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Abstract: This research focuses on modeling heat transfer in heterogeneous media composed of
stacked spheres of paraffin as a perspective polymeric phase-change material. The main goal is to
study the requirements of the numerical scheme to correctly predict the thermal conductivity in a
periodic system composed of an indefinitely repeated configuration of spherical particles subjected
to a temperature gradient. Based on OpenFOAM, a simulation platform is created with which
the resolution requirements for accurate heat transfer predictions were inferred systematically. The
approach is illustrated for unit cells containing either a single sphere or a configuration of two spheres.
Asymptotic convergence rates confirming the second-order accuracy of the method are established in
case the grid is fine enough to have eight or more grid cells covering the distance of the diameter of a
sphere. Configurations with two spheres can be created in which small gaps remain between these
spheres. It was found that even the under-resolution of these small gaps does not yield inaccurate
numerical solutions for the temperature field in the domain, as long as one adheres to using eight or
more grid cells per sphere diameter. Overlapping and (barely) touching spheres in a configuration can
be simulated with high fidelity and realistic computing costs. This study further extends to examine
the effective thermal conductivity of the unit cell, particularly focusing on the volume fraction of
paraffin in cases with unit cells containing a single sphere. Finally, we explore the dependence
of the effective thermal conductivity for unit cells containing two spheres at different distances
between them.

Keywords: conjugate heat transfer; high-fidelity simulation; effective thermal conductivity; OpenFOAM;
resolution requirements; periodic systems

1. Introduction

The prediction of effective heat transfer is of great importance in a wide range of
applications, particularly in the study of composite materials used for thermal energy
storage (TES) [1]. TES refers to a system that stores heat energy for later usage and is based
on the working principles of sensible and latent heat. A TES system is a sustainable energy
solution that is commonly referred to as a ‘heat battery’. These systems play a critical role in
efficiently storing and releasing thermal energy, thereby resolving the problem that energy
is often generated and consumed at different moments in time [2].

The properties of composite materials can vary greatly due to their heterogeneous
nature. In fact, the desired properties for TES materials are a combination of high thermal
conductivity and a significant sensible and latent heat capacity. In this context, paraffin
emerges as a particularly compelling candidate material because of its latent heat prop-
erties (150–250 kJ kg−1) [3,4] and widespread availability. Moreover, paraffin undergoes
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phase transitions within temperature ranges (0 to 90 ◦C) [3] that correspond closely to the
requirements for domestic heating, thereby substantially enhancing its applicability [1].
However, the thermal conductivity of around 0.2 W m−1K−1 in the solid state, and even
0.08 W m−1K−1 [5] in the liquid state, would imply an impractically slow response to the
loading and unloading of such a heat battery. Therefore, paraffin spheres encapsulated in
polymer aerogels to prevent leakage [6], in combination with highly conductive nano-fillers,
e.g., graphene [7,8], presents itself as a promising candidate composite material. With such
materials, both a large storage heat capacity as well as high heat transfer rates may be
achieved. These materials undergo a phase change as part of the heat storage process and
will be referred to as phase-change materials (PCMs).

Accurately predicting the temperature distribution in structured heterogeneous ma-
terials is essential for understanding their functioning in heat batteries [9,10]. For system
design, it becomes imperative to study the parameters governing heat transport on a small
scale in a heat battery composed of paraffin for storage and nano-fillers for enhanced heat
transport. We present the development of a fundamental simulation model and deter-
mine the spatial resolution requirements that should be met in order to achieve accurate
predictions of the temperature distribution inside the material.

The analysis of the conjugate heat transfer (CHT) is challenging when aiming for
an analytical temperature solution for complex heterogeneous media. In such cases, a
numerical method is the only viable approach [11,12]. To understand the macroscopic heat
transfer properties of a material, we will treat it as a continuum. Fourier first introduced
the concept of thermal conductivity at a macroscopic scale [13], which led to the early
development of Effective Medium Theory models by Maxwell-Garnett [14]. Numerous
models to approximate the effective heat conductivity have been proposed since, which are
either empirical, numerical or a combination of both [15]. However, these models often
have unknown limitations. To overcome these uncertainties, our study uses a numerical
approach to solve the complete underlying model formulated in terms of the governing
partial differential equations.

Numerical discretization methods, including the finite volume method (FVM), finite
element method (FEM) and finite difference method (FDM), are utilized to solve partial
differential equations (PDEs). We adopt OpenFOAM [16,17], an open-source FVM computa-
tional fluid dynamics (CFDs) package. This simulation platform provides an option to add
new solvers and post-processing to address specific problems specifically. This approach is
suitable for the current heat battery study as it allows for proven numerical methods to be
combined with tailored solutions to the problem of heat transfer in a configuration with
multiple spheres in a temperature gradient.

This research focuses on numerically solving conduction-driven CHT in heterogeneous
media composed of periodic configurations of stacked spheres of paraffin. The governing
heat equations are discretized using OpenFOAM version 10 [16,17], where the use is
made of the CHTMULTIREGIONFOAM solver, which provides the numerical solution to
diffusive heat transport in domains containing various materials. The primary objective is to
determine the accuracy with which the solution can be obtained and at what computational
costs. In particular, the convergence of the solution upon refinement of the spatial grid is
focused on. Ultimately, the rate of convergence obtained by OpenFOAM in multi-region
simulations is determined and, correspondingly, the necessary spatial resolution needed to
achieve a desired level of accuracy is quantified. By doing so, the reliability of the numerical
approach for simulations of the heat transfer in stacked spherical particles is determined.
This is crucial for the future investigation of heat conduction in genuinely complex systems,
specifically focusing on the effective thermal conductivity (ETC) within spatially extended
systems of randomly stacked spheres. The ETC of a one- and a two-sphere system per
unit cell is determined to quantify the resolution requirements and specify the dependence
of the effective conductivity on system parameters, such as the radius of the spheres
and separation between spheres. The current investigations establish the feasibility and
simulation conditions that should be adopted in simulations of more complex general
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configurations that are adopted to be determine the effective heat transfer in a so-called
Representative Elementary Volume (REV), i.e., a unit cell for the periodic domain that
contains a large number of spheres in an arbitrary configuration.

