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Abstract: The growing demand for lightweight and durable materials in industries, such as the
automotive, aerospace, and electronics industries, has spurred the development of heterojunction
bilayer composites, combining the structural integrity of metals with the versatility of polymers.
This study addresses the critical interface between stainless steel (SUS) and polyamide 66 (PA66),
focusing on the pivotal role of surface treatments and various silane coupling agents in enhancing
the adhesion strength of heterojunction SUS/PA66 bilayer composites. Through systematic surface
modifications—highlighted by scanning electron microscopy, atomic force microscopy, and contact
angle analyses—the study assessed the impact of increasing the surface area, roughness, and energy
of SUS. X-ray photoelectron spectroscopy evaluations confirmed the strategic selection of specific
silane coupling agents. Although some coupling agents barely influenced the mechanics, notably,
aminopropyl triethoxysilane (A1S) and 3-glycidyl oxypropyl trimethoxysilane (ES) significantly
enhanced the mechanical properties of the heterojunction bilayer composites, evidenced by the
improved lap shear strength, elongation at break, and toughness. These advancements were
attributed to the interfacial interactions at the metal–polymer interface. This research underscored
the significance of targeted surface treatment and the judicious selection of coupling agents
in optimizing the interfacial adhesion and overall performance of metal–polymer composites,
offering valuable insights for the fabrication of materials where reduced weight and enhanced
durability are paramount.

Keywords: stainless steel (SUS); polyamide (PA); heterojunction bilayer composite; surface treatment;
coupling agent; silane; lightweight; mechanical properties

1. Introduction

In recent years, heterojunction bilayer metal–polymer composite technology has
emerged as a pivotal strategy to reduce the weight of products across the metal–polymer
composite field [1–3]. These bilayer polymer–metal composites, which ingeniously meld
the beneficial attributes of metals and polymers into a cohesive layered structure, are
gaining traction across various industries, including automotive, aerospace, and electronics
industries. Their growing popularity stems from their ability to combine the strength and
durability of metals with the lightweight design and design versatility of polymers [4,5]. By
integrating lightweight polymers with sturdy metals, the overall weight of the component
can be significantly reduced, which is particularly beneficial in mobile applications like
automotive and aerospace, where weight reduction is directly correlated with fuel efficiency
and performance. The combination of heterojunction materials can also improve corrosion
resistance and thermal stability with moderate mechanical properties depending on the
specific metal and polymer used.
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Robust adhesion between metal and polymer layers is paramount to obtaining
heterojunction bilayer composites [6,7]. Adhesion can be enhanced by surface treat-
ments and the development of coupling agents (compatibilizers) [8–11]. Stainless steel
(SUS), known for its corrosion resistance, wear resistance, thermal resistance, worka-
bility, durability, and mechanical strength, plays a significant role across a wide array
of industrial applications [12–17]. However, its surface characteristics can impede ef-
fective adhesion with polymers due to the inherent incompatibility between organic
and inorganic materials [18,19]. To mitigate this phenomenon, various surface treat-
ment techniques—including mechanical abrasion, chemical etching, plasma treatment,
and laser modification—are utilized to enhance the adhesion capabilities of SUS; each
method offers unique benefits to improve physical and interfacial interactions with
polymers [20–23]. Mechanical abrasion is a common method where the surface is phys-
ically abraded to create a rougher texture, increasing the surface area and mechanical
interlocking capabilities. The chemical treatment involves the use of acids or other
chemicals to etch the surface, introducing rough surfaces and new functional groups that
can form chemical or physical bonds with polymers. Plasma treatment is a sophisticated
technique where the surface is exposed to plasma, altering its chemical composition and
introducing polar groups that improve adhesion with polymers. The laser treatment
uses focused laser beams to modify the surface texture and chemistry, offering precise
control over the treatment.

