66/black with fillers 3.08 (±0.001) 3.45 (±0.005) ↑ 12%
Arrow down: YM decreases, Arrow up: YM increases.

Table 11 shows the average of three data values taken for each purge before and after
softening and cutting. The last column indicates with an arrow if the average increased or
decreased, and by what percentage. For example, in PP-ABS, Young’s modulus decreases
by 18% after smoothing and cutting. In general, considering that the purges are a recycling
material, the variation is slight in all the samples. Figure 8 shows how the test device
reports results.
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Figure 9 shows the results in a bar graph, showing the difference between the average
values before and after softening and cutting each purge.
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3.7. DSC and TGA Analyses

The glass transition temperature (Tg) for ABS typically ranges from 105 to 125 ◦C,
depending on the proportions of the three components and the molecular weights of the
polymeric chains. Variations in the Tg depend on specific formulation and processing
conditions in any polymer. Still, they are even more frequent in industrial polymer purges
that could have plasticizers, colorants, or broader molecular weights.

The Tg of PC is in the range of 145–150 ◦C. Nylon 66, PP, and Acetal (polyoxymethy-
lene) are semi-crystalline polymers in which the Tg is the transition from a glassy to a
rubbery state in the range 45–50 ◦C, −10 to −5 ◦C, and −50 to −80 ◦C, respectively.

DSC/TGA calorimetry analyses were performed to determine the maximum tem-
peratures for heating. As long as neither the DSC graphs show irreversible events, nor
the TGA graphs show weight loss, heating can be conducted while maintaining the poly-
mer’s integrity and original polymer characteristics. For example, in Figure 10a PP ABS,
Figure 10b Acetal, Figure 10c Nylon 66 black, Figure 10d Nylon 66 yellow, and Figure 10e
PC ABS PP, the proposed maximum temperature could be about 245, 240, 250, 330, and
270 ◦C, respectively.

3.8. FT-IR Analyses

The five polymers have functional groups with characteristic vibrational bands in their
FT-IR spectra (Figure 11). Some of the representative vibrational bands are outlined below.

Polypropylene (PP) has C-H stretching and bending vibrations and C-C stretching in
the ranges of 2800–3000, 1350–1470, and 960–970 cm−1, respectively. Also, PP has bands
related to its isotactic configuration, such as isotactic CH3 bending vibrations in the region
of 875–885 cm−1 (Figure 11a,e).

The terpolymer ABS (Acrylonitrile–Butadiene–Styrene, 3–7: 1–6: 8–12) has a C-H
backbone with stretching and bending vibrations in the 2900–3000 and 1300–1400 cm−1

(Figure 11a,e) [61–63] regions. Acrylonitrile cyano group’s C≡N stretching vibrations are
around 2240–2260 cm−1. Butadiene C=C stretching and CH2 deformation vibrations are
in the regions of 1660–1600 and 1450–1375 cm−1, respectively. Styrene vibrations of the
aromatic ring deformations are in the range of 700–750 cm−1.
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Acetal (polyoxymethylene) has C-H, C=O, C-O, and O-CH2-O stretching vibrations in
the regions of 2900–3000, 1720–1740, 1050–1150, and 1150–1250 cm−1 associated with CH2
groups, acetal groups, polymer backbone, and ether linkage, respectively (Figure 11b).

Nylon 66 (polyhexamethylene adipamide) has N-H bending vibrations and N-H, C=O,
and C-N stretching vibrations. There are bands of Amide A, Amide B, Amide I, Amide II,
and Amide III in the 3200–3500, 1550–1650, 1620–1660, 1500–1550, and 1200–1300 cm−1

ranges, respectively (Figure 11c,d).
Polycarbonate (PC) has the C-H stretching and carbonate ester stretching and bend-

ing vibrations in the ranges of 2900–3100, 1740–1760, and 700–800 cm−1, respectively
(Figure 11e).

The solar-assisted thermal softening treatment performed in the polymers decreased
the intensity of some vibrational bands. The proposed treatment is intended to affect
the functional groups and the polymeric chain lengths as little as possible. That was the
reason for conducting the DSC/TGA calorimetry analyses shown above to determine the
limit temperatures for heating. The heating can be carried out and repeated as long as the
original polymer characteristics can be maintained barely unchanged.

4. Conclusions

Plastic injection purges have many sizes and irregular shapes that require reductive
changes to be recycled and reintegrated into the polymer supply chains. For this, it is
important to know their characteristics, properties, behavior, and grouping by polymer
type. Frequency injection purges are blends of processed polymers that are difficult to
recycle. This work proposes a process and a prototype device for softening and cutting the
injection purges using solar heating. In this study, the starting tested samples were about
30 × 25 × 20 cm in size, and the final size was set to about 10 × 5 × 2 cm.

One of the problems with purges is the combination of materials, which does not
allow incorporation into the manufacturing process. Other issues are the complex shapes
and properties of the purges, which reduce the possibility of re-insertion into the process.
The softening of the material and the feasibility of cutting the pieces with minimal impact
on the polymer structure do allow the circularity of the material. There is less waste of
materials with reintegration into production, which is the basis of the circular economy.

The thermal properties were evaluated using the flame test, TGA, and DSC techniques.
The conclusive results are that none of the purges leak during heating, the five types of
studied polymers can stretch, and their softening temperatures are between 250 ◦C and
280 ◦C. Once all the evaluated purges softened, they were cut relatively easily. Visually, no
smoke was observed when reaching a soft condition. Using this information, a process and
a device that operates with solar energy were designed to cut the purges without exceeding
the maximum temperature, which varied depending on the type and quantity of polymers.
Finally, the mechanical properties of hardness and Young’s modulus were evaluated, and
the FTIR tests were carried out before and after softening and cutting. Therefore, any
change in the polymers could be related to reticulation or chain breakage, which are not
associated with reaching stability but with deterioration. Knowing the calorimetry graphs,
the maximum limit for the temperature was proposed for each polymer where the TGA
graph deviates from a horizontal line. PP ABS, Acetal, Nylon 66 black, Nylon 66 yellow,
and PC ABS PP could have, as proposed maximum temperatures for softening and cutting
into smaller pieces, about 245, 240, 250, 330, and 270 ◦C, respectively.

Comparisons of the mechanical properties of the purges before and after treatments
showed slight affectation on most of them. Generally, the main functional groups did not
change. Further improvements are advisable in both the process and the device. Still, this
work shows potential viability for solar-assisted heating for softening and cutting injection
purges that constitute a fast-increasing residue of the plastics industry, making them a
byproduct to be reprocessed.

This work differs from other research or industry solutions because it aims to soften the
pieces to obtain smaller, specific-size elements rather than use them as fillers, composites,
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or recycling by reprocessing to obtain products such as bottles or fabrics. Considering that
the main concern is keeping polymer integrity but softening it, this process can be extended
to most organic polymers. Nonetheless, the size of the pieces is important for the system
characteristics. Previous experiences advise specializing such a system for a single type of
polymer, but if this is not possible, a technical procedure could be elaborated to change the
temperature and keep the process clean when changing the materials to be processed.

In the proposed system, each part has a different expected lifespan. This largely
depends on factors such as materials, process operation ranges, maintenance, surround-
ing climatic conditions, and the observation of safety rules during process operation,
among others.
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