The numerical investigations have established that OpenFOAM can yield high-fidelity
solutions, provided that a sufficient spatial resolution is employed. Achieving engineering
accuracy, with errors in the temperature field within a few percent, necessitates approx-
imately eight grid cells per diameter of the paraffin spheres. Nearly full convergence
was attained with resolutions ranging from 32 grid cells per diameter and beyond. For
these spatial resolutions, the approach displayed second-order convergence. A comparison
between the ETC predicted by the Maxwell-Garnett model [14] and the numerical solution
revealed close agreement up to a paraffin volume fraction of 30%. Beyond this volume
fraction, gradual deviations were seen of 5–10%, e.g., at a 40–50% volume fraction. The
successful modeling of the temperature field effects arising from the proximity of multiple
spheres was achieved using OpenFOAM. The basic CHTMULTIREGIONFOAM solver was
found to accurately predict the heat transfer and ETC in general unit cells with two paraffin
spheres, including two overlapping as well as just touching spheres. This supports the
potential extension of the simulation approach to configurations with multiple spheres
per unit cell. The identified resolution requirement of eight grid cells or more per sphere
diameter was seen to be sufficient even for configurations comprising multiple spheres.

The organization of this paper is as follows. In Section 2, the physical model and its
mathematical formulation are introduced. The OpenFOAM implementation is described in
Section 3. The simulation results specifying the temperature field and convergence upon
grid refinement are discussed in Section 4. Finally, the concluding remarks are presented in
Section 5.

2. Physical Model and Governing Equations

In this section, we first present the physical model of a heat battery in Section 2.1.
The mathematical formulation of the governing equations is discussed subsequently in
Section 2.2.

2.1. Physical Model of Heat Battery

The TES materials for phase-change materials (PCMs) exhibit diverse microstructures,
designed to enhance heat transfer and facilitate rapid storage and release. The heat batteries
that motivate the current study exploit a multiscale structure in which a large block of
porous metal foam (O(10−1 m)) is used to transfer heat quickly and over comparably large
distances. Within the pores (O((10−3–10−2) m) [10] of this foam, spheres of paraffin of a
typical radius r = O((10−5–10−4) m) are stacked in a random configuration, available for
sensible and latent heat storage. Figure 1 provides a 2D representation illustrating the
stacked spherical particles of different sizes within the foam.

In Figure 1, it is apparent that a single pore comprises three materials with distinct
properties. The paraffin spherical inclusions within the pore exhibit a low thermal con-
ductivity of approximately 0.2 W m−1K−1 in the solid state and 0.08 W m−1K−1 in its
liquid state [5]. This is tremendously small compared to, e.g., the copper from which the
metal foam is composed, which has a thermal conductivity of around 400 W m−1K−1 [18].
Furthermore, the pore is saturated with still air, characterized by an even lower thermal
conductivity of 0.0265 W m−1K−1 [19]. The thermal conductivity ratio of solid and fluid
phases (κs/κl) for air-saturated metal foams is over 8000, indicating that the contribution of
heat transfer by air can be largely neglected [19].

Motivated by Figure 1, we will consider approximate configurations to develop reliable
computational methods for the simulation of the temperature field that develops when
such a configuration is subjected to a steady temperature gradient (Dirichlet boundary) in
the Z direction. To that end, we consider spatially periodic systems in the X-Y directions
generated by repeating a suitable unit cell (periodic boundaries). In this paper, we focus on
periodic unit cells with one or two paraffin spheres of the same diameter inside to study
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the numerical capturing of the effect of such inclusions. This generic problem corresponds
to an approximate stacking of the spheres and enables precise numerical investigations.

Figure 1. A two-dimensional representation of a TES microstructure composed of different size
paraffin particles (orange) stacked in the pores of a foam (blue). The pores are bounded by a metal
border, indicated symbolically by the thin black lines. In the actual porous metal foam, direct
pathways connecting one pore with another are also contained—this is not included in the sketch.

After establishing the physical simulation domain, the PDE model for the heat transfer
developing from a temperature gradient across the boundaries of the simulation box is
specified next.

2.2. Mathematical Model

To accurately predict the thermal transport in composite domains, a CHT simulation
provides a complete macroscopic model. This computational model enables the analysis
of the contribution of conduction and convection mechanisms to the total heat transfer,
consistently coupling all domains with appropriate interface conditions. We focus on
process conditions that do not involve the melting of the paraffin—only heating and
cooling are included at this stage. In this case, the heat battery problem considered needs to
handle both the gaseous air (fluid domain) in the interstitial space left between the paraffin
spheres, as well as the solid paraffin (solid domain). The system of partial differential
equations (PDEs) governing the heat transfer in both the solid and fluid domains will be
specified next. The numerical treatment of this model will be discussed in Section 3.1.