Among the solutions to this challenge, silane-based coupling agents stand out for
their ability to form a molecular bridge between inorganic and organic material surfaces,
thereby substantially enhancing the interfacial bond strength [8,24,25]. The amphiphilic
agents have a dual nature: one end (silane) of the molecule can bond with the metal,
and the other end with the polymer, thus enhancing the bond strength between the
two [26]. Each of these silane-based agents has unique properties and compatibility with
different types of polymers [27]. The selection of these agents depends on the specific
requirements of the polymer–metal interface, including the type of polymer, the desired
properties of the final composite, and the conditions under which the composite will be
used [28].

Polyamides, also named nylon, feature high mechanical strength, wear resistance,
flexibility, chemical and thermal resistance, low friction coefficients, and electrically in-
sulating properties and are lightweight [29–35]. Thus, it is extensively utilized in vari-
ous applications, such as textiles, automotive applications, electronics, packaging, sports
equipment, kitchen utensils, carpet fibers, and various household items, despite moisture
absorption [36–42]. In particular, polyamides are commonly used in various automotive
applications, such as brackets, housings, and structural elements [37].

This study aims to enhance the compatibility between SUS and PA66 in heterojunction
bilayer SUS/PA66 composites through a strategic combination of surface treatments and
the application of silane-based coupling agents, as shown in Figure 1. The surface treat-
ments and silane-based coupling agents containing vinyl, epoxy, and amine (monoamine
vs. diamine) functional groups were assessed through contact angle, morphology, element
analysis, and thermal and mechanical properties. This research holds significant impli-
cations for various industrial applications where the synergy of metals and polymers is
crucial for the performance and longevity of materials.
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aminopropyl trimethoxysilane; ES: 3-glycid oxypropyl trimethoxysilane; VS: vinyl triethoxysilane. 
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of Korea). Polyamide 66 (PA 66) was purchased from Ascend Performance Materials Co. 
(Seoul, Republic of Korea). The silane-based coupling agents, including aminopropyl tri-
ethoxysilane (A1S, OFS6011), aminoethyl aminopropyl trimethoxysilane (A2S, OFS6020), 
3-glycid oxypropyl trimethoxysilane (ES, Silanil 258), and vinyl triethoxysilane (VS, Silanil 
106), were acquired from BNOchem Co. (Cheongju-si, Republic of Korea). The structural 
formulas of the coupling agents are illustrated in Figure 2. Hydrochloric acid (HCl, 35–
37%), copper(II) sulfate pentahydrate (CuSO4, 99%), ethanol (99.5%), and acetone were 
purchased from Samchun Pure Chemical Co. (Pyeongtaek-si, Republic of Korea). Sodium 
hydroxide (NaOH) was supplied from Duksan Chemical Co. (Ansan-si, Republic of Ko-
rea). Dihydrogen hexafluoro-zirconate (20% w/w in aqueous solution) was obtained from 
Alfa Aesar Co. (H2ZrF6, Ward Hill, MA, USA). 

Figure 1. Combination of surface treatments for SUS and silane coupling agents (compatibilizer) for
heterojunction bilayer SUS/PA66 composites. A1S: aminopropyl triethoxysilane; A2S: aminoethyl
aminopropyl trimethoxysilane; ES: 3-glycid oxypropyl trimethoxysilane; VS: vinyl triethoxysilane.

2. Experimental Section
2.1. Materials

Stainless steel 304 (SAE304 SUS) was obtained from Joontech Co. (Asan-si, Republic
of Korea). Polyamide 66 (PA 66) was purchased from Ascend Performance Materials Co.
(Seoul, Republic of Korea). The silane-based coupling agents, including aminopropyl
triethoxysilane (A1S, OFS6011), aminoethyl aminopropyl trimethoxysilane (A2S, OFS6020),
3-glycid oxypropyl trimethoxysilane (ES, Silanil 258), and vinyl triethoxysilane (VS, Silanil
106), were acquired from BNOchem Co. (Cheongju-si, Republic of Korea). The struc-
tural formulas of the coupling agents are illustrated in Figure 2. Hydrochloric acid (HCl,
35–37%), copper(II) sulfate pentahydrate (CuSO4, 99%), ethanol (99.5%), and acetone were
purchased from Samchun Pure Chemical Co. (Pyeongtaek-si, Republic of Korea). Sodium
hydroxide (NaOH) was supplied from Duksan Chemical Co. (Ansan-si, Republic of Korea).
Dihydrogen hexafluoro-zirconate (20% w/w in aqueous solution) was obtained from Alfa
Aesar Co. (H2ZrF6, Ward Hill, MA, USA).

2.2. Surface Modifications of SUS Substrates

The surface treatment process of SUS is detailed in Figure 3. For thorough cleaning,
the SUS was submerged in acetone, followed by ultrasonic cleaning for 20 min to remove
any contaminants. An additional cleaning phase was performed, where the SUS specimens
were immersed in a 5% (w/v) NaOH aqueous solution (5g NaOH + 100 mL deionized
water) and subjected to cleaning at 50 ◦C for 13 min. Afterwards, to increase the surface area
and energy of the SUS, it was immersed in the etching solution and etched for 1 min. The
etching solution was formulated by combining 10 g of CuSO4, 50 mL of H2O, and 50 mL of
HCl. The final step in the surface’s preparation involved immersing the SUS in a solution
of H2ZrF6 (100 ppm) and NaOH (0.1 M) for 3 min to facilitate functionalization, thereby
further improving the interfacial interactions between the SUS and the PA 66 polymer.
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2.3. Compatibilization and Sample Fabrication for Lap Shear Strength Test

Following the surface treatment, 0.2 µL of each coupling agent was meticulously ap-
plied onto the SUS surfaces using a micropipette. The application was uniformly distributed
across the bonding area with the aid of a brush. The solvent and moisture were eliminated
on a hot plate at 90 ◦C for 3 min. For the bonding process, the surface-treated SUS was
positioned on a hot plate preheated to 260 ◦C. The dimensions of SUS was 8.5 cm × 2.8 cm
(23.8 cm2) whereas that of PA66 was prepared according to ISO 527-2 type 1A. A PA66
sheet with dimensions of 1.9 × 0.7 cm (1.33 cm2) was placed atop the SUS, as depicted in
Figure 4. A weight of 200 g was applied over the designated bonding region to ensure
uniform contact, and the assembly was subsequently heated for 6 min to facilitate the
bonding process.
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2.4. Characterization Techniques
2.4.1. Scanning Electron Microscopy (SEM)

The surface morphologies of both untreated and surface-treated SUS specimens were
observed using scanning electron microscopy (SEM; Apro, FEI Co., Hillsboro, OR, USA),
applying an electron beam voltage of 10.0 kV and a magnification of ×2500. Samples for
SEM measurements were obtained from lap shear strength tests. For SEM analysis, the
samples were coated with a 5–10 nm thick gold layer using a sputter coater (Cressington
108 Auto Sputter Coater, Ted Pella Inc., Redding, CA, USA).

2.4.2. Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM, NX10, Park Systems Co., Suwon-si, Republic of Korea)
was utilized to assess and quantify the SUS surfaces. Measurements were performed using
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a non-contact mode on specimens sized 1 mm × 1 mm, with scan settings of 10 µm × 10 µm
and a rate of 1.0 Hz.

2.4.3. X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS, K-Alpha Plus, Thermo Fisher Scientific Co.,
Waltham, MA, USA) was utilized to confirm the application effectiveness of silane coupling
agents on the SUS surfaces. Samples were cut into 1 mm × 1 mm dimensions via water jet
cutting. Each sample underwent depth profiling. The samples without the silane coupling
agent and those with ES were profiled for 20 s × 20 cycles, whereas those with A1S, A2S,
and vs. were subjected to 40 s × 20 cycles for depth profiling.

2.4.4. Contact Angle

The hydrophilicity of the SUS surfaces, both untreated and treated by various coupling
agents, was determined by measuring the contact angle using a Digi-drop instrument
(Phenix-MT(T), SEO Surface Electro Optics Co., Suwon-si, Republic of Korea). The contact
angle was analyzed based on the morphology of images captured at the interfaces among
air, droplet contours, and projections of the SUS surface. An average of five specimens was
used for each measurement.