2.2.1. Conservation of Energy

The basic principle of conservation of energy can be expressed concisely in terms of
the evolution of the specific total energy (per unit mass) e. Closely following [20], we can
include all the relevant mechanisms for our problem. Taking into account the pressure and
shear forces, as well as the force of gravity as a body force, we may apply the Reynolds
transport theorem to the fundamental first law of thermodynamics [20] and arrive after
some simplification at:

∂(ρe)
∂t

+∇ · (ρue) = −∇ · q̇S −∇ · (pu) +∇ · (τττ · u) + ρg · u + q̇V (1)

In this equation, u is the flow velocity, ρ denotes the material density, e stands for the
specific total energy, p represents the pressure acting on the body, τττ is the viscous tensor
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and g represents gravity. Additionally, q̇V accounts for the heat generated or destroyed per
unit volume, while q̇S corresponds to heat transfer by diffusion, following Fourier’s law:

q̇S = −κκκ · ∇T (2)

Here, κκκ denotes the thermal conductivity matrix, and ∇T represents the gradient of the
temperature field T. The thermal conductivity matrix κκκ is a material property that for
anisotropic media takes the form [21]:

κκκ(T) =

κ11 κ12 κ13
κ21 κ22 κ23
κ31 κ32 κ33

 (3)

To further understand the energy equation, we express the total energy in terms of the
specific enthalpy, denoted as H, implying:

e = H − p
ρ
+

1
2

u · u (4)

where u denotes the velocity field describing the motion of the medium. Enthalpy for
Newtonian fluids in thermodynamic equilibrium can be considered a function of the
pressure and temperature, i.e., H = H(p, T), and can be evaluated using the standard
equilibrium thermodynamic formula [22,23], which implies

dH =

(
∂H
∂T

)
p
dT +

(
∂H
∂p

)
T

dp = cpdT +

[
v − T

(
∂v
∂T

)
p

]
dp (5)

Here, cp represents the specific heat capacity at constant pressure, and v denotes the specific
volume. Equation (5) describes a chemically inert system of fixed mass [23]. Combining
Equation (1) with Equations (4) and (5), we can formulate the energy equation for an
incompressible fluid as:

∂

∂t
(ρcpT) +∇ · (ρcpuT) = ∇ · (κκκ · ∇T) + q̇w (6)

Equation (6) is a general equation where the source term q̇w considers heating by shearing
and pressure work. Equation (6) will be specified next for the solid and the fluid domain
and solved later as a part of the total mathematical model.

2.2.2. Heat Transfer in Solid Domain

When dealing with solid domains, Equation (6) can be significantly simplified as
there is no material flow and the density remains relatively constant with respect to the
temperature. We can simplify the equation as follows:

∂

∂t
(ρcpT) = ∇ · (κκκ · ∇T) + q̇V (7)

The thermal conductivity of paraffin was examined in [5,24] and observed to be nearly
isotropic and homogeneous, with variations in the heat conductivity of up to approximately
20% over a very wide temperature range of 300 to 650 K. Therefore, we make the simplifying
assumption that the storage material can be treated as isotropic, homogeneous and with
material properties that are independent of the temperature. This assumption enables
expressing thermal conductivity as κκκ = κIII, where III is the identity matrix. The formulation
in (7) can also be expressed in a non-dimensional form. In fact, upon introducing the
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reference time, length and temperature scales τ∗, L∗ and T∗ and assuming that ρ, cp and κ
are constant, we may write

∂T∗

∂τ∗ = ∇∗2(T∗) + q̇∗V (8)

in case the time scale and the forcing scale are chosen as

τ∗ =
κ

ρcpL2 t ; q̇∗V =
κ(Thot − Tcold)

L2 q̇V (9)

where L is the given characteristic length. It is convenient to impose standardized tempera-
ture boundary conditions if one defines the dimensionless temperature as

T∗ =
T − Tcold

Thot − Tcold
(10)

in terms of the temperatures Tcold and Thot that define the temperature forcing of the system.
Here, we use the same notation T for the dimensional and the non-dimensional formulation,
as the difference is clarified by the context.

2.2.3. Heat Transfer in the Fluid Domain

Spheres arranged in a stack within a pore in the metal foam are enclosed by air. This air
also contributes to the overall heat transfer. We approximate the air in the interstitial volume
as an incompressible fluid and consider convection and diffusion as driving mechanisms.
Correspondingly, the dynamics are governed by the continuity equation, the conservation
of linear momentum and the temperature equation as specified above. Because the flow of
air between the randomly stacked paraffin spheres is on a very small scale and subject to a
modest temperature difference on the scale of the diameter of an individual sphere, the
heat transfer is dominated entirely by diffusion. We substantiate this simplification next.

The problem of heat transfer by the air between the paraffin spheres is governed by the
Rayleigh number Ra [22], which characterizes the phenomena of heat transfer for natural
convection. For values below a critical Ra number, heat is transferred primarily through
thermal conduction and the effects of natural convection are considered negligible. Ra is
defined as

Ra =
βg∆TL3

νκ
(11)

Here, β, g, L, ν and κ represent the thermal expansion coefficient, gravitational accel-
eration, characteristic length, kinematic viscosity and thermal conductivity, respectively.
Collecting typical values for these quantities [10], we observe the thermal expansion co-
efficient of air β = 3.5 × 10−3 K−1 [25]. Likewise, we recall that g ≈ 10 m s−2 and take
as the length scale for the interstitial air-filled domain the diameter of a paraffin sphere
L = 5 × 10−6 m—this is likely to be an upper-bound for densely stacked spheres. The
kinematic viscosity of air at room temperature is ν = 1.5 × 10−5 m2 s−1 and the thermal
conductivity can be estimated at κ ≈ 2.6 × 10−2 W m−1K−1. Adopting a very large temper-
ature difference ∆T = 1 K over a distance of the radius of a sphere of approximately 5 µm,
we may estimate Ra = O(10−14), i.e., we infer that only dissipative heat transport is of
relevance here. Even in the case where one would consider an empty pore in the metal foam
with a much larger characteristic length of L = 5 × 10−3 m, the Rayleigh number is found
to be Ra ≈ O(10−5), i.e., much lower than the critical Ra ≈ O(102) for porous media [26].
Hence, the nonlinear convective transport is of little relevance here and diffusive transport
dominates the heat transfer both in the solid and the fluid domain.