2.4.5. Lap Shear Strength and Tensile Properties

The lap shear strength, elongation at break, and toughness of the bonded samples
were obtained using a universal testing machine (UTM, LR10K Plus, Lloyd Instruments,
AMETEK, Inc., Berwyn, PA, USA). The samples were measured at a constant speed of
4.8 mm/min at room temperature (22–24 ◦C). The average values for each sample were
measured based on five specimens. Toughness was ascertained by integrating the area
under the stress–strain curve.

3. Results and Discussion

This investigation focuses on enhancing interfacial adhesion through specific surface
treatments of SUS and the strategic use of silane-based coupling agents comprising vinyl,
epoxy, and amine (monoamine vs. diamine) functional groups. The surface modification
of SUS is crucial for improving its compatibility with polyamide 66, thereby facilitating
stronger bonding. The employment of silane coupling agents acts as a pivotal bridge,
significantly improving the metal–polymer interface. The study meticulously evaluates
the impact of these treatments through contact angle measurements, assessing surface
wettability, and tensile testing to quantitatively analyze the adhesion strength between
stainless steel and polyamide 66. Furthermore, thermal and mechanical analyses offer
deeper insights into the adhesion’s resilience under varying conditions.

The contact angle measurements are conducted to gauge the wettability of the SUS
surfaces, which is a direct indicator of the efficacy of surface modifications. Tensile tests
were performed to quantitatively assess the adhesive strength between SUS and PA66.
Moreover, thermal and mechanical analyses are incorporated to provide insights into the
stability and durability of the adhesion under various conditions.

3.1. Morphology (SEM)

The impact of surface treatments and the application of silane-based coupling agents
on surface morphology, roughness, and energy significantly influence the bonding strength
of heterojunction bilayer composites. SEM imaging, as depicted in Figures 5 and S1,
illustrates the modifications in the surface morphology of SUS following treatment and
subsequent coating with different coupling agents. The SEM images reveal that the surfaces
of the SUS samples subjected to surface treatments (Figure 5b–f) displayed increased
roughness compared with the untreated SUS sample (Figure 5a). This increased roughness
is critical for enhancing mechanical interlocking at the interface. In addition, all surface-
treated SUS specimens exhibited a uniform coating of the applied silane-based coupling
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agents (A1S, ES, A2S, and VS), indicating effective application on the prepared surfaces.
Notably, the samples, which were surface-treated and then coated with A1S and A2S,
presented a more substantial coating thickness, suggesting a denser layer of the coupling
agent, which could potentially influence adhesion characteristics. This contrast in coating
thickness between samples treated with A1S and A2S versus those with ES and vs. was
also evident in the supplementary SEM images (Figure S1). This finding underscores the
differential impact of the coupling agents on surface morphology and, by extension, on the
adhesive properties of the heterojunction bilayer composites.
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Polymers 2024, 16, 896 8 of 18

3.2. Morphology (AFM)

The strategic chemical modification of metal surfaces plays a crucial role in adjusting
surface energy, roughness, and spatial dimensions, thereby significantly enhancing the
adhesive strength of heterojunction bilayer composites. To precisely evaluate the alterations
in surface roughness attributable to surface treatments, AFM was utilized. Figure 6 present
the AFM images and the computed average surface roughness for SUS specimens treated
with diverse silane coupling agents. It was observed that the average surface roughness
of SUS notably increased following chemical surface treatment, indicating a successful
modification. The subsequent application of silane coupling agents enabled the further
quantification of surface roughness. The surface roughness of SUS reached its zenith
with the application of VS, while it was minimized with A2S. Such disparities in surface
roughness are indicative of the differential wetting behaviors, which are intricately linked to
the intrinsic affinities of the coupling agents, as further explored in the ensuing discussion.
Specifically, A2S and A1S, comprising amino functional groups, showed a pronounced
affinity toward the SUS substrate, facilitating superior wetting and thus reducing surface
roughness. By contrast, the inherently nonpolar vs. exhibited limited compatibility with
the SUS substrate, resulting in challenging wetting conditions and a consequent increase in
surface roughness.
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3.3. Contact Angle

The contact angles of untreated and surface-treated SUS with and without coupling
agents were measured using deionized water (DIW), and the results are shown in Figure 7.
The contact angle of untreated SUS was higher than the surface-treated SUS samples with
and without coupling agents. This increased wettability was attributed to the increase in
surface roughness, area, and energy caused by the surface treatment. Among the surface-
treated SUS samples using a coupling agent, the largest contact angle was measured for the
surface-treated SUS with VS, characterized by its non-polar functional group, whereas the
smallest contact angle was measured for the surface-treated SUS with A2S, which contains
two polar amino groups. This variation is likely due to the interaction between the polar
amino groups of A2S and the polar DIW [43]. The presence of polar functional groups on
the surface-treated SUS significantly influenced the contact angle and wettability.
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function of time; (b) contact angle using different additives.

3.4. X-ray Photoelectron Spectroscopy (XPS)

To ascertain the effectiveness of the silane coupling agent application on the SUS
surface, XPS measurements, including depth profiling, were conducted. Depth profiling is
a method of using an ion beam to sequentially etch and analyze the surface or contamination
layers [44]. Figure 8 shows a notable increase in the atomic percentage of Fe 2p, along with
a decrease in C 1s, O 1s, and Fe 2p percentages as a function of etching time. Samples coated
with A1S and A2S revealed the presence of N 1s, indicative of amino functional groups,
with A1S and A2S incorporating one and two amino functional groups, respectively. The
initial detection of N 1s in other samples is likely attributable to organic contaminants on
the surface. A reduction in the N 1s atomic percentage with prolonged etching confirms the
thorough application of the silane coupling agent. Moreover, the atomic percentage of Fe
2p in A1S- and A2S-coated samples barely increased when compared with other specimens.
This finding corroborates the SEM observations in Figure 5; that is, A1S and A2S formed
a denser coating, and this is likely due to their self-protecting thickness resulting from
the aggregation of amide groups. The elevated atomic percentages of O 1s in uncoated,
and ES-coated SUS samples can be attributed to the metal oxide layer and oxirane groups,
respectively. Furthermore, the atomic percentage of Fe 2p in all specimens gradually
increased with increasing etching time, reflecting the iron content of the SUS substrate.
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Figure 8. XPS depth profiling of C+E+F-treated SUS surfaces with different silane coupling agents:
(a) none, (b) with A1S, (c) ES, (d) VS, and (e) A2S.

3.5. Mechanical Properties (UTM)

In this research, the role of silane coupling agents in enhancing the interfacial
interactions between metal and polymer in heterojunction bilayer composites was
evaluated [26]. The investigation into the mechanical characteristics of heterojunction
SUS/PA66 bilayer composites, both with and without the application of coupling agents,
is depicted in Figure 9. The lap shear strength, elongation at break, and toughness of
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these composites were quantitatively assessed using a UTM. The assessment included
composites that received no pretreatment as well as those subjected to a comprehen-
sive surface treatment regimen consisting of cleaning, etching, and functionalization
(C+E+F). The specimens benefiting from surface treatment exhibited superior mechanical
properties compared to their untreated counterparts, a phenomenon attributable to the
enhanced surface roughness and area, corroborated by SEM and AFM analyses. The
use of A1S and ES on the SUS surfaces markedly enhanced the mechanical properties of
the heterojunction bilayer composites, including lap shear strength, elongation at break,
and toughness, compared to the samples devoid of coupling agents. This enhancement
was particularly pronounced with A1S, suggesting that hydrogen bonding between
the amino groups of A1S and the amide functions of PA66 significantly contribute to
the observed mechanical property improvements. In contrast, the application of A2S,
despite possessing two amino groups, rarely yielded significant mechanical enhance-
ments. This condition is potentially attributed to the detrimental effects of amino group
agglomeration. Similarly, the positive impact of ES on mechanical properties likely stems
from interactions between the amide groups of PA66 and the terminal epoxide groups of
ES. Conversely, VS, characterized by its nonpolar structure, exhibited limited interaction
with the PA 66 polymer, resulting in negligible improvements in mechanical characteris-
tics. The trends observed in elongation at break and toughness closely mirrored those
of lap shear strength. This suggests that A1S and ES played the coupling role at the
interface between SUS and PA66. The results of the contact angle and the mechanical
properties were similar to each other. However, in the case of A2S, although the contact
angle was the lowest, it did not yield good mechanical properties. This finding appears
to be because A2S has high hydrophilicity, which is beneficial, but the internal hydrogen
bonding among amino groups within A2S acts as a negative role, barely increasing the
mechanical properties.