2.2.4. Interface and Boundary Conditions

The heat transfer problem we consider here is characterized by interface conditions
that ensure (i) the continuity of the temperature and (ii) the continuity of the heat flux
across the interface. We discuss these conditions in more detail next:
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(i) Continuity of temperature: There is no temperature jump at the interface, meaning
that the temperature when approaching the interface from one side is equal to the
temperature when approaching the interface from the other side, i.e.,

(T)ij(xxx∗) = (T)ji(xxx∗) (12)

where (T)ij is the temperature at any point xxx∗ on the interface between regions i and
j, when approaching the interface from region i. Likewise, (T)ji is the temperature
when approaching the same interface point xxx∗ from region j.

(ii) Continuity of temperature flux: This condition ensures that the total heat flux density
is continuous when crossing the interface between regions i and j, at any location xxx∗.
This condition takes into account the thermal conductivity of each region:(

(κκκ · ∇T) · nnn
)

ij
(xxx∗) =

(
(κκκ · ∇T) · nnn

)
ji
(xxx∗) (13)

expressing the continuity of the normal component of the heat flux density at any
location on the interface between regions i and j, irrespective of whether the interface
is approached from region i or region j. Here, nnn denotes the normal vector on the
interface at xxx∗.

2.2.5. Summary of Mathematical Model

The temperature distribution inside the domain consisting of air and paraffin is
dominated by conduction in the parameter regime considered here. In the remainder of
this paper, we will not consider explicit source terms. Hence, for region i, the problem is
governed by:

∂

∂t
(ρcpT)i(xxx) = ∇ · (κκκ · ∇T)i(xxx) (14)

Periodic boundary conditions are used in the xy directions and the temperature is
prescribed on the top and bottom of the unit cell in the z direction. Interface conditions
with domain j are given by:

(T)ij(xxx∗) = (T)ji(xxx∗) (15)

for the continuity of the temperature and(
(κκκ · ∇T) · nnn

)
ij
(xxx∗) =

(
(κκκ · ∇T) · nnn

)
ji
(xxx∗) (16)

for the continuity of the heat flux across the interface.

3. Solver Description

In this section, we discuss the treatment of the governing heat equations in a finite
volume framework as provided by OpenFOAM (Section 3.1). Moreover, the treatment of
the adaptive meshing used for the accurate resolution of the finer details in the solution is
presented (Section 3.2).

3.1. OpenFOAM Finite Volume Framework

OpenFOAM [16] is an open-source simulation platform for continuum mechanics.
It utilizes the finite volume method (FVM) to discretize partial differential equations
representing a wide range of physical phenomena [17]. We adopt OpenFOAM (version 10)
in this study. OpenFOAM finds applications in diverse fields, including fluid dynamics,
heat transfer and computational physics. By providing a comprehensive platform for
numerical simulations, OpenFOAM enables the analysis of complex problems across
various scientific and engineering disciplines.

The finite volume method (FVM) discretizes the computational domain into discrete
control volumes, each representing a finite region within the domain. This numerical
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approach involves calculating fluxes across the faces of these control volumes and sub-
sequently updating the values of the variables within each volume. In Figure 2, the
conservation laws of a discrete volume Vc and fluxes ( fi) crossing through the discrete
element walls are illustrated. This process ensures adherence to conservation laws at the
discrete level. Consideration of a conservation equation for a general scalar variable ϕ is
expressed as:

∂(ρϕ)

∂t︸ ︷︷ ︸
transient term

+ ∇ · (ρUϕ)︸ ︷︷ ︸
convective term

= ∇ · (Γϕ∇ϕ)︸ ︷︷ ︸
diffusion term

+ Qϕ︸︷︷︸
source/sink term

(17)

where Γϕ represents the diffusion coefficient of the ϕ property. Dropping the transient term
in Equation (17) to simplify our discussion on how the FVM discretizes, and integrating
over the element the volume V of an element C, yields:∫

VC

∇ · (ρUϕ)dV =
∫

VC

∇ · (Γϕ∇ϕ)dV +
∫

VC

QϕdV (18)

Figure 2. Conservation of a general scalar variable in a discrete element C of volume Vc.

Applying the divergence theorem to Equation (18) for both the convection and diffu-
sive term and discretizing yields:

∑
f aces(Vc)

∫
f
(ρUϕ) · dS = ∑

f aces(Vc)

∫
f
(Γϕ∇ϕ) · dS +

∫
VC

QϕdV (19)

where S is the surface vector. Equation (19) expresses the conservative nature of the method,
emphasizing that a surface integral must be resolved along the faces that constitute the
volume Vc and a volume integral for the source Qϕ. In the FVM, a Gaussian quadrature
is employed to numerically evaluate the surface integral with the fluxes crossing and the
volume integral.