3.6. Morphology of Fractured SUS and PA66 Surfaces (SEM and Camera Images)

The morphologies of fractured SUS and PA66 surfaces subsequent to the lap shear tests
are depicted in Figures 10, 11 and S3–S5. Fractured surfaces treated with A1S and ES exhib-
ited distinct features, including less smooth interfaces, more pronounced color/contrast
gradients, and a higher prevalence of pore-like structures compared to those treated with
VS, A2S, and those without coupling agents. These observed variations in color and mor-
phology across the samples can be attributed to the establishment of robust interfacial
interactions between SUS and PA66. The trends observed in SEM analysis mirror those iden-
tified in mechanical testing, whereby interfaces characterized by low interfacial interactions
displayed smoother surfaces and diminished color gradients.
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Figure 9. Mechanical properties of PA66-based heterojunction bilayer composites containing untreated
and surface-treated SUS coated with different coupling agents: (a) stress–strain curves of untreated SUS,
(b) stress–strain curves, (c) lap shear strength, (d) elongation at break, and (e) toughness.
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3.7. Summary of Results

Table 1 summarizes all the results of this study. In terms of surface roughness, vs.
exhibited the highest value, while A2S had the lowest. This is because VS, being a nonpolar
group silane, forms bonds via van der Waals forces with minimal intermolecular inter-
action, resulting in the highest measured surface roughness by AFM. On the other hand,
A2S, containing amino groups and exhibiting hydrophilicity, showed significantly higher
intermolecular interaction, leading to the lowest measured surface roughness. Regarding
the contact angle, the untreated sample (without treatment) showed the highest angle,
while A2S, possessing two amino groups with strong hydrophilic properties, exhibited
the lowest contact angle when measured with deionized water. The lap shear strength,
elongation at break, and toughness were measured. Samples treated with A2S, which
contained two amino groups, showed relatively lower mechanical properties probably due
to the self-stacking/entanglement caused by interactions among the amino groups of A2S
rather than interactions between amino groups and PA66. Among the treated samples, A1S
had the highest values, whereas among the untreated samples, the sample treated with VS,
which contains nonpolar groups, had the lowest values.

Table 1. Overall results with/without surface treatments and with different compatibilizers in this
study where the red and blue colors indicate the highest and lowest values, respectively.

Pristine No Additive A1S ES VS A2S

Surface roughness 58.7 nm 250 nm 98.6 nm 141.6 nm 375 nm 19.4 nm
Contact angle 70.01◦ 38.8◦ 12.6◦ 23.5◦ 40.1◦ 5.1◦

Lap shear strength
with treatment - 5.8 MPa 11.9 MPa 11.2 MPa 5.9 MPa 7.5 MPa

Lap shear strength
without treatment - 4.6 MPa 7.0 MPa 6.5 MPa 3.2 MPa 4.9 MPa

Elongation at break
with treatment - 3.0% 3.4% 3.3% 2.7% 2.6%

Elongation at break
without treatment - 1.8% 2.6% 2.5% 1.9% 2.3%

Toughness
with treatment - 626 J/M3 1570 J/M3 1418 J/M3 584 J/M3 914 J/M3

Toughness
without treatment - 310 J/M3 702 J/M3 1282 J/M3 230 J/M3 359 J/M3

4. Conclusions

This study extensively explored the efficacy of surface treatments and the application
of silane coupling agents in enhancing the mechanical properties of heterojunction bilayer
composites, specifically SUS/PA66 composites. Through meticulous experimentation,
including SEM, AFM, and XPS analyses and mechanical testing, we have elucidated the
significant impact of chemical modification on the surface characteristics of SUS and its
subsequent effect on composite performance. The application of surface treatments to SUS
increased surface roughness and energy, thereby improving wettability, as evidenced by
decreased contact angles in surface-treated and coupling agent-coated SUS samples. The
enhanced wettability indicates an improved interfacial interaction between the metal and
polymer layers, a critical factor for the performance of heterojunction bilayer composites.
Among the evaluated silane coupling agents (A1S, A2S, ES, and VS), A1S and ES were
particularly effective in enhancing the mechanical properties of the composites, including
lap shear strength, elongation at break, and toughness due to their polar groups, which are
similar characteristics to those in PA66. This enhancement was attributed to the formation
of hydrogen bonds between the amino groups of A1S or the epoxide groups of ES with the
amide moieties of PA66, facilitating strong interfacial bonding. Conversely, A2S and vs.
showed minimal to no improvement in mechanical properties, which can be ascribed to
the agglomeration effect in the case of A2S and the low affinity of nonpolar vs. with PA
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66. The depth profiling and surface analysis through XPS further confirmed the successful
application of coupling agents, revealing the presence of specific functional groups that
contributed to the observed enhancements in adhesion and mechanical properties. In sum-
mary, this study exhibited the critical role of surface treatment and the strategic selection of
silane coupling agents in optimizing the interface between metal and polymer layers in het-
erojunction bilayer composites. Our findings provide a solid foundation for future studies
to tailor the interfacial properties for specific industrial applications, particularly where the
synergy of metals and polymers is crucial for material performance and longevity. Future
work will focus on exploring other coupling agents and treatment methods to broaden the
application scope of such composites in advanced engineering fields:

✓ We extensively investigated the effectiveness of surface treatments and silane coupling
agents in improving the mechanical properties of heterojunction bilayer composites,
specifically SUS/PA66 composites.

✓ We utilized SEM, AFM, and XPS analyses and mechanical testing to elucidate the
significant impact of chemical modification on SUS surface characteristics and subse-
quent composite performance.

✓ Surface treatments increased surface roughness and energy, enhancing wettability as
evidenced by reduced contact angles in surface-treated and coupling agent-coated SUS
samples and indicating improved interfacial interaction for composite performance.

✓ A1S and ES demonstrated notable effectiveness in enhancing composite mechanical
properties, and this is attributed to their polar groups akin to PA66, facilitating strong
interfacial bonding through interfacial interactions with amide moieties.

✓ Depth profiling and XPS surface analysis confirmed successful coupling agent ap-
plications, highlighting the specific functional groups contributing to the enhanced
adhesion and mechanical properties and offering valuable insights for tailoring inter-
facial properties in future composite design for diverse industrial applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16070896/s1. Figure S1. Fabrication of heterojunction bilayer
composites for lap shear strength tests. Figure S2. SEM images of untreated SUS surfaces with different
silane coupling agents (×2500): (a) A1S, (b) ES, (c) A2S, and (d) VS. Figure S3. SEM images of fracture-
surface SUS with different silane coupling agents (×2500) after lap shear tests: (a) C+E+F-treated SUS
without coupling agent, (b–e) C+E+F-treated SUS with coupling agent: (b) with A1S, (c) ES, (d) VS,
and (e) A2S. Figure S4. SEM images of fractured PA66 surfaces with different silane coupling agents
(×2500) after lap shear tests: (a) C+E+F-treated SUS without coupling agent, (b–e) C+E+F-treated SUS
with coupling agent: (b) with A1S, (c) ES, (d) VS, and (e) A2S. Figure S5. SEM images of fractured SUS
and PA66 surfaces with different silane coupling agents: (a) C+E+F-treated SUS without coupling agent,
(b–e) C+E+F-treated SUS with coupling agent: (b) with A1S, (c) ES, (d) VS, and (e) A2S. Left and right
images indicate SUS and PA66, respectively, after lap shear tests.
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