Figure 3 presents a grid cell in a structure, distinguishing between a uniform and an
irregular example. The temperature Equation (8) is discretized on this mesh arrangement
with the key variables stored in cell centers and at cell interfaces. For simulations involving
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stacked spherical particles in a domain, an unstructured mesh is well suited for accurately
representing the geometry and capturing the physics of the system.

Figure 3. Cell in a structured uniform grid (a) and in a structured irregular grid (b).

The presence of multiple paraffin particles can be modeled in OpenFOAM by treating
it as a multi-region case. OpenFOAM’s chtMultiRegionFoam solver is purpose-built
for simulating CHT problems involving general configurations. This solver enables the
accurate modeling of heat transfer phenomena across different materials and regions,
irrespective of whether these contain a fluid or a solid.

In structured grids, cells are arranged regularly, often in a Cartesian fashion, simplify-
ing the identification of neighboring cells and facilitating interpolation and flux calculations.
This regularity is particularly advantageous for simulations involving simple geometries
and where a regular mesh can be easily generated. In contrast, unstructured grid cells
lack a regular arrangement, offering flexibility in mesh generation but requiring more
sophisticated algorithms for interpolation and flux calculations due to irregular cell shapes.
Unstructured grids are highly recommended for complex geometries and situations where
mesh generation may be challenging with a structured approach, such as the case of paraf-
fin inclusions. However, a noteworthy consideration in unstructured grids is errors in the
calculations in cases of highly irregular cell shapes.

3.2. Meshing

This study focuses on the heat transfer simulation in a stack of spherical particles. The
fidelity of the simulation results depends on the spatial resolution and the quality of the
meshing of the domain. To achieve high-quality meshing, the SNAPPYHEXMESH mesh
generation tool in OpenFOAM was adopted. This tool is designed specifically for gener-
ating hexahedral (hex) and prismatic (wedge) meshes, suitable for subsequent numerical
treatment with any of the OpenFOAM solvers [16].

In the context of mesh generation using SNAPPYHEXMESH, an initial background
mesh comprising hexahedral cells covering the entire computational domain is established.
To maintain simplicity, a structured mesh serves as the starting background, offering a well-
defined foundation. Following this, a complex geometry surface within the computational
domain is added, along with its corresponding boundaries. The SNAPPYHEXMESH utility
then identifies the features on the specified surface, initiating an iterative process where the
cells surrounding the surface gradually conform to its shape. It refines the mesh around
specified geometries and according to the size of gradients, as illustrated in Figure 4.
The process starts with a base mesh, and refinement is applied around the edges of the
given geometry.

During this iterative process, systematic mesh refinement is applied to the newly
defined geometry region, guided by the number of cells in the background mesh. If
necessary, additional refinement may be introduced by splitting cells in specified regions.
Subsequently, the geometry region is removed from the background mesh and introduced
as a new region with independent properties. This comprehensive process ensures the
generation of a high-quality hexahedral mesh that accurately represents the complex
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geometry within the computational domain. Parameters governing the adaptation process
include cell size, surface feature refinement level, and surface curvature. Properly setting
these parameters is crucial for achieving an optimal balance between mesh resolution and
computational efficiency.

Figure 4. (a) Computation domain of structured cells constituting one region for the background
mesh. (b) Structured background mesh with spherical inclusion surface. (c) New computational
domain after SNAPPYHEXMESH consisting of two regions.

4. Convergence of Temperature Predictions upon Grid Refinement

In this section, we explore the resolution requirements that need to be met for an
accurate simulation of heat transfer in periodic domains. Such a system is generated by
repeating a unit cell in all three directions. We consider two types of periodically extended
systems: (a) containing a single sphere per unit cell and (b) containing two spheres per
unit cell. Apart from this difference, we may also consider periodic systems with different
volume fractions of spheres in the system. For a single sphere per unit cell, we assess
the convergence of the temperature field in terms of temperature profiles across selected
lines and the corresponding convergence of the L1-norm of the error. For systems with
two spheres per unit cell, we investigate in addition the resolution needed to resolve the
total temperature field even in the case of spheres separated by very small distances and
even overlap.

4.1. Convergence Study Setup

For an accurate simulation of conjugate heat transfer in configurations of stacked
particles, a spatial resolution analysis is essential to determine the number of grid cells per
unit cell needed to achieve a certain accuracy level. The periodic setting of stacked spheres
mimics more general configurations of such spheres within the pores of a metal foam, as
described in the Introduction.

We detail the simulation setup in a 2D representation for clarity next. The actual
simulations are all conducted in 3D. In Figure 5a, a 2D sketch of the simulation domain
is shown, divided into a large number of grid cells. Each grid cell is of size h3 where the
grid spacing is taken uniformly as h = L/n, with L the size of the periodic unit cell and
n the number of grid cells along each coordinate direction. Figure 5b presents a single
paraffin sphere with a diameter D embedded in air, and Figure 5c depicts two paraffin
spheres separated by a specified distance H. In the case of two spheres per unit cell, quite
general configurations are possible. To limit the convergence study, we consider two
spheres directly above each other, sensing maximal thermal gradients. Configurations with
the spheres at general relative placement will have somewhat smaller thermal gradients,
making these less demanding for our resolution study—these are therefore omitted here.
Future work is planned on several spheres in general relative configurations—preliminary
investigations show that the current OpenFOAM approach is capable of addressing these
problems as well.

The vertical direction will be identified as the z axis. In the z direction, a temperature
difference is imposed, characterized by a temperature difference ∆T over the distance L.
The steady temperature field T in the entire domain, including the spheres, is simulated and
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the accuracy of the predictions is quantified. For this study, we refine the spatial resolution
using n = 2k grid cells per direction with k = 1, 2, . . . , 7.

Figure 5. A two-dimensional representation of a periodic domain showing the following: (a) n2

cells of h size composing a L2 simulation box. (b) A single sphere with a diameter of D embedded
within the simulation box. (c) Two spheres, each with a diameter D, whose centers are separated by a
distance of H.

4.2. One Sphere per Unit Cell

The microstructure in the studied TES systems consists of multiple spherical particles
of various sizes, densely packed together. To approximate the effective heat conductivity
of such composite systems, we consider spatially extended periodic systems upon which
a temperature gradient is imposed. In this subsection, we investigate periodic systems
containing a single sphere per unit cell. This is a generic problem that is suitable to
investigate numerical requirements for reaching a desired accuracy level.

The spatial resolutions that we consider are labeled in terms of the number of grid
cells M that cover the diameter D of the sphere, i.e.,

M =
D

L/n
=

D
h

(20)

in terms of the domain size L and number of grid cells n. Figure 6 illustrates a cross-cut
displaying various resolutions at different M values. A temperature gradient directed
from top to bottom is imposed. The steady temperature fields show a clear qualitative
convergence with increasing M with coarse structures recognizable even as M = 2, as
illustrated in Figure 7. This impression of convergence is quantified next.

Figure 6. An embedded sphere in a periodic domain at different resolutions denoted by M = D/h.
The predicted temperature fields T are shown below in terms of T∗ = (T − T0)/(T1 − T0) in which
T0 and T1 are the imposed temperatures on the bottom and top, respectively.
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Figure 7. Temperature profile of sphere embedded in a cubic domain at different resolutions
M = D/h.

To assess the convergence of the temperature predictions, we compare as a function of
M the dimensionless, scaled temperature

T∗ =
T − T0

T1 − T0
(21)

where T0 and T1 are the imposed temperatures on the bottom and top of the periodic
unit, respectively. We evaluate T∗ along a vertical line through the middle of the sphere.
The corresponding temperature profiles are depicted in Figure 8 showing quantitative
convergence with nearly grid independence in the case M ≥ 8.

(a) (b)

Figure 8. (a) The L1—error for different spatial resolutions M. (b) The computational cost of the
solver and SNAPPYHEXMESH time against the total number of cells.
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To facilitate a further quantitative analysis of the convergence, we assess the L1—error
in the predicted temperature profiles using the result with M = 128 as the reference. We
define the error as

EL1(M) =
1

n(M)

n(M)

∑
i=1

|ei(M)| (22)

where n(M) denotes the total number of grid cells across the domain L at M = D/h.
Moreover, the local error

ei(M) = T∗(zi(M))− T∗(zi∗(Mre f )) (23)

where zi(M) is the i-th grid point in the vertical grid corresponding to a selected value M
and zi∗(Mre f ) is the corresponding grid point at i = i∗ in the Mre f = 128 grid in this study.

Figure 8a displays the convergence, indicating that indeed, for values of M ≥ 8,
convergence assumes asymptotic scaling equal to that of a second-order method. This
was expected from the spatial discretization adopted in OpenFOAM employing Gaus-
sian integration, which interpolates values from cell centers to face centers [16]. Finally,
Figure 8b shows the increase in computational cost, which is defined as the time it takes
for the complete mesh to be generated and the simulation to run, with increasing spatial
resolution. We observe cubic scaling, verified by the power of three guiding lines.

In the next subsection, we consider the prediction of the temperature field in the case
of two spheres per unit cell.

4.2.1. Effective Thermal Conductivity

In the preceding subsection, we introduced a parameter for the spatial resolution,
denoted as M, and observed consistent second-order convergence beyond a value of M = 8.

The calculation of the effective thermal conductivity of the basic unit cell that contains
the configuration of the paraffin spheres involves an examination of the overall thermal
transport characteristics of the composite material, including its heterogeneity. In the
numerical determination of ETC for a composite material, we assume steady conditions,
which implies that the heat transfer across any plane at constant height z through the
heterogeneous material remains constant. The total heat flow rate, denoted as Q̇, flowing
through a horizontal plane Γ at constant z is defined as follows:

Q̇ =
∫

Γ
dxdyκ(x, y, z)∂zT(x, y, z) ≡ κe f f

∆T
L

A (24)

Here, κ represents the local thermal conductivity, and ∂zT is the temperature in the z
direction evaluated plane. This expression also introduces effective thermal conductivity,
κe f f , including the temperature difference ∆T across the vertical length of the simulation
box L, and the simulation box plane area A. By rearranging this expression, we obtain for
the ETC:

κe f f =
L

A∆T

∫
Γ

dxdyκ(x, y, z)∂zT(x, y, z) (25)

In the steady state, the prediction of the ETC κe f f is independent of the particular plane
considered. We may also use this property to verify the numerical evaluation of the ETC.
For convenience and accuracy, we exploit this definition only at planes that traverse the
domain through air. Independence was also established for planes that traverse both air
and paraffin.

Examining the dependence of κe f f on the spatial resolution (M) is key for assessing
what spatial resolutions are appropriate for reliable predictions. Figure 9 presents the
temperature field (a) and the convergence of κe f f for a paraffin sphere with a thermal
conductivity of κpara f f in = 0.2 W m−1K−1 in the solid state [5] and surrounding air with
κair = 0.026 W m−1K−1 [27]. The observed accuracy of predicting ETC aligns well with the
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convergence of the underlying temperature field established earlier. In particular, also for
κe f f , sensible predictions are found beyond M = 8.

(a) (b)

Figure 9. (a) Temperature field with an embedded sphere at M = 16 with different sample planes
(z = 0.1, z = 1, z = 3 and z = 3.9) to determine κe f f and (b) κe f f at different spatial resolutions M
evaluated on different sample planes.

4.2.2. Volume Fraction

Building upon the dependency of κe f f on the spatial resolution M outlined in the
preceding subsection, we consider the dependence of the effective thermal conductivity on
the volume fraction of paraffin. Various constitutive (micro-mechanical) models [28] have
been devised to explore the effective thermal conductivity of composite materials, with the
Maxwell-Garnett [14] and Bruggeman [29] models as prominent examples. For unit cells
containing a single sphere, effective heat conductivity is given by:

κe f f = κm

(
1 +

3ϕ(δ − 1)
2 + δ − ϕ(δ − 1)

)
(26)

The Maxwell-Garnett model, as depicted in Equation (26), offers a formulation for
κe f f [14]. Here, κm represents the thermal conductivity of the matrix material, while ϕ sig-
nifies the volume fraction of the filler material. The ratio between the thermal conductivity
of the filler, denoted as κ f , and that of the matrix is expressed as δ = κ f /κm. Notably, the
Maxwell-Garnett model is tailored for spherical, non-overlapping particles, rendering it
suitable for comparison with the simulation results.

Figure 10 presents a comparison between the numerical approximation and the
Maxwell-Garnett model as a function of the volume fractions of the paraffin filler. Both
approaches demonstrate a strong agreement, particularly up to a volume fraction of 30%.
In these simulations, a constant spatial resolution of M = 32 per sphere diameter is upheld;
note that this implies a growing computational cost with a reduced volume fraction—this
posed no feasibility problem using OpenFOAM.
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Figure 10. Effective thermal conductivity of binary mixture of still air and paraffin inclusions. The
numerical approximation is compared with the Maxwell-Garnett model at a resolution of M = 32
per sphere diameter.

4.3. Two Spheres per Unit Cell

To further investigate the predictions for the temperature field when using a periodic
model for extended systems, we next investigate unit cells that contain two spheres. These
spheres can be in any relative configuration inside the basic unit cell, which poses different
challenges to the numerical method. We consider two extreme situations:

1. Horizontal. If the two spheres are aligned horizontally, i.e., the line through the
centers of the spheres lies in a constant z plane, the temperature gradient experienced
by the spheres would be quite similar to the temperature gradient experienced by a
single sphere. This is particularly true if the two spheres are separated far enough,
making their mutual interactions diminish. This situation was already studied in the
previous subsection.

2. Vertical. If the two spheres are aligned vertically, i.e., the line through the centers of
the spheres is in the z direction, the temperature gradient experienced by each of the
two spheres differs most from the single-sphere case. Moreover, the gradients seen in
this configuration are the largest among the different configurations. Therefore, this
configuration will be studied in this subsection.

Particles stacked within the unit cell may not always be well separated from each other.
This mimics the situation when multiple spheres are stacked inside a pore of the metal foam
in which a range of relative configurations may be expected. Therefore, we investigate
the implications of different distances between the centers of the spheres on the predicted
temperature field. We include overlapping, touching and separated configurations and
consider the convergence of the corresponding solution upon grid refinement. Figure 11
illustrates four distinct cases, each characterized by different distance ratios S = H/D,
measuring the distance between the centers of the spheres in units of the diameter of the
spheres D, cf. Figure 5c. In terms of S, we observe that 0 ≤ S ≤ 1 corresponds to partially
overlapping spheres and S > 1 denotes separated spheres that, in principle, would allow
for a grid fine enough to resolve the distance between the surfaces of the spheres with a
number of grid cells.

Figure 12 illustrates two spheres separated by a small distance, corresponding to
S = 1.05. In case a coarse mesh (M = 4) is used, SnappyHexMesh generates a compu-
tational grid that does not resolve the distance between the spheres but rather forms a
dumbbell shape. As the spatial resolution increases, this artificial contact area diminishes
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until the gap is fully resolved at a sufficiently high resolution of M = 32. Although there
are clear differences in the way the geometry is resolved at different resolutions, the main
question of course is how such differences affect the prediction of the temperature field.
We turn to this next.

Figure 11. Two-sphere cases, illustrated as a red and green sphere of the same material, for different
separations measured in terms of S = H/D, expressing the distance between the centers of the two
spheres in units D.

Figure 12. SnappyHexMesh refinement for spheres, illustrated as a red and green sphere of the same
material, separated by a small gap (S = 1.05) for different resolutions (M = 4, M = 8 and M = 32).

The cases depicted in Figure 11 (S = 0.5, S = 1, S = 1.05 and S = 2) have been
simulated at various resolutions M. The corresponding temperature profiles are presented
in Figure 13. We observe a characteristic convergence of the temperature profiles with an
increasing resolution as already presented for unit cells containing a single sphere only.
Again, for M ≥ 8, good general agreement with the grid-independent solution is observed,
where it is understood that the value of M refers to the number of grid cells across the
diameter of a sphere. This value of M also appeared for the single-sphere case, suggesting
that the interaction between the spheres in terms of the spatial temperature distribution is
rather modest and no particularly strong gradients emerge in the two-sphere configuration.
Finally, for the case S = 1.05 in which a small gap is present, even when not fully resolving
the gap, the solutions are close to the fully resolved gap reference simulation.
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Figure 13. Vertical temperature profiles for various separations S and spatial resolutions M.

Effective Thermal Conductivity

The study of the ETC of a two-sphere paraffin system embedded in air is considered
next as a function of the distance (S) between the sphere centers.

Figure 14 displays the dependence of κe f f on the inter-sphere distance S. In this
illustration, we used spheres of half the radius as used for the single-sphere case above. At
S = 0, the predicted value therefore does not agree with the single-sphere case considered
earlier. The two-sphere systems show a value of κe f f = 0.0263 W m−1K−1 in the fully
overlapping case at S = 0. With increasing S, the effective heat conductivity increases and
reaches a maximum near S = 1. In this configuration, the path along which the heat is
transported is for a large extent contained in paraffin for which the heat conductivity is
larger than in the surrounding air. For larger separations, the value of κe f f reduces again
to reach a plateau corresponding to two independent paraffin spheres. The simulation
method appears to yield accurate predictions that can be used to define upscale theory as
is considered in homogenization models.
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Figure 14. ETC of a vertically aligned two-sphere system at a spatial resolution of M = 16 as a
function of the distance S between the sphere centers.

5. Conclusions

In this paper, we developed a simulation method with which heat transfer in structured
heterogeneous media can be simulated. The heterogeneous medium is meant to represent
in detail the working material in a future thermal battery. Specifically, one may think
of spheres composed of paraffin, although the method developed here is general. The
working material contains a system of spheres placed in a certain configuration, which is
repeated periodically. The corresponding unit cell can have several such spheres inside to
represent actual stacked spheres in a realistic domain.

The approach is implemented in OpenFOAM, using second-order finite volume dis-
cretization. The full conjugate heat transfer problem of a periodic system was addressed, in
which a unit cell is repeated indefinitely in all three directions, subject to a steady tempera-
ture gradient. The heat transfer in the case of a unit cell with only one sphere inside was
considered in a grid refinement study. Visually, rapid convergence was appreciated upon
increasing the spatial resolution, which could be recognized in detail to be of second-order
accuracy. In fact, on grids with M ≥ 8 grid cells per diameter D of the spheres, good
engineering accuracy was observed, yielding high-fidelity results upon further refinement.
The computational effort was seen to scale as n3 where n is the number of grid cells in each
coordinate direction. The computational effort is sufficiently low to enable the simulation
of extensive periodic models of the composite material.

Further examples of this problem were investigated by considering unit cells with
two spheres inside. Grid refinement showed second-order convergence also in this case.
Moreover, in terms of the separation parameter S = H/D, we simulated two-sphere
problems with overlap (0 ≤ S ≤ 1) as well as without overlap (S > 1). Even in cases where
possible small gaps between the two spheres would be smaller than the grid spacing h, the
grid refinement showed continuous improvement upon increasing the resolution, with
solutions that are very close to the eventual grid-independent solution. Hence, it appears
that the under-resolution of tiny details in a complex stacking of spheres is not leading to
large inaccuracies in the temperature field and the corresponding thermal transport.

The simulation method developed here was also illustrated in terms of the effective
thermal conductivity κe f f . We observed that at spatial resolutions M ≥ 8 per sphere
diameter, the effective conductivity can be computed reliably. This method can hence
provide a basis for homogenization approaches to upscale the model to much larger
systems. As an example, we calculated κe f f as a function of the volume fraction of paraffin
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filler and compared this with the Maxwell-Garnett constitutive model. The numerical
approximation closely mirrors the Maxwell-Garnett model up to a 30% volume fraction
of paraffin filler. This correspondence diminishes for yet higher volume fractions, as the
periodic boundaries imply that the temperature distribution around the paraffin spheres
can no longer be described as independent of that around nearby spheres. Our method
was also adopted to compute the κe f f of a system of two spheres at different distances S.
The two-sphere system revealed distinctive trends in the effective thermal conductivity.
In fact, when going from overlapping to non-overlapping configurations, a peak ETC is
observed slightly below S = 1, attributed to the longer paraffin thermal pathway with
a higher heat conductivity compared to the embedding air. These findings contribute to
the data-driven upscaling of heat transfer models in truly complex systems of polymer
composite materials.

The new model developed in OpenFOAM will be extended to systems with coated
spheres, with which it will become possible to further improve the heterogeneous material
by assigning the coating to increase the overall heat transfer rate and increase the loading
and unloading of the core of the multiple spheres storing heat effectively in large quantities.
Specifically, paraffin spheres coated with graphene form an important example of such
composite materials. This type of extension is currently under investigation—the results
will be published elsewhere. The application of the new approach to extended systems
requires high-performance computations, which is well possible based on OpenFOAM. In
fact, a possible grid of n = 1024 and a resolution per diameter of M = 8–16 would enable
simulations of extended systems with 1283–643 spheres in a regular stack. This large-scale
modeling forms the basis of future homogenization approaches that will enable the analysis
of systems of realistic size and complexity.

Future research is devoted to effects due to variations in physical parameters, such as
the volume fraction of the spherical inclusions. This aims to study the effect of changes
in the physical system on the effective thermal conductivity. Additionally, the model will
be extended by adding a thin coating composed of a material with very high thermal
conductivity. A particular example would be the coating of paraffin spheres with graphene,
thereby combining the fast and slow transport of heat in the system needed to realize
particular designs for thermal batteries. Finally, after having established the resolution
requirement for a single sphere and a pair of spheres, we will develop simulation method-
ologies that can handle large numbers of spheres (multi-spheres) touching each other.
This would correspond closely to the situation motivated by Figure 1 and lead the way to
realistic configurations. The detailed exploration and findings of these three studies will be
presented elsewhere.